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Preface

The design and operation of modern technological systems and the proper comprehension
of their interaction with nature (e.g., in pollution control and global warming issues)
require the permanent processing of a large amount of measured data. Nowadays, progress
in the mathematical modeling of complex industrial or environmental systems, associated
with the continuous increase in memory and calculation power of computers, has made
numerical simulations of almost any physical phenomena possible. These facts bring about
the need for an appropriate tool that rigorously bridges the gap between the information
stemming from measurements and that corresponding to theoretical predictions, aiming at
the better understanding of physical problems, including real-time applications. Inverse
analysis is such a tool.
Heat transfer permanently takes part in our daily life. Examples can be found in natural

phenomena, such as the solar heating of Earth, meteorology or thermoregulation of
biological activity, as well as in a wide range of man-made applications, such as the
conversion of energy in heat engines, thermal control of chemical reactors, air conditioning,
cooling of electronic equipment, development of micro- and nano-technologies with the
associated thermal challenges, etc. Recent advances in both thermal instrumentation and
heat transfer modeling permit the combination of efficient experimental procedures and of
indirect measurements within the research paradigm of inverse problems. In this para-
digm, the groups of theoretical, computational, and experimental researchers synergistic-
ally interact during the course of the work in order to better understand the physical
phenomena under study. Although initially associated with the estimation of boundary
heat fluxes by using temperature measurements taken inside a heated body, inverse
analyses are nowadays encountered in single- and multi-mode heat transfer problems
dealing with multiscale phenomena. Applications range from the estimation of constant
heat transfer parameters to the mapping of spatially and timely varying functions, such as
heat sources, fluxes, and thermophysical properties.
In heat transfer, the classical inverse problem of estimating a boundary heat flux with

temperature measurements taken inside a heat-conducting medium has many practical
applications. For example, the heat load of the surface of a space vehicle reentering the
atmosphere can be estimated through inverse analysis by using temperature measure-
ments taken within the thermal protection shield. If a technique that sequentially estimates
such boundary heat flux is used, inverse analysis may allow for online trajectory correc-
tions in order to reduce the heat load. Therefore, overheating of the structure of the
spacecraft can be avoided, reducing the risk of fatal accidents. Moreover, modern engin-
eering strongly relies on newly developed materials, such as composites, and inverse
analysis can be used for the characterization of the unknown properties of such nonho-
mogeneous materials. The use of nonintrusive measurement techniques with high spatial
resolutions and high measurement frequencies, such as temperature measurements taken

vii

  



with infrared cameras, allows the characterization of nonhomogeneous materials even at
small scales, including crack or defect detection. The latest research in heat transfer follows
a trend toward small scales, at micro- and nano-levels. This requires that physical phe-
nomena be taken into consideration, which may be negligible and, hence, not accounted for
at macroscales. By the same token, modern techniques now permit nonintrusive measure-
ments to be taken at small space and time scales, thus allowing the observation of such
complex physical phenomena.
All subjects required for the understanding and solution of the physical situations

described above are available in this book, including the modeling of heat transfer prob-
lems, even at micro- and nano-scales, modern measurement techniques, and the solution of
inverse problems by using classical and novel approaches. This book is aimed at engineers,
senior undergraduate students, graduate students, researchers both in academia and
industry, in the broad field of heat transfer. It is assumed, however, that the reader has
basic knowledge on heat transfer, such as that contained in an undergraduate heat transfer
course.
This book is intended to be a one-source reference for those involved with different

aspects of heat transfer, including the modeling of physical problems, the measurement of
primary heat transfer variables, and the estimation of quantities appearing in the formu-
lation (indirect measurements) through the solution of inverse problems. Keeping this
main objective in mind, the book was divided into three parts, namely: Part I—Modeling
and Measurements in Heat Transfer, Part II—Inverse Heat Transfer Problems, and Part
III—Applications. Parts I and II provide a concise theoretical background along with
examples on modeling, measurements, and solutions of inverse problems in heat transfer.
Part III deals with applications of the knowledge built up in Parts I and II to several
practical test cases. Each chapter contains its own lists of variables and references. Hence,
depending on the reader’s background and interest, they can be read independently.
This book results from the Advanced Schools METTI (Thermal Measurements and

Inverse Techniques) held in 1995, 1999, 2005, and 2009. Started under the auspices of
SFT—French Heat Transfer Society, the last METTI School was co-organized with
ABCM—Brazilian Society of Mechanical Engineering and Sciences, and held in Angra
dos Reis (state of Rio de Janeiro) as one of the activities of the Year of France in Brazil.
However, the book was intended to be self-consistent and didactic, not being at all the
single collection of lectures previously given during the METTI schools.
We would like to thank all the contributors for their diligent work that made this book

possible. We are indebted to Professor Afshin J. Ghajar, the Heat Transfer series editor for
CRC Press=Taylor & Francis, for his encouragement and support to pursue this book
project. We also appreciate the valuable recommendation by Professor Sadik Kakac, who
carefully reviewed our book proposal. The cooperation of the staff at CRC Press=Taylor &
Francis is greatly appreciated, especially that from Jonathan W. Plant, the senior editor for
mechanical, aerospace, nuclear, and energy engineering, and from our project coordinator,
Amber Donley. Finally, we would like to express our deepest gratitude for the financial
support provided for the publication of this book by CAPES, an agency of the Brazilian
government for the fostering of science and graduate studies.

viii Preface

  



For MATLAB1 and Simulink1 product information, please contact:

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA, 01760-2098 USA
Tel: 508-647-7000
Fax: 508-647-7001
E-mail: info@mathworks.com
Web: www.mathworks.com

Preface ix

  



Contributors

Stéphane Andre
Energy and Theoretic and Applied Energy

Laboratory (LEMTA)
University of Nancy and CNRS
Vandœuvre-lès-Nancy, France

Liliane Basso Barichello
Institute of Mathematics
Federal University of Rio Grande do Sul
Porto Alegre, Brazil

Elena Palomo del Barrio
TREFLE Laboratory
Ecole Nationale Supérieure des Arts et

Métiers
University of Bordeaux
Talence, France

Jean-Christophe Batsale
TREFLE Laboratory
Ecole Nationale Supérieure des Arts et

Métiers
University of Bordeaux
Talence, France

Jean-Luc Battaglia
TREFLE Laboratory
Ecole Nationale Supérieure des Arts et

Métiers
University of Bordeaux
Talence, France

Valério L. Borges
School of Mechanical Engineering
Federal University of Uberlândia
Uberlândia, Brazil

Marcelo J. Colaço
Department of Mechanical Engineering
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil

Renato M. Cotta
Department of Mechanical Engineering
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil

Manuel Ernani Cruz
Department of Mechanical Engineering
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil

Morgan Dal
Materials Engineering Laboratory of

Brittany (LIMATB)
University of Southern Brittany
Lorient, France

Jean-Luc Dauvergne
TREFLE Laboratory
Ecole Nationale Supérieure des Arts et

Métiers
Talence, France

George S. Dulikravich
Department of Mechanical and Materials

Engineering
Florida International University
Miami, Florida

Ana P. Fernandes
School of Mechanical Engineering
Federal University of Uberlândia
Uberlândia, Brazil

Olivier Fudym
Research in Albi on Particulate Solids,

Energy and the Environment
University of Toulouse
Albi, France

xi

  



Eric Gavignet
Department of Energy & Engineering of

Multiphysic Systems
FEMTO-ST
University of Franche-Comté
Belfort, France

Manuel Girault
Department of Fluid, Thermal and

Combustion Sciences
PPRIME Institute
Chasseneuil-du-Poitou, France

Gilmar Guimarães
School of Mechanical Engineering
Federal University of Uberlândia
Uberlândia, Brazil

Saulo Güths
Department of Mechanical Engineering
Federal University of Santa Catarina
Florianópolis, Brazil

Yvon Jarny
Department of Thermal and Energy

Sciences
Polytechnic School of the University of

Nantes
Nantes, France

Jean-Claude Krapez
Department of Theoretical and Applied

Optics
ONERA—The French Aerospace Lab
Salon de Provence, France

François Lanzetta
Department of Energy & Engineering of

Multiphysic Systems
FEMTO-ST
University of Franche-Comté
Belfort, France

Denis Maillet
Energy and Theoretic and Applied Energy

Laboratory
National Center for Scientific Research
University of Nancy
Vandœuvre-lès-Nancy, France

Philippe Le Masson
Materials Engineering Laboratory of

Brittany (LIMATB)
University of Southern Brittany
Lorient, France

Carlos Frederico Matt
Department of Equipment and Installations
Electric Power Research Center
Rio de Janeiro, Brazil

Thomas Metzger
Thermal Process Engineering
Otto-von-Guericke University
Magdeburg, Germany

Luís Mauro Moura
Thermal System Laboratory
Pontifical University Catholic of Paraná
Curitiba, Brazil

Carolina P. Naveira-Cotta
Department of Mechanical Engineering
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil

Christophe Le Niliot
University Institute of Industrial Thermal

Systems (IUSTI)
Technopole de Château Gombert
Marseille, France

Helcio R. Barreto Orlande
Department of Mechanical Engineering
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil

Marina Silva Paez
Department of Statistical Methods
Federal University of Rio de Janeiro
Rio de Janeiro, Brazil

Daniel Petit
Department of Fluid, Thermal and

Combustion Sciences
PPRIME Institute
Chasseneuil-du-Poitou, France

xii Contributors

  



Benjamin Remy
Energy and Theoretic and Applied Energy

Laboratory (LEMTA)
University of Nancy and CNRS
Vandœuvre-lès-Nancy, France

Fabrice Rigollet
University Institute of Industrial Thermal

Systems (IUSTI)
Technopole de Château Gombert
Marseille, France

Paulo Seleghim, Jr.
Mechanical Engineering Department
University of São Paulo
São Carlos, Brazil

Priscila F.B. Sousa
School of Mechanical Engineering
Federal University of Uberlândia
Uberlândia, Brazil

Haroldo F. de Campos Velho
Laboratory of Computing and Applied

Mathematics
National Institute for Space Research
São José dos Campos, Brazil

Etienne Videcoq
Department of Fluid, Thermal and

Combustion Sciences
PPRIME Institute
Chasseneuil-du-Poitou, France

Contributors xiii

  



Part I

Modeling and Measurements
in Heat Transfer



1
Modeling in Heat Transfer

Jean-Luc Battaglia and Denis Maillet

CONTENTS

1.1 Introduction ........................................................................................................................... 4
1.2 Pertinent Definition of a Direct Model for Inversion of Measurements....................... 6

1.2.1 Heat Conduction at the Macroscopic Level.......................................................... 6
1.2.2 An Experimental Observation................................................................................. 8
1.2.3 How Can Heat Transfer Be Modeled at the Nanoscale? .................................. 10

1.2.3.1 Discussion.................................................................................................. 10
1.2.3.2 Molecular Dynamics ................................................................................ 11
1.2.3.3 Boltzmann Transport Equation.............................................................. 15
1.2.3.4 The Two-Temperature Model ................................................................ 16

1.3 Heat Diffusion Model for Heterogeneous Materials: The Volume
Averaging Approach .......................................................................................................... 18
1.3.1 Model at Local Scale............................................................................................... 18
1.3.2 The One-Temperature Model................................................................................ 19
1.3.3 The Two-Temperature Model ............................................................................... 20
1.3.4 Application to a Stratified Medium ..................................................................... 21

1.4 Summary on the Notion of Temperature at Nanoscales and
on Homogenization Techniques for Heat Transfer Description.................................. 22

1.5 Physical System, Model, Direct and Inverse Problems ................................................. 23
1.5.1 Objective of a Model............................................................................................... 23
1.5.2 State Model, Direct Problem, Internal and External Representations,

Parameterizing......................................................................................................... 24
1.5.2.1 Example 1: Mono Input=Mono Output Case....................................... 24
1.5.2.2 Parameterizing a Function ...................................................................... 26
1.5.2.3 State-Space Representation for the Heat Equation.............................. 28
1.5.2.4 Model Terminology and Structure ........................................................ 31

1.5.3 Direct and Inverse Problems ................................................................................. 33
1.5.3.1 Direct Problem.......................................................................................... 33
1.5.3.2 Inverse Problem Approach ..................................................................... 34
1.5.3.3 Inverse Problems in Heat Transfer ........................................................ 35
1.5.3.4 Measurement and Noise ......................................................................... 38

1.6 Choice of a Model ............................................................................................................... 38
1.6.1 Objectives, Structure, Consistency, Complexity, and Parsimony.................... 38
1.6.2 Example 2: Physical Model Reduction ................................................................ 39

1.6.2.1 3D Model ................................................................................................... 40
1.6.2.2 2D Model in X- and Z-Directions .......................................................... 42
1.6.2.3 1D Model in Z-Direction ......................................................................... 43
1.6.2.4 2D Fin Model in X- and Y-Directions ................................................... 44

3



1.6.2.5 1D Fin Model in X-Direction.................................................................. 44
1.6.2.6 0D Lumped Model................................................................................... 45
1.6.2.7 1D Local Model ........................................................................................ 46

1.6.3 Linear Input–Output Systems and Heat Sources............................................... 47
Nomenclature ............................................................................................................................... 49
References...................................................................................................................................... 51

1.1 Introduction

Modeling constitutes a very general activity in engineering. A system can be considered as
modeled if its behavior or its response to a given excitation can be predicted. So prediction
is one of the natural characteristics of modeling.
In the second section of this chapter, the basics on heat transfer physics are presented.

The existence of temperature and more specifically of temperature gradient must be
discussed carefully when time and length scales become very small. This is the case for
new applications in the field of inverse heat conduction problems. This point is known for
a long time at very low temperature. It becomes also particularly true at the nanoscale
when temperature is greater than the Debye temperature (above this temperature, the
quantum effects are generally neglected). Classical Fourier’s law, at the basis of standard
heat transfer models, is no longer valid, and either a new model or a definition of the
reliable time range for the pertinent use of Fourier’s law is thus required. In the third
section of this chapter, the concept of homogenization for heterogeneous materials through
macroscopic homogenized models is presented. This topic is also studied in Chapter 2.
An illustration of such a problem is represented in Figure 1.1.

FIGURE 1.1
Phase change material for energy storage (double porosity
carbon graphite=salt porous media with phase change
material [PCM]). Scanning electron microscopy (SEM)
imaging illustrates different heterogeneity levels accord-
ing to the observation scale and shows that a specific
model is required for each.

1 mm

50 μm
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Another important feature of a model, which is only a theoretical representation of the
physical reality in the case of a material system, is its structure (we do not deal here with
information systems). In heat transfer, the choice is quite large, and the model structure
should be selected according to the objective of the model. The model-builder can have in
mind an optimal design problem, a parameter estimation problem using measurements, a
control problem to define the best excitation shape for a given desired output, or a model
reduction problem, just to quote a few applications.
The choice of the structure of a model in heat transfer depends on many things:

. State variable and observed quantities
In a heat diffusion problem, temperature is the quantity that constitutes the state
variable, in the thermodynamics sense. In order to calculate temperature and heat
flux at any time t and at any point P, one has to know the initial temperature field
(at time t¼ 0) at the local scale, as well as the history of the different thermal
disturbances between times 0 and t. So, one has to define what is a local point P and
a local scale. For instance, if heat transfer is intended to be studied at the very small
scale in a metal (smaller than the grain size), Fourier’s law, relating heat flux to
temperature gradient, may no longer be valid. In such a case, two temperatures
(respectively for the electron gas and the lattice) are required to describe heat
transfer at this scale (see Section 1.2.3). Such a detailed state model will be necessary
if observations or predictions are looked for at the nanoscale or at the picosecond
timescale. The upper thresholds of both scales depend on the considered material.
A similar effect appears in a heterogeneous medium composed of two homoge-
neous materials (grains made of one material embedded in a matrix made of the
other material, for example): instead of using temperature at the local scale (grain
or matrix), some averaging, that is a space filtering, will be used at the macroscopic
scale (see Sections 1.3 and 1.4 and Chapter 2).

. State definition
The continuous state equations have then to be defined for the modeling problem
at stake: it can be a partial differential equation, the heat equation (state¼ tempera-
ture), or an integro-differential equation, the radiative transfer equation (state¼
radiative intensity), or both coupled equations. Their solution, that is constituted
by both temperature and intensity fields in the third case, should be calculated
everywhere and any time past the initial time (see Section 1.5.2).

. Quantities of the direct problem
We focus on the diffusion heat equation in a medium composed of one or several
homogeneous materials, with its associated initial, boundary, and interface equa-
tions. Its solution, the state variable, here the continuous temperature field T(P, t), has
first to be found, and the desired observed quantities, that is, the (theoretical) output
of the model at a given point P, ymo(t) ¼ T(P, t), have to be calculated next (see
Section 1.5.1). Here the quantities that are required for solving the direct problem are
the structural parameters of the system (conductivities, volumetric heat capacities,
heat exchange coefficients, emissivities of walls, . . . ), the thermal excitation, and the
initial temperature field T(P, t ¼ 0). Let us note here that it is possible to make a
physical reduction of a model based on the three-dimensional (3D) transient heat
equation to get simpler models of lower dimensionality. The thermal fin (1D) or the
bulk temperature (0D) types (see Section 1.6.2) constitute such reduced models. This
type of reductionmay also reduce the number of parameters defining the excitations.
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. Numerical=analytical model
There are many ways for solving the heat equation and finding a state model for the
observations: analytical solutions provide the temperature field explicitly as a func-
tion of the structural parameters of the system, the excitation, and the initial state.
They can be constructed if the heat equation in each material and the associated
conditions are all linear and the corresponding geometry simple. The other class of
state models relies on the discrete formulation of the heat equation: one can quote the
nodal, boundary element, finite elements, and finite volume methods, for example.
State models rely on an internal representation of the system: the temperature field
has to be found first and the observations are calculated next. External represen-
tations that short circuit the state variable and link directly the observation to the
excitation(s), for example, through a time or space transfer function, in the linear
case, constitute another class of models (see Section 1.5.2.1).

. Parameterization for inverse problem solution
Parameterization of the data of the direct problem constitutes another characteris-
tic of the structure of a model: structural parameters, thermal excitations, and the
initial temperature field are, in the very general case, functions of different
explanatory variables: space, time, and temperature. The conversion of functions
into vectors of finite dimensions does not involve any problem in the direct problem
(calculation of the observations, the model output, as a function of the input). It is
no more the case when the inverse problem is considered. This point will be
discussed in Section 1.5.2.2. The interested reader can also consult Chapter 14,
where reduction of experimental data is studied. One of the objectives of math-
ematical reduction methods is to construct a reduced model that will have a reduced
number of structural parameters, starting from a detailed reference model (see Chap-
ter 13 for details on model reduction), while physical reduction also changes the
definitions of both output and excitations (see Section 1.6.2).

1.2 Pertinent Definition of a Direct Model for Inversion of Measurements

1.2.1 Heat Conduction at the Macroscopic Level

Heat transfer by diffusion takes place in solids and motionless fluids and was mathemat-
ically described for the first time by Joseph Fourier (1828) in his ‘‘Mémoire sur la théorie
analytique de la chaleur’’ (Treatise on the analytical theory of heat). Fourier’s relation is
phenomenological, that is, derived experimentally. It relates the heat flux density (a vector)
to the temperature gradient inside the material under the form of the following linear
relationship:

~w ¼ �kr!T (1:1)

where operator r!T ¼ (qT=qx, qT=qy, qT=qz) denotes the temperature gradient. Conse-
quently, the heat flow rate df traversing an elementary surface of area dS, centered at
this location with an orientation defined by a unit length outward pointing vector ~n, is

df ¼ wn dS with wn ¼ ~w �~n ¼ �kr!T �~n (1:2)
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where
the direction of ~n is arbitrary (two choices are possible)
wn is the normal flux (a scalar, sometimes called normal flux density) expressed in Wm�2

In order to recover the heat flux f (W) going through a finite surface (not necessary planar)
of area S, Equation 1.2 has to be integrated over its whole area. In the particular case of a
one-dimensional heat transfer through a planar surface of area S, normal to the x-direction
(a cross section), the heat flux is

f ¼ �kS qT
qx

(1:3)

Finally, k is defined as the thermal conductivity of the material. It can be viewed as an
intrinsic thermal property of the material. However, it is expressed frommore fundamental
quantities such as the mean free path of heat carriers (phonons, electrons, and fluid
particles), the velocity group as well as fundamental constants (the reduced Planck con-
stant �h and the Boltzmann constant kB).
In many cases encountered in nature or in man-made objects, thermal conductivity is no

longer isotropic but orthotropic, or more generally anisotropic. In the orthotropic case (for
composite materials, for example, and in the principal axes of the tensor), Fourier’s law
becomes

~w ¼ �kx qTqx~x� ky
qT
qy

~y� kz
qT
qy

~z (1:4)

The three components of the heat flux are expressed according to the three corresponding
values for the thermal conductivity in each direction. In case of an anisotropic medium, the
symmetrical thermal conductivity tensor can be introduced:

k ¼
kxx kxy kxz

kyy kyz
sym kzz

24 35 (1:5)

Thermal conductivity of materials can vary significantly with temperature. In a general
manner, materials act as superconductors at very low temperature (in the 1–10 K tempera-
ture range) whereas the thermal conductivity decreases as the temperature increases. The
thermal conductivity varies slightly when temperature is greater than the Debye tempera-
ture up to the phase change. In the molten state, the thermal conductivity does not change
significantly, but in such a configuration, heat transport by convection becomes as import-
ant as conduction.
Thermal diffusivity is defined as the ratio of the thermal conductivity and the specific

heat per unit volume:

a ¼ k
rcp

(1:6)

It is thus possible to estimate the diffusion time tdiff ¼ L2=a when heat diffuses in the
direction defined by its characteristic length L as reported in Table 1.1.
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Fourier’s law becomes unappropriate to simulate heat transfer by conduction at very
short times of the order of the picosecond that are related to the nanoscale (according to
Table 1.1). If one considers the response to a localized heat pulse on the material, Fourier’s
law shows that the temperature field is modified instantaneously at every point of space
since the pulse start. However, at a later time t, temperature cannot have been modified
beyond a distance equal to the quantity: c t, otherwise the effect of the pulse would have
propagated faster than the speed of light c. The relationship relating heat flux and tem-
perature gradient must therefore be modified. It has been done by Caetano who intro-
duced a form involving a relaxation time t:

t
q~w
qt
þ~w ¼ �kr!T (1:7)

This relaxation time t depends on the nature of the heat carriers (phonons, electrons, or
fluid particles) and more generally on the collision processes between them.
Equivalently, we may compare a characteristic length scale for evolution of the system

with the other intrinsic property: the mean free path of the heat carriers. If the latter is
much greater than the characteristic length of the medium, the local Fourier law is no
longer valid.

1.2.2 An Experimental Observation

Before presenting theoretical developments, it would be interesting to start with an experi-
mental result obtained using the femtoseconds (1 fs¼ 10�15 s) time domain thermoreflec-
tance (TDTR) technique. This experiment consists in applying a very short pulse (some
tenths of femtoseconds) at the front face of a material and to measure the transient
temperature response on the heated area (see Figure 1.2). The pulse laser is called the
pump. A probe laser beam is focused on the heated area, and a photodiode allows
measuring the reflected beam intensity from the surface. Since the intensity of the reflected
beam is known to vary linearly with temperature (for small pump intensity), the measured
signal is proportional to the variation of the time-dependent surface temperature. An
ad hoc postprocessing of the output signal allows building a normalized impulse response
for the sample.
This experiment is known as the front face method (the thermal disturbance and the

temperature measurement are realized at the same location). In a sense, the TDTR can be
viewed as an extension of the classical ‘‘flash’’ method for very short times. In the
experimental configuration described in Figure 1.2, the TDTR technique is used for char-
acterizing a very thin layer (100 nm thick) of a semiconducting alloy: Ge2Sb2Te5
(commonly denoted GST) whose thermal effusivity is bGST ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kGST(rcp)GST

p
. A thermal

TABLE 1.1

Characteristic Diffusion Times (Thermal Diffusivity
Is a¼ 10�6 m2 s�1)

L
Sphere

(Radius 6400 km) 0.3 m 1 cm 100 nm 1 nm

tdiff 1012 years 105 s 100 s 10�8 s 10�12 s¼ 1 ps
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transducer is an aluminum film (denoted Al), of thickness eAl and specific heat per unit
volume (rcp)Al, deposited on the GST layer in order to increase the signal–noise ratio
during the TDTR experiment. For the duration of the experiment (a tenth of nanoseconds),
the GST layer is viewed as a semi-infinite medium. Using the classical heat diffusion
model, based on Fourier’s law, an analytical expression is obtained for the average (with
respect to the spatial distribution of temperature on the heated area) normalized impulse
response as follows:

TDTR ¼ exp
t
tc

� �
erfc

ffiffiffiffi
t
tc

r� �
with tc ¼

eAl(rcp)Al

bGST

� �2

(1:8)

Experimental measurements are reported in Figure 1.3, as well as the simulation obtained
from the analytical solution (1.8).
It clearly appears that the measured impulse response fits very well with the simulated

semi-infinite behavior when time becomes higher than tc ¼ 0:3 ns. This result comes from
the fact that thermal equilibrium, also called thermalization, between the electrons gas and
the lattice in the aluminum film must be taken into account in the model for short times just
after the pulse. This effect can be modeled through a specific model: the two-temperature
model (see Section 1.2.3.4). This time is defined as the thermalization time of the heat
carriers: electrons and phonons. It can be viewed as the relaxation time that has been
introduced in Equation 1.6. However, as it will be shown in Section 1.2.3.4, the relaxation
time t is lower than time tc, estimated from Figure 1.3, since the thermal resistance at the
Al–GST interface was not taken into account in this equation.
This observation leads us to take care of the direct model formulation that will be used to

solve an inverse problem. It should be adapted to the timescale concerned within the
experiment. Indeed, in the example presented above, one can only estimate the thermal
effusivity of the layer for time t such as t > tc. This last point has a significance since the

Laser

AOM

Delay
line

Sample

SiO2 GST

Si

Al

Objective

Lock-in
PD

BBO

0.1 ps pulse

FIGURE 1.2
Radiation of pump is doubled by a b-BaB2O4 (BBO) nonlinear optical crystal. The probe pulse is delayed according
to the pump pulse up to 7 ns with a temporal precision of a few tens of femtoseconds by means of a variable
optical path. The pump beam, whose optical path length remains constant during the experiment, is modulated at
a given frequency of 0.3 MHz by an acousto-optic modulator (AOM). In order to increase the signal over noise
ratio, a lock-in amplifier synchronized with the modulation frequency is used. Probe and pump beams have a
Gaussian profile. The experimental setup is described in Battaglia et al. (2007). An example of sample is
represented on the SEM image; the Al layer is used as a thermal transducer to absorb the incident radiation of
the pump.
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concepts of thermal conductivity and even of temperature do not make sense anymore at
the very small scales. Finally, it is also clear that different thermal parameters, in terms of
their physical meaning, will be introduced according to the direct model formulation.

1.2.3 How Can Heat Transfer Be Modeled at the Nanoscale?

1.2.3.1 Discussion

We have highlighted above the intimate link between temperature gradient and mean free
path of the carriers in solids: phonons and electrons. In particular, if the characteristic
dimension of the material is smaller than the mean free path L of these carriers, only a
thermal conductance K can be used for relating heat flux to the temperature difference DT
at the material surface as w ¼ KDT. In other words, expressing the thermal conductance as
the classical ratio k=e when e � L does not make any sense (see Figure 1.4).
Nevertheless, current challenges for miniaturization force engineers to implement mater-

ials in structures whose dimensions lie between several nanometers and a few hundreds of
nanometers (see Figure 1.5). Study of the heat transfer in these structures requires using

FIGURE 1.3
Impulse response obtained using the TDTR experi-
ment on a GST layer capped with an Al transducer.
Plain line is the measurement from 1 ps up to 2 ns.
The dotted line is the simulation using the Fourier law
(Model 1T), and the plain circles are obtained from
the simulation of the two-temperature model (Model
2T, described later in this text).
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FIGURE 1.4
Thermal characterization using the front
face experiment. (a) If the sample thick-
ness e is less than the mean free path L

of the heat carriers (electrons=phonons)
the experiment allows identification of
the thermal resistance (or conductance)
of the layer only. (b) In the opposite case,
the method allows identification of the
thermal effusivity of the layer.

Thermal
disturbance

(a) (b)

e
e

e < Л e > Л

Measure
of T
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specific tools that will be developed now. According to the scale, four types of methods will
be used for constructing a heat transfer model, as described schematically in Figure 1.6.
We will first present the transport of heat through molecular dynamics (MD). We will

then skip to Boltzmann transport equations (BTE) and present the two-temperature model
further on. These models allow taking local thermal nonequilibrium into account. This
nonequilibrium occurs between the thermal states of the electron gas and the crystal lattice,
for metals and for semiconductors and only of the lattice for insulators. We will come
finally to the model of heat diffusion designed by Fourier nearly 200 years ago. We will
pinpoint, for each type of approach, the possibilities of measurement inversion. In other
words, we will seek to define what are the physical parameters accessible to measurement
and what are the thermal properties inherent to each.

1.2.3.2 Molecular Dynamics

MD aims at calculating the position, speed, and acceleration of ions or molecules that make
up the material according to the classical Newtonians’ mechanics equations, that is, the
fundamental principle of dynamics (FPD). For a detailed description of the method, see the

FIGURE 1.5
Nanoelectronics: a nonvolatile memory cell based on phase
change chalcogenide alloy (GST stands for germanium–antimony–
tellurium). The characteristic dimension of the cell is 50 nm.
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FIGURE 1.6
At dimensions comparable to the phonon wave-
length l and temperatures much smaller than the
Debye temperature uD, heat transfer rests essen-
tially on quantum mechanics. For larger dimen-
sions and room temperatures, the BTE and the
classical MD are well adapted for modeling heat
transfer inside the studied structure. For even
larger dimensions, Fourier’s law can be effi-
ciently implemented with a denoting thermal dif-
fusivity.Length scale

ata0

Te
m

pe
ra

tu
re

, θ

H
ea

t d
iff

us
io

n

λ Л √

θD

T << θD

Boltzmann transport
equation

Molecular mechanics

Quantum
mechanics

Modeling in Heat Transfer 11

  



book of Volz (2007) as well as that of Frenkel and Berend (1996). MD also leads to reliable
results when quantum effects are predominant by using ab initio calculation starting from
the Schrödinger relation. These quantum effects appear at low temperature and more
precisely below Debye temperature. One will be able thus to use the FPD in MD only for
T > QD. Another criterion to validate the use of FPD consists in calculating the ratio l=a0
where l is the averagewavelength of the ion (ormolecule) vibration and a0 is the interatomic
distance. The relationship between wavelength l, particle mass m, and temperature T is

l ¼ �hffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pmkBT
p (1:9)

In this relation, �h is Planck’s constant and kB is Boltzmann’s constant. We note ~ri,
~vi ¼ d~ri=dt, and~ai ¼ d~vi=dt the position, speed, and acceleration of particle i, respectively.
The total energy of particle i is the sum of its kinetic and potential energy:

Ei ¼ Eci þ Epi (1:10)

The potential energy is itself the sum of an external potential field (such as an electromag-
netic field) and of an internal field (caused by mutual interactions of the particles).
The force that is exerted on each particle thus derives from the potential energy:

~Fi ¼ �r!Epi (~ri) (1:11)

FPD applied to one particle is then

~Fi ¼ m~ai (1:12)

Solving this vector-relationship (three scalar equations in three dimensions) for each
particle (see Figure 1.7) leads to the position and then to the velocity of each particle.
Calculation of its kinetic energy derives from knowledge of its speed:

Eci ¼
miv2i
2

(1:13)

FIGURE 1.7
Classical configuration used for particle motion simulation
using the MD. Periodic boundary conditions on the cell
are generally assumed.
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The kinetic theory provides temperature as follows:

T ¼ 2
3kB

Eci (1:14)

Temperature is not subscripted by i deliberately because the notion of temperature relies
on a large number of particles. Even if the mass of the particle is not present explicitly in the
expression of temperature above, that is not true any more when various elements make
up the material. In this case, one of the masses is taken as a reference and a mass correction
is made for the other elements.
The theoretical difficulty in MD stems from the calculation of the potential of interaction

between the particles.
MD can be implemented at the very low scale in order to calculate thermal conductivity

of solids using non-homogeneous non-equilibrium molecular dynamics (NEMD) (see
Figure 1.8). This is certainly the simplest technique (compared to the Green–Kubo calcu-
lation at equilibrium) to understand and implement, for it is analogous to the well-known
guarded hot plate experiment. The idea is to simulate steady-state one-dimensional heat
transfer in a system by inserting a hot and a cold source and then calculating the flux
exchanged between the sources as well as the temperature gradient. The most widely used
approach consists in adapting the velocity field of the atoms belonging to the heat sources
in such a way as to impose the thermal power exchanged between the hot and cold
sources. This method requires a large computation time: the number of particles that
must be retained in this simulation is large since temperature is a statistical quantity.
Moreover, since thermal conductivity calculation requires defining a thermal gradient,

the number of required particles increases dramatically in order to get a precise enough
corresponding derivative. Moreover, this simulation always leads to the value of the
thermal resistance Rth (the inverse of thermal conductance K defined in Section 1.2.3.1)
of the material inserted between the hot and cold plates. This quantity is certainly as

FIGURE 1.8
Nonequilibrium MD simulation for thermal
conductivity simulation.

Cold source

z

y

x
Cold source

Nxa0

Nya0

Nza0 Hot source

Modeling in Heat Transfer 13

  



interesting as thermal conductivity in practical configurations encountered in engineering.
As we said previously, if one wants to relate thermal resistance Rth to thermal conductivity
k from the classical relationship Rth¼ L=k, then the dimension of the simulation box must
be chosen as L >> L, where L is the mean free path of the phonons.
We introduce now some basic ideas concerning the statistical nature of temperature since

it is not always clear at very small scales. Using statistical mechanics arguments, tempera-
ture in a perfect gas can be defined for each particle of the gas. For liquids or solids, another
definition, based on the interactions between the particles, must be given. Thus, the true
question is the lowest size down to which the average energy of the phonons can be
calculated. The answer is related to the value of the mean free path introduced in the
preceding paragraph that is the distance separating two successive collisions of a phonon.
If two areas in space have different temperatures, then they have also a different distribu-
tion of phonons. We know that this distribution can be modified only through the process
of collisions. Anharmonic processes (processes where the assumption of small oscillations
of particles around their equilibrium state is no longer valid) are responsible on thermal
conductivity itself. The low frequency phonons have a large mean free path and corres-
pond to low temperatures. In the so-called Casimir limit, for low temperatures, the mean
free path size is about the same as the dimension of the material system. For high
temperatures, on the contrary, phonons have a high frequency and mean free paths
become much smaller. An illustration is given in Figure 1.9, where it is clearly demon-
strated that the thermal conductivity and thus the temperature gradient take sense only
when the number of particles involved in the MD simulation is high enough.
MD can be efficiently used as the direct model in an inverse procedure. Since inversion

calls upon the model several times, it seems that it will take huge computational times. In
order to answer the question about the parameters than can be estimated, it clearly appears
that the unknown parameters in the model relate to the potential functions between each
particle. Thus, one can imagine measuring the thermal conductance of a thin layer and then
using this result as the minimizing function. To our knowledge, no work has ever been
published on such a topic.

FIGURE 1.9
Result of NEMD simulation for silicon.
Thermal conductivity is calculated
according to the number of unit cells
(crystal cell). As expected, thermal con-
ductivity tends asymptotically toward
the experimental value as the number of
unit cell becomes high enough. Number of unit cells
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1.2.3.3 Boltzmann Transport Equation

The phonon BTE describes the rate of change of a statistical distribution function for
phonons. The fundamental assumption in deriving the phonon BTE is that a distribution
function,Nq(~r, t), exists. It describes the average occupation of phonon mode q (this mode is
associated with frequency vq and with wave vector ~kq that are related through the
dispersion curve for the studied material) in the neighborhood of a location ~r at time t.
This equation relies on the assumption that phonon position and momentum can simul-
taneously be known with an arbitrary precision. However, in quantum mechanics, these
quantities correspond to noncommuting operators and hence obey the uncertainty prin-
ciple. The BTE is formally written as follows (see Volz [2007]):

qNq(~r, t)
qt

þ~vq � r!Nq(~r, t) ¼
qNq(~r, t)

qt

�
c

(1:15)

where~vq is the group velocity associated to phonon of wave vector~kq. The term on the right-
hand side is the rate of change due to collisions. Solution of the phonon BTE requires
evaluation of the collision term, which constitutes the challenging problem here. The relax-
ation time approximation, associated with mode q, is widely used to model it. Under this
approximation, the BTE is rewritten using the average distribution function N as follows:

qNq(~r, t)
qt

þ~vq � r!Nq(~r, t) ¼ �
Nq(~r, t)�N

tq
(1:16)

A key conceptual problem in using the relaxation time approximation is the requirement
for a thermodynamic temperature that governs the scattering rate. Since phonons are not in
an equilibrium distribution, there is no temperature to strictly speak of. The usual practice
in such nonequilibrium problems is to define an ad hoc equivalent temperature based on
the local energy.
The BTE can be efficiently used in order to compute the thermal conductivity of solids.

Indeed, it is demonstrated that thermal conductivity can be related to thermal capacity
cv (J kg

�1) as follows:

k ¼
ðqmax

0

v2qcv(q)tq dq (1:17)

Specific heat can also be expressed analytically in terms of frequency mode vq and of
temperature T as follows:

cv(vq) ¼ 3�h2

2p2kBT2vq

ðvmax

0

e�hvq=kBT

e�hvq=kBT � 1
� �2 v2

qq
2 dvq (1:18)

The frequency mode is related to the wave vector through the dispersion curves of the
material. However, we must insist on the fact that this definition of thermal conductivity
rests on the fact that the use of Fourier’s law is allowed. In other words, time t must verify
t� tc, and characteristic dimension L of the medium must be such as L� L, in order to
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define the temperature gradient inside the medium. These conditions are less restrictive for
the definition of the specific heat since it only involves temperature and not its gradient.
The question now is as follows: does the BTE can be considered as the direct model in an

inverse procedure and for identifying what? The answer is clearly yes since, as viewed
previously, there is an analytical model for both specific heat and thermal conductivity.
This model could be implemented in order to estimate the mean relaxation time of the
phonons inside the material, which is generally unknown. Again, to our knowledge, such a
work has not been made or published yet.

1.2.3.4 The Two-Temperature Model

We conclude this first part with the two-temperature model that constitutes a very good
transition to homogenization methods at the macroscopic scale that will be described
further on. The two-temperature model describes the time-dependent electron and lattice
temperatures, Te and Tl, respectively, in a metal or in a semiconductor during the thermal-
ization process as follows:

ce(Te)
qTe

qt
¼ r! � (ke(Te,Tl)r!Te)� G(Te � Tl)þ qvol (1:19)

cl
qTl

qt
¼ G(Te � Tl) (1:20)

In these equations, ce and cl are the electronic and lattice specific heat per unit volume, ke is
the electronic thermal conductivity that can be assimilated to bulk thermal conductivity for
metals, and qvol is the volumetric heat source in the lattice. These two nonlinear equations
are coupled through the electron–phonon coupling constant G that can be explicitly
defined starting from the BTE for both electrons and phonons. A detailed explanation of
this model foundation can be found in the paper of Anisimov et al. (1974, 1975).
Regarding the TDTR reference experiment (see Section 1.2.2), Equation 1.19 means that,

after the pulse, hot electrons will move inside the medium while losing their energy to the
lattice. Let us insist on the fact that this model has a physical meaning only during the
thermalization process, since Equation 1.20 shows that the lattice temperature remains
constant as soon as Te ¼ Tl or, in other words, when the thermalization process between
electrons and lattice ends.
It must be also emphasized that this model involves a temperature gradient in the

electron gas whereas thermal conduction in the lattice is neglected with respect to heat
exchange between electrons and the lattice. It means that the characteristic length of the
medium is such as L� Le, where Le is the mean free path of the electrons. Indeed, we saw
previously that the mean free path for electrons is larger than for phonons. However, the
constraint on time is just related to the relaxation time for electrons, which is of the order of
some tenth of femtoseconds. In other words, the simulation time range for the two-
temperature model can be (and should be) shorter than the relaxation time for the
phonons.
When implementing the model in relation with the thermoreflectance experiment, the

heat source qvol is a function of the heated area (laser beam radius) of the optical penetra-
tion depth of the beam inside the material (related to the extinction coefficient) and of the
intensity of the source.
We used the finite element method in order to simulate the two-temperature model

starting from parameters given in the literature for aluminum. This simulation remains
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coherent with the definition of temperature for the electron gas and the lattice since the
sample thickness has been chosen larger than the mean free path of the electrons in
aluminum, which is approximately 10 nm (in other words, the minimum distance between
two nodes of the mesh should be larger than this critical length). The resulting time-
dependent temperatures of the lattice and of the electron gas are reported in Figure 1.10.
The electron gas temperature increases very quickly and reaches its maximum at 50 fs.
Temperature of the lattice begins to increase at 20 fs and reaches the electrons gas
temperature at tc ¼ 200 fs. The calculation shows the undercooling of the electrons relative
to the lattice at the surface. This undercooling comes from the high value of the coupling
factor for aluminum. It is also observed for gold or copper whose coupling factors are
smaller, but it is less pronounced than for aluminum. Figure 1.10 shows that complete
thermalization between electron gas and lattice is reached at times between 25 and 30 ps.
It demonstrates what was said in Section 1.2.2, that is, the relaxation time is lower than
time tc that has been estimated through the TDTR experiment.
The use of the two-temperature model as a model to invert has been made by Orlande

et al. (1995) in order to estimate the coupling factor G for several kinds of metals. In fact,
analytical expressions for this parameter are generally inaccurate: knowledge of the dis-
persion curve for the studied material is required. It is then interesting to estimate it
directly from measurements similar to those given by the TDTR.
Our reference experiment shows that at the thermalization end, the TDTR measured

response is only sensitive to the lattice cooling, which means that use of the classical one-
temperature model becomes appropriate in order to describe heat diffusion inside the
medium. Let us note that the two-temperature model degenerates naturally toward the
one-temperature model when t > tc.
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FIGURE 1.10
Two-temperature model simulation for the aluminum sample using the finite element method. Line with circles
represents the lattice temperature; plain line is the electron gas temperature.
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1.3 Heat Diffusion Model for Heterogeneous Materials: The Volume
Averaging Approach

1.3.1 Model at Local Scale

Thermal properties of heterogeneous materials are often determined experimentally by
assuming the sample behaves macroscopically like a homogeneous medium. Therefore, the
reliability of measurements depends heavily on the validity of the ‘‘homogeneous med-
ium’’ assumption (see also Chapter 2 on the same subject). This is particularly true for
measurements based on transient heat conduction. Let us consider now an elementary
volume (a sample of the medium) whose configuration is representative of the material.
Such a representative elementary volume (REV) is shown in Figure 1.11 for a medium
constituted of two phases s and b.
The shape of the REV is arbitrary but its size is not: if the REV is a sphere of diameter

D¼ 2r0, this diameter should be much smaller than the size of the whole system L:D=L� 1;
this sphere constitutes a sample of the material and its diameter must be larger than the
scale representative of the distribution of the two phases in space (an averaged distance lb
separating the ‘‘grains’’ of the discontinuous phases embedded in the continuous phaseb in
Figure 1.11, for example):D=lb� 1. If the local structure of thematerial within this REVdoes
not change too much when this sphere is moved anywhere in the whole medium, this
medium can be homogenized.
One assumes here that Fourier’s law is applicable for both phases at any point whose

location is determined by its position vector~r and for each time t. Thermal conductivities
are denoted ks and kb, and specific heat per unit volume is denoted (rcp)s and (rcp)b, for
phases s and b, respectively.
The heat transfer model at the local scale is as follows:

(rcp)s
qTs(~r, t)

qt
¼ r! � (ksr!Ts(~r, t)) for~r in the s-phase (1:21)

FIGURE 1.11
REV of a two-phase heterogeneous medium.
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for the s-phase, and

(rcp)b
qTb(~r, t)

qt
¼ r! � (kbr!Tb(~r, t)) for~r in the b-phase (1:22)

for the b-phase. Heat transfer between the two phases appears at the boundary condition
at the s–b interface.
Two homogenized models that transform this two-phase model into one single homo-

geneous (equivalent) phase can be now introduced. This homogenized medium may exist
or not.

1.3.2 The One-Temperature Model

A volume averaging operator, noted h i, can be defined here for any space field f at a point~r
located at the center~r of the REV as follows:

h f i(~r, t) ¼ 1
V(~r,D)

ð
V(~r,D)

f (~r 0, t) dV(~r 0) (1:23)

where
V(~r,D), pD3=6 here, is the volume of an REV centered at point~r
dV(~r 0) is a microscopic volume centered at any point~r 0 located inside the REV

Thus, an averaged ‘‘enthalpic’’ temperature TH can always be defined:

TH(~r, t) ¼ 1
hrcpiV(~r,D)

ð
V(P,D)

rc(~r 0)T(~r 0, t) dV(~r 0) ¼ 1
rct
hHi (~r, t) (1:24)

where H(~r, t) is the local enthalpy by unit volume: H(~r, t) ¼ rct(~r )TH(~r, t), the total volumic
heat rct being defined by

rct(~r ) ¼ hrcpi(~r ) ¼ es(rcp)s þ eb(rcp)b (1:25)

Here es and eb are the local volume fractions of the s and b phases (es þ eb ¼ 1). These
volume fractions are derived from the characteristic functions xa of each phase a (for a¼s
or b), where xa(~r ) ¼ 1 if~r belongs to the fluid phase and xa(~r ) ¼ 0 otherwise

eb(~r ) ¼ hxbi; es(~r ) ¼ hxsi ¼ 1� eb(~r ) (1:26)

One can notice that if the medium can be homogenized, its specific heat per unit volume rct
defined above should not depend on location~r.
The one-temperature model requires the definition of a thermal conductivity tensor k

whose coefficients can be considered as conductivities depending on the nature, thermo-
physical properties and geometry of the distribution of phases s and b. A diffusion energy
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equation for the space and time variations of the averaged temperature can be written in
the case of a homogenized medium (Moyne et al., 2000):

rct
qTH

qt
¼ r � (krTH)þ qvol (1:27)

where
qvol is a volumetric source term
k is an effective (or equivalent) conductivity of the material that is supposed to be locally

isotropic here (otherwise k has to be replaced by k)

This model can be extended to take fluid flow into account (see Testu et al. [2007]).

1.3.3 The Two-Temperature Model

At this stage, we introduce now the notion of intrinsic phase average, noted h ia here, for
any time–space field f (~r, t) defined in the a-phase:

h faia(~r, t) ¼ 1
Va(~r,D)

ð
Va(~r,D)

f (~r 0, t) dV(~r 0) for a ¼ s or b (1:28)

where Va(~r,D) � V(~r,D) designates the volume occupied by the a-phase (a ¼ s or b) in
the REV shown in Figure 1.11. Subscript a of fa indicates that integration is made for~r 0

belonging to the Va(~r,D) volume, while superscript a, in h ia, is related to division by
volume Va(~r,D) in the right-hand member of this equation: h:i ¼ eah:ia.
One can therefore introduce two different average temperatures hTaia at the same point~r.

These two temperatures are related to the previous averaged ‘‘enthalpic’’ temperature TH

through the definition of the average enthalpy:

hHi ¼ rct(~r )TH ¼ (rcp)shTsis þ (rcp)bhTbib (1:29)

In the case of local thermal equilibrium the temperatures both hTaia are equal, which
implies that they are also both equal to the average enthalpic temperature, because of the
previous equation and of the definition of rct: hTsis ¼ hTbib ¼ TH . In the opposite case,
the enthalpic temperature still exists but its observation is somewhat involved because a
perfect temperature detector would provide a temperature that will be either close to hTaia
or to hTbib, depending on the quality of its coupling with either of each phase. In any case,
the sensor temperature would be close to TH , because, by definition, this temperature lies
in between these two temperatures.
The macroscopic description of heat transfer in heterogeneous media by a single energy

equation does not imply the assumption of local thermal equilibrium between the two
phases. However, in order to get such an equilibrium, as described by Carbonell and
Whitaker (1984), some criteria must be verified.
We use now the following notation: D denotes the characteristic dimension of the REV of

volume V, av ¼ As�b=V is its specific area, that is the ratio of the area of the interface
As�b=V between the two phases by its volume, Vs is the volume of the s-phase, e ¼ Vs=V
is its volume fraction, and L denotes the characteristic dimension of the heterogeneous
medium.
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Then time t must verify (see Carbonell and Whitaker [1984])

e(rCp)sD
2

t
1
ks
þ 1
kb

� �
<< 1 and

(1� e)(rCp)bD
2

t
1
ks
þ 1
kb

� �
<< 1 (1:30)

And the characteristic dimension L of the REV must verify

eksD
avL2

1
ks
þ 1
kb

� �
<< 1 and

(1� e)kbD
avL2

1
ks
þ 1
kb

� �
<< 1 (1:31)

Obviously, another factor that can affect the assumption of local thermal equilibrium is the
location of the considered point with respect to the heat source: equilibrium cannot occur in
the vicinity of this source. Such a situation is met, for example, for front face heat pulse
excitation of a multilayer slab made of layers of different thermophysical properties.
For situations in which local thermal equilibrium is not valid, models have been pro-

posed based on the concept of two macroscopic continua. Intrinsic average temperatures
for the s-phase and the b-phase are denoted by hTs(~r, t)is and hTb(~r, t)ib, respectively (see
Equation 1.28).
The pore-scale temperature deviation in the s-phase is defined by

Ts(~r, t) ¼ hTs(~r, t)is þ ~Ts(~r, t) (1:32)

One can introduce this decomposition into the pore-scale equation for the s-phase and then
form the volume average in order to obtain the macroscopic equation. After extensive use
of the averaging theorem, the following energy equation emerges for the s-phase:

e(rcp)s
qhTsis

qt
¼ r � Ksb � rhTbib þ Kss � rhTsis

� 	
� avh hTsis � hTbib

� 	
(1:33)

Equivalently, the same procedure for the b-phase leads to

(1� e)(rcp)b
qhTbib

qt
¼ r � Kbb � rhTbib þ Kbs � rhTsis

� 	
� avh hTbib � hTsis

� 	
(1:34)

The macroscopic conductivity tensors Kbb,Kbs,Ksb,Kss and the volumetric exchange
coefficient avh are given by the solution of three closure problems that have to be solved
over unit cells representative of the medium characteristics (see the paper of Quintard
et al. [1997]).
Let us note that the previous one- or two-temperature models have been derived using

the volume-averaging technique. The same kind of results can be set using the homogen-
ization technique, where two different independent coordinate systems can be defined, one
at the local scale and the other one at the mesoscopic scale. The interested reader can refer
to Auriault and Ene (1994) for an example of practical application of this type of technique.

1.3.4 Application to a Stratified Medium

Here, we are interested by the macroscopic thermal behavior of a stratified medium sub-
jected to a Dirichlet boundary condition, the flux being parallel to the strata (see Figure 1.12).
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This choice is due to the fact that in this particular geometry, reference analytical exact
solutions exist for the macroscopic effective properties, and only four effective parameters
are independent and have to be identified.
Since the stratified medium is orthotropic and the main tensor axis coincides with the

direction normal to the layers, the two-equation model is reduced to

qhTsis
qt

¼ Kss

es(rcp)sL2
q2

qx*2
hTsis � avh

es(rcp)s
hTsis � hTbib
� 	

(1:35)

and

qhTbib
qt

¼ Kbb

eb(rcp)bL2
q2

qx*2
hTbib � avh

eb(rcp)b
hTbib � hTsis
� 	

(1:36)

where x* is the dimensionless space variable x=L. Then, in this configuration, the four
independent parameters to be identified are defined by

Ab ¼ Kbb

eb(rcp)bL2
; Hb ¼ avh

eb(rcp)bL2
; Ab ¼ Kss

es(rcp)s
; Hs ¼ avh

es(rcp)s
(1:37)

This study has been the subject of a paper of Gobbé et al. (1998).

1.4 Summary on the Notion of Temperature at Nanoscales and
on Homogenization Techniques for Heat Transfer Description

We have seen above that in a solid material, temperature can be considered as a potential
that ‘‘explains’’ transfer of energy and, at scales large enough, transfer of heat. At the
nanoscale, its definition requires the presence of a high enough number of particles of
each phase (ions in a lattice, electrons) because of its statistical nature. Once this condition
is fulfilled, the studied medium can be considered as continuous, which means that any
potential field or physical quantity can be assigned to any space point in the geometrical 3D
Euclidian domain. Two different temperatures can be defined then, one for each phase, at

FIGURE 1.12
Stratified medium unit cell.
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the same location. These can degenerate to one single temperature, if the two phases locally
present at the same point reach equilibrium, depending on the time–space scales considered.
The same type of approach can be adopted at larger space scales, when solid materials

composed of two phases are considered. At these larger scales, let us say above 10 nm,
(1) the material is considered as continuous and (2) Fourier’s law becomes valid at any
point in space. Both previous conditions are not equivalent, since the second condition
requires validity of the first one.
The use of an REV allows ‘‘filtering’’ the locally heterogeneous material, which leads to

the definition of either one single ‘‘average enthalpic temperature’’ or two ‘‘intrinsic
average temperatures,’’ verifying one or two coupled heat equations.
If the structure of the REV is not modified by its translation in space, the material can be

considered as homogenous. Modification by rotation leads to anisotropic properties, but
this notion does not derive from the spatial distribution of the two phases only. Under this
condition of invariance by translation, the REV averaged thermophysical properties of the
material become constant that is uniform in space. These properties are

. Its volume fractions es and eb defining its total volumetric heat rct, and its effective
thermal conductivity k (or a thermal conductivity tensor k in the more general
anisotropic case), for the one-temperature model (see Equation 1.29).

. The macroscopic thermal conductivity tensors Kbb,Kbs,Ksb,Kss and volumetric
exchange coefficient, avh, for the two-temperature model (see Equations 1.35
and 1.36).

Homogenization techniques are presented in Chapter 2.

1.5 Physical System, Model, Direct and Inverse Problems

Wewill consider now on, in the presentation of inverse problems in heat transfer and in the
remaining part of this chapter, the generic case of heat diffusion in an isotropic or
anisotropic material that verifies the one-temperature model heat equation (based on
Fourier’s law), but its (continuous) material thermophysical properties (conductivity tensor
k and total volumic heat denoted rc now) may vary in space (nonhomogeneous case) and
possibly with temperature (thermodependent properties of the material).

1.5.1 Objective of a Model

The model-builder has a given objective: he tries to represent the real physical system by a
modelM that will be used to simulate its behavior. This model requires the knowledge of a
given number of structural parameters that are put inside a parameter vector b. Its
objective is to get identical responses of both system y(t) and model ymo(t,b, u), under the
excitation by an identical time-varying stimulus u(t) (see Figure 1.13).
If the control science terminology is used, this stimulus is called « input » and the

response « output ». These two terms have no geometrical meaning here.
In heat transfer, the stimulus is produced either by a source, that is, for example, a

surface thermal power (absorption of a radiative incident flux by a solid wall, for example)

Modeling in Heat Transfer 23

  



or by an internal power (Joule effect produced by an electrical current, heat of reaction of a
chemical reaction, . . . ). It can also be an imposed temperature difference (temperature
difference between the inside and outside air environments on both sides of a solid wall,
for example).
Let us note that if steady-state regime is considered, both stimulation u and responses y

and ymo do not vary with time.

1.5.2 State Model, Direct Problem, Internal and External Representations, Parameterizing

1.5.2.1 Example 1: Mono Input=Mono Output Case

Figure 1.14 shows a semi-infinite medium in the x-direction, whose front face (x¼ 0) is
stimulated by a heat flux u (W m�2) at initial time t¼ 0. The initial temperature distribution
T0(x) may be nonuniform. A temperature sensor is embedded at a depth xs inside the
medium and delivers a signal y. So, starting at initial time, a transient 1D temperature field
T(x, t) develops inside the medium.
This temperature field, also called ‘‘state’’ of the system, is the solution of the heat

equation, a partial derivative equation here, as well as of its associated boundary and
initial conditions.
These equations are called state equations of this thermal system.
Different structural parameters appear in these equations: the medium heat conductivity

k (W m�1 K�1) and its thermal diffusivity a¼ k=rc (m2 s�1), where r and c are its density
(kg m�3) and its specific heat (J kg�1 K�1), respectively. The theoretical signal of the sensor
ymo (response of the model), caused by the medium stimulation u, is given by the output
equation.

ymo(t) ¼ T(xs, t) (1:38)

FIGURE 1.13
Real system and its representation by a model.

Real system

Mono-input
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y(t)

ymo(t, β, u)

u(t)
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Heat flux

u(t)
T( x, t)

x0 xs
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∂x2

1= ∂T
∂ta

∂x
∂T–k ( x, t = 0) = u(t)

T( x, t = 0) = T0(x)
T finite as x ∞

FIGURE 1.14
Model for the response of a temperature sensor embedded in a semi-infinite medium. The interrogation mark (?)
designates what is looked for.
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The state equations give an internal representation of the direct problem that allows the
calculation of the system response everywhere, for a known excitation, while the sensor
response is given by the output equation.
The state equations can be solved analytically here, and calculation of the output

can be directly implemented, because the system is causal, linear, and invariant in time
(see Ozisik [1980]):

ymo(t) ¼
ð1
0

G(xs, x, t)T0(x) dxþ
ðt
0

Z(t� t)u(t) dt ¼ ymo relax(t)þ ymo forced(t) (1:39)

with

G(xs, x, t) ¼ 1
2
ffiffiffiffiffiffiffi
pat
p exp � (xs � x)2

4at

 !
þ exp � (xs þ x)2

4at

 !" #
(1:40)

Z(t) ¼ 1
b
ffiffiffiffiffi
pt
p exp

�x2s
4at

� �
(1:41)

where
G(xs, x, t) is Green’s function associated to relaxation, at location xs, of the initial

temperature field T0(x)

Z(t) is the transfer function of the system, while b¼ (krc)1=2 is the thermal effusivity of the
medium

Equation 1.39 indicates that two effects overlap: the first term corresponds to relaxation of
the initial temperature field (free solution that vanishes for long times) while its second
term, a convolution product, corresponds to the response (‘‘forced’’ solution) to the heat
flux excitation. Transfer function Z that links a temperature response to an excitation
power is called a time impedance, the same way as in AC electrical circuits. This function,
once convoluted with the flux excitation u, yields the forced component of the temperature
signal of the model. This can be expressed by a simple product of the corresponding
Laplace transforms:

�ymo forced( p) ¼ �Z( p)�u( p) with �f ( p) ¼
ð1
0

f (t) exp (�pt) dt (1:42)

If initial temperature T0 is uniform in the medium, the first term in ymo(t) in Equation 1.39
becomes equal to T0.
This last equation constitutes an external representation of the direct problem. It makes

calculation of the state T(x, t) of the modeled system needless.
The (theoretical) output of the model depends on three parameters: the two thermo-

physical properties of the medium’s material, a and b, and a parameter that relates to the
sensor, that is, its location xs. These three parameters can be gathered in a specific
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parameter vector b¼ [a b xs]
T. This parameter vector b contains the structural parameters is

of the problem: it does not change when input u(t) and=or initial state T0(x) changes.

1.5.2.1.1 Important Point on Notation
Let us precise the notation that will be adopted now on

. A scalar or a scalar function depending continuously on an other scalar or vector
variable (time t or temperature T, for example) will be noted in lower or upper case
italic characters (k, or T(t, x), for example).

. A column vector (b, or u, or U [see Equation 1.46] further down) or a column
vector function will be noted in bold lower or upper case italic characters.

. Amatrix or a matrix function will be noted in bold upper case characters (matrix A
or matrix function E [see Equation 1.47] further down, except if this matrix
function is a standard explicit function, such as the exponential of a matrix,
noted exp(.) here).

The previous structural parameters b, input u, and initial state T0 can be assembled in a
unique list (not a column vector made of scalar quantities here) of explanatory quantities
x¼ {b, u(t), T0(x)}, gathering all the data necessary for the calculation of output ymo.
Result of this modeling is sketched in Figure 1.15.

1.5.2.2 Parameterizing a Function

In the previous list x of explanatory quantities, one can find scalar parameters (diffusivity,
lengths, . . . ) corresponding to structural parameters, as well as a time function u(t), here a
heat flux. Other functions can appear such as a nonuniform initial state T0(P) or a nonuni-
form structural parameter b(P) or a parameter depending on temperature b(T).
We suppose here that such a function is a time-depending input x¼ u(t). In order to be

able to deal with this kind of function, in the simulation (direct) problem and also in the
inverse problem (finding u from measured y’s, where this aspect becomes of prime
importance), this function has to be parameterized by its projection on a selected basis of
n chosen functions fj(t):

uparam(t) ¼
Xn
j¼1

uj fj(t) (1:43)

The new function uparam, replaced now by a vector u ¼ u1 u2 � � � un½ �T of finite size n, is
an approximation of the original u function that can consequently be considered as a vector
with an infinite number of components. This approximation, that we will call parameter-
ization now on, generates an a priori error that depends both on the chosen basis as well as
on its size.

FIGURE 1.15
Input–output model for a thermal system.
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Figure 1.16 shows two possible choices, using a constant time step Dt ¼ tj � tj�1:

. In case (a) the uj components are the discrete values of the original function on the
time grid and « hat » functions are selected as basis functions (see Figure 1.16a).

. In case (b) these components are averaged values of this function over one time
step and « door » functions are selected for this basis (see Figure 1.16b).

The choice for the basis is not unique and strongly depends on the problem at stake.

(a)

u u(t)

u1

t1

t1

t2

t2

tj

tj

tj–1

tj–1

tj+1

tj+1

t0 = tinf

fj (t)

tn = tsup

tn = tsupt0 = tinf

u2 u3

uj

un

t

t

Δt

Δt

1

1

(t – tj–1)/Δt      if  tj–1 ≤ t ≤ tj
1 – (t – tj)/Δt   if tj ≤ t ≤ tj–1

fj(t) =
0 if t      tinf  tj–1       tj tsup 

(b)

u u(t)

u1

t1

t1

t2

t2

tjtj–2 tj–1

tj–2 tj–1 tj

fj (t)

tn = tsup

tn = tsup

t0 = tinf

t0 = tinf

u2
u3

uj

un

t

t

Δt

Δt

fj (t) = H(t – tj–1) – H(t – tj) 

0  if  t  ≤  0
1  if  t  > 0

with H(t) =

FIGURE 1.16
Two examples of function parameterization in a local basis: (a) parameterizing with a hat function basis and
(b) parameterizing with a door function basis.
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So hat function parameterization of case (a) corresponds to linear interpolation using a
table of discrete values; this parameterization choice is appropriate if a temperature
dependency has to be modeled, for thermal conductivity l(T), for example. In that case,
time t has to be replaced by temperature T in the basis functions that become fj(T).
In case (b), a piecewise constant function basis has been chosen. It suits deconvolution

inverse problems, such as a time-varying source estimation using an experimental tem-
perature response.
In both cases, each uj component requires, for its calculation, knowledge of function u(t)

within the neighborhood of time tj only. The use of such local bases is convenient because
they directly derive from the time–space gridding. It is also possible to use projections on
nonlocal bases such as polynomials, exponentials, trigonometric functions, etc.
The choice for a type of parameterization is very large. Constraints can be a priori set for

the functions of the basis: they can present various properties such as monotony, regularity
(continuous function with continuous first and second derivatives), and positivity, or they
can be assigned fixed values on part of their time domain [tinf tsup]. One can also think of
B-splines bases, wavelets bases. . . .

Remark

The use of orthogonal function bases is possible: they correspond to functions fj(t) such as

ðtsup
tinf

fj(t)fk(t) dt ¼ Njdjk (1:44)

where
djk is Kronecker symbol (djk ¼ 0 if k 6¼ j and djk ¼ 1 otherwise)
Nj is the square of the norm of function fj

This kind of orthogonal projection, as well as its implementation, is deeply discussed in
Chapter 14.
Door functions shown in Figure 1.16b are orthogonal, but it is not the case for hat

functions shown in Figure 1.16a.
It is very interesting to choose the eigenfunctions of the heat equation (found using the

method of separation of variables, see Ozisik [1980] for these fj functions). In that case, the
components of the corresponding u vector become integral transforms, that is, the different
harmonics, of the original function (see the book Thermal Quadrupoles, by Maillet et al.
[2000]). This method is related to singular value decomposition (see Press et al. [1992]).

1.5.2.3 State-Space Representation for the Heat Equation

The one-temperature heat equation can be written for a thermal diffusion problem in an
anisotropic medium as the following partial differential equation:

div k grad T
� 	

þ qvol ¼ rc
qT
qt
þ Boundary, interface and initial conditions (1:45)

Here, qvol designates the volumic heat sources (W m�3) but other surface sources may be

present in the boundary or interface conditions. k designates the conductivity tensor here.
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This partial differential equation system is of the evolution type and can be considered as a
dynamical system. So, its solution, the temperature field T(P, t), that is, continuous in time,
constitutes the state of the system, which can be noted here TP(t), that is, for a given time t,
a vector in an infinite dimension space.
This system that corresponds to a distributed parameter system can be discretized in space,

using N nodes, the discretized state becoming a vector T(t) in a N dimension space. The
resulting state equation of this system takes the form of a lumped parameter system that
corresponds to a system of first ordinary differential equations:

dT
dt
¼ E(t,T,U) with T(t ¼ t0) ¼ T0 (1:46)

where vector U(t) ¼ [u1(t), u2(t), . . . , up(t)]T corresponds to a local parameterization in
space, but not in time, of the volumetric distributed source qvol(P, t) and of the other
sources possibly present in the boundary or interface conditions. The number of different
parameterized sources is called p here.
Let us note that this equation is written here in the very general case of a fully nonlinear

system where temperature is the only state variable: conductivity or volumetric heat may
depend on temperature, or the associated interface=boundary conditions may not be linear
(radiative surface heat losses, for example). In that case, matrix E depends on temperature
T(t) in a nonlinear way. In a similar way, stimulation vector U may also be temperature
dependent. In that case, each of the p components uj of U is an implicit function of time,
since it depends on the present and past states of the system, that is, on T on the [0 t0]
interval.
We assume to be in the linear case (linear heat equation system and linear source)

now on

E(t,T,U) ¼ AT þ BU with A and B: constant matrices (1:47)

The different vectors and matrices present in the linear form of the state equation (1.47) are
thus defined in Figure 1.17.

FIGURE 1.17
State and output equations for a linear
dynamical thermal system.
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An analytical solution for the state vector T(t) of this state-space representation of a linear
system can be found formally using the exponential function of a matrix:

T(t) ¼ exp(A(t� t0))T0 þ
ðt
t0

exp(A(t� t))BU(t) dt (1:48)

In practice, and in the case of implementation of an inverse technique, all theN components
of the state vector (temperatures at the different nodes of the model here) do not present the
same interest: only a subset of it, composed of a selected number q(q � N) of its components,
constitutes the model output. They can correspond to observations provided by q sensors,
for example. These outputs are numbered and called ymo, i, and they are put in an output
vector ymo:

ymo ¼ ymo, 1 � � � ymo, i � � � ymo, q

 �T (1:49)

Output vector ymo is linked to state vector T through an output matrix (or observation
matrix) C, of q	N dimensions: the coefficients of this observation matrix are either 0 or 1’s,
according to the observed nodes:

ymo ¼ CT (1:50)

This equation is also called the output equation.
The response of the system, which is the observed output, can be calculated thanks to

Equations 1.48 and 1.50 as

ymo(t) ¼ C exp(A(t� t0))T0 þ C
ðt
t0

exp(A(t� t))BU(t) dt (1:51)

One notices, in a very similar way as in the previous example (1.39), that this response is the
sum of a term corresponding to relaxation of initial state T0, which is the free regime, and a
convolution product term corresponding to response to stimulationU(t), the forced regime.
The meaning of the notion of state appears clearly here: knowledge of the state of the

system at a given time T(t0) as well as the history of the different sources for the [t0 t] time
interval allows calculating the current state T(t) of the material system. So, at a given time,
the thermal state contains the whole past of the system.

Remark 1.1

Equation 1.45 can easily be generalized to the case of heat transport in a pure fluid:

div(k grad T)� rcfv � grad T þ qvol ¼ rc
qT
qt

þ boundary, interface, and initial conditions (1:52)

where the advection term based on the volumetric heat of the fluid rcf ¼ rc and on the
fluid velocity v (solution of the Navier–Stokes and continuity equations) has been added
and where, in this case, k reduces simply to the thermal conductivity k of the fluid.
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In the case of heat dispersion in a porous medium, this velocity has to be replaced by a
local Darcy velocity, temperature T becomes an average ‘‘enthalpic’’ temperature at the
local scale (for the one-temperature model), while k becomes the thermal dispersion tensor,
whose coefficients depend on this local Darcy velocity. In this case, rc, the volumetric heat
in the transient storage term, differs now from rcf . This total volumetric heat rc results
from a mixing law and represents the total volumetric heat of both fluid and solid phases,
using the local volume fractions as weights (see Testu et al. [2007]).

Remark 1.2

State of a thermal system is not always composed of the sole temperature T. Two different
examples of a composite state are given next.
If a physical or chemical transformation occurs inside the modeled material, a polymer-

ization of a thermoset resin, for example, heat source is produced by the heat of reaction
and usually depends on the degree of advancement of the reaction, through a kinetic law.
This degree of advancement constitutes the second state variable. In that case, the state
equations are composed of the heat diffusion Equation 1.45 completed with a coupled mass
balance equation for each of the species present in the reacting system.
Another example can be given for coupled conduction and radiation heat transfer in

semitransparent media. The radiative intensity is the second state variable, and the radia-
tive transfer equation (an integro-differential of equation) will be associated with the heat
diffusion equation in order to constitute the new state equations.

Remark 1.3

When a steady-state Tss corresponding to an input vector Uss exists, Equation 1.46 allows
its calculation: it is written with dT=dt ¼ 0, which yields in the fully linear case (see
Equations 1.46 and 1.47):

Tss ¼ �A�1BUss ) ymo, ss ¼ �CA�1BUss (1:53)

1.5.2.4 Model Terminology and Structure

All the equations and necessary conditions for calculating the output of the model consti-
tute the structure of the model, which can be written as a functional relationship, for a
single output variable:

ymo ¼ h(t, x) (1:54a)

or

ymo ¼ h(t, x) (1:54b)

where x is either a list (1.54a) of explanatory quantities, including functions,
x ¼ {b,u(P, t),T0(P)} or its vector version x ¼ [bU T0]T (1.54b), built with functions para-
meterized in space and time (or in temperature, for nonlinear problem with thermal
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dependency of either input u or structural parameters bj s). For output variables, one deals
with an output vector (not a scalar ymo anymore), which requires the use of a vector
function h(:) whose arguments are time t and either the x list or its vector version x:

ymo ¼ h(t, x) (1:55a)

or

ymo ¼ h(t, x) (1:55b)

A wider meaning can be given for vector U in this last definition of parameter vector x: this
vector can represent, in a nonlinear case, a temperature-dependent stimulus u(T ) that has
been parameterized. Let us note that a temperature-dependent thermophysical property
bj(T), once parameterized, gives rise to constant coefficients of parameter vector b. Coef-
ficients of vector b can also stem from a space-dependent property bj(P) that has been
parameterized in the case of a heterogeneous medium.
The ‘‘direct problem’’ consists in finding model output ymo(t; x) at a given time t in the

[t0, tfinal] interval, for known data x ¼ {b, u(P, t),T0(P)}. Solution of this problem can allow
further numerical simulations of the output behavior.
A model relies on a given structure, that is, a functional relationship, noted h above,

between the output variable (or explained or dependent variable) ymo (an observed tem-
perature here) and the independent variable (time t for transient problems) and a param-
eter vector x, whose components are the parameterized explanatory quantities. It is
important to remind that aside the previous structure, parameters x of the model should
be defined accordingly (see Figure 1.18). They can either have a physical meaning if a state
modeling is performed or simply a mathematical meaning without clear physical inter-
pretation if an identified modelization is implemented.
One can notice that a model, in case of a single output, can provide not only a scalar

output ymo depending continuously on time t but also a vector output ymo. This output
column vector ymo is associated with the same output variable, a local temperature, for
example, sampled at different times t1, t2, . . . , tm, or can result from a sampling of the
explanatory variable that can be a space coordinate for a steady-state problem. It can

FIGURE 1.18
Parameter vector and structure of a model.
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also gather in a single column vector, of length qm, several output temperatures observed
at different points Pi (i¼ 1 to q), sampled for m different times tk.
Let us note here that a general introduction to inverse problems is proposed in Chapter 7,

and general methods and skills for their solution are discussed in Part II.

1.5.3 Direct and Inverse Problems

1.5.3.1 Direct Problem

We have seen above that when the studied problem allows it, the usual approach of the
thermal science scientist consists in constructing a knowledge-based model, such as
Equation 1.45, in order to be able to simulate the behavior of the physical system.
This leads to a numerical or analytical solution of a partial differential equation in the

case of a heat diffusion problem (or an integro-differential system of equations for radi-
ation heat transfer in semitransparent media, temperature, and radiative intensity being
the state variables) that represents the corresponding transfer of heat. The solution of these
equations also requires the knowledge of the conditions at the boundaries (Dirichlet,
Neumann, Fourier, etc.) or at the internal interfaces (for a medium composed of different
materials) as well as the initial condition in the system.
If an internal representation is adopted, several quantities of different nature have to be

introduced in the state (1.45) and output equations ymo(t) ¼ T(Pi, t) of the model, written for
a single temperature sensor located at point Pi. If the output is observed at q such points for
m times that constitute a time vector t ¼ [t1 t2 � � � tm]T, it becomes an output vector ymo(t; x)
that depends also on parameter vector x, where this vector is composed of

. The raw u(P, t) or parameterized U(t) excitation

. Vector bstruct of structural parameters, a and b in Example 1 or coefficients of
matrices A and B in the linear state equations (1.46) and (1.47)

. Vector bpos describing the position of the observation, xs in Example 1 and coeffi-
cients of matrix C in output equation (1.50)

. The initial temperature field T0(P) or its parameterized version T0

Input variables u(P, t) are controlled by the user: they are either power sources or imposed
temperature differences, inside or outside the system, that make temperature and output
depart from a zero value in case of zero initial temperature T0(P).
Structural parameters bstruct characterize the system. They can be

. Geometrical quantities (shape and dimensions of the system)

. Thermophysical properties: conductivities, volumetric heat capacities, heat trans-
fer coefficients, emissivities, contact or interface resistances, etc.

The relationship between output variables, generally a subset of the state, and state
variables, the temperature field, makes the previous position parameter vector bpos appear
in this output equation.
A functional scheme corresponding to linear state and output heat equations is shown in

the lower line of Figure 1.19.
This corresponds to the usual process of a model user: for a known initial state T(t0), a

known excitation U(t), and known structural parameters, the heat equation and the output
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equations are solved sequentially to calculate the theoretical response ymo of the sensors.
This output corresponds to a possible real temperature measurement at the same locations
(upper line in Figure 1.19). The direct problem can thus be solved.

1.5.3.2 Inverse Problem Approach

The preceding analysis shows that any variation in the data represented inside the x vector
(including structural and position parameters bstruct and bpos) will produce a variation of
the ymo output.
Conversely, any variation of this output ymo is necessarily caused by variation of some

data inside x.
The inverse approach is based on this principle. When knowledge of part of the variables

that are necessary to solve the direct problem is lacking, data vector x of this problem can
be split into two vectors the following way:

x ¼ xr
xc

� �
(1:56)

where
xr now represents the (column) vector gathering the unknown part of the data that are

sought (researched)
xc is its complementary part that contains known data

In that case, solving the direct problem constitutes an impossible task. Any process aimed
at finding xr requires some additional information.

Real physical system
with instrumentation

State (heat) equation Output equation
X=A X+B U
.

ymo =C X

Position of observations
βpos =C

x= (βstruct, βpos, U(t), T0)
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and inversion of the
calibration equation

FIGURE 1.19
Linear model and material system with temperature measurement.
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Problems whose objective is to find a value for x, starting from additional information,
are called inverse problems.
Any inverse problem consists in making the model work in the « backwards » way: if

outputs y as well as model structure h are known, part xr of x will be sought, its
complementary part being known (see Figure 1.20).
A general introduction to inverse problems is proposed in Chapter 7, and general

methods and skills are discussed further in Sections 7.2 and 7.3 of the same chapter.

1.5.3.3 Inverse Problems in Heat Transfer

1.5.3.3.1 Different Types of Inverse Problems in Heat Transfer
The nature of additional information necessary for solving the inverse problem allows
bringing out three main types of problems:

1. Inverse measurement problems, where this information stems from output signal y of
sensors.

2. Control problems, where the previous measurements are replaced by desired
values of either the state T(P, t) or output variables y: data or y are the targets. In
this class of problem, the sought quantity is generally the stimulus u(P, t) or the
initial state T0(P), but it can also be a structural parameter (a velocity or a flow rate
in a forced convection cooling problem, for example). In this class of problems, it is
not always possible to reach the targets, for physical or mathematical reasons, and
it may be necessary to specify a certain number of constraints on the sought
solution.

3. System identification problems, that is, model construction for simulating the behav-
ior of a system (see Chapters 13 and 14). These can be classified into two categories:

a. Model reduction: y is the output of a detailed model hdet(t; xdet) completely
known, and the structural parameters (part of xred) of a reduced model
hred(t; xred) of given structure hred are sought, both models sharing either identi-
cal or close stimulations u(P, t) and initial state T0(P) that are parts of xdet and
xred. This can be written as follows:

hdet(t; xdet) 
 hred(t; xred) where xdet ¼ [bdet Udet T0 det]
T

and xred ¼ [bred Ured T0 red]
T (1:57)

with, for mathematical reduction:

ured(P, t) ¼ udet(P, t)) Ured ¼ Udet

T0 red(P, t) ¼ T0 det(P, t)) T0 det ¼ T0 red
(1:58)

FIGURE 1.20
Direct problem=inverse problem. The interroga-
tion mark (?) designates what is looked for in
each problem.

Direct problem: known x

Known y

ymo?

Model

Model

Inverse problem: part of x?
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or, for physical reduction:

ured(P, t) 
 udet(P, t)) Ured ¼ fU(Udet)

T0 red(P, t) 
 T0 det(P, t)) T0 red ¼ fT 0(T0 det)
(1:59)

In both cases, mathematical or physical model reduction, the structural parameters of
the reducedmodel dependon the correspondingparameters of thedetailedmodel:

bred ¼ fa(bdet) for a ¼ u or T0 (1:60)

but this relationship, function fa, is explicit for physical reduction (see Section
1.6), while it is not generally the case for mathematical reduction.

b. Experimental model identification: y, U, and T0 are measured, or supposed to be
known, and the structural parameters (part of x) of a model h(t; x) of given
structure h are known, U and T0 being their complementary part in x.

Let us note that system identification leads to models that can be of the white box type,
which means models based on first principles, for example, a model for a physical process
from the Newton’s equations. The previous state-space model (1.46), based on a heat
balance and on Fourier’s law defining heat flux, belongs to this category. The nature of
the parameters in this class of models is perfectly known, which explains why they are
used for thermophysical property estimation. Conversely, an identified model on an
experimental basis, without a priori information on its structure, is also called a black box
model: parameters of such a model have only a mathematical, but not physical, meaning.
Such black boxmodelsmay, for example, derive fromneural networkmodeling. In between,
one can find gray box or semi-physical models: the model, that is, the structure=parameter
couple, is chosen according to a certain physical insight on what is happening inside the
system, and these parameters are estimated on an experimental basis.

1.5.3.3.2 Inverse Measurement Problems in Heat Transfer
We will now focus on inverse measurement problems where model structure (the equations)
h is known and where measurements y(t) are available on the time interval [t0, tfinal].
According to the nature of the explanatory variables xr that are sought, solution finding

for inverse problems may differ. One can distinguish in particular

1. Inverse problems of structural parameters estimation: xr � br
System identification problems, of the black or gray box type, belong to this cat-
egory: structural parameters (part of x) of an ad hoc h(t; x) model are sought
through experimental characterization. Thermophysical property estimation belongs
to the white box category: intrinsic parameters, that is, parameters that can be used
for completely different simulation=experimental configurations are sought
through experimental characterization. In both types of problems, several experi-
ments on the same setup, for the same sample, can be repeated in order to estimate
the same unknown parameter(s).

2. Inverse input problems: xr � u(P, t)
In heat transfer, this type of problem consists in finding the locations and values of
the sources. Such a source, or excitation, is either a volumetric, surface, line, or
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point heat source or simply a temperature difference imposed inside or at the
boundaries of the system. It differs from the previous problem because the solu-
tions sought are specific to each experiment made.

3. Inverse initial state problem: xr � T0(P)
This problem is very close to the inverse input problem, since each sought solution
is relative to a single given experiment.

4. Inverse shape reconstruction problems
In the previous types of inverse problems, boundaries of the domain are usually
fixed and known. In certain cases (problems with change of phase, in welding or in
solidification applications, for example) shape of the domain (its boundary) or
location of an interface between sub-domains (a change of phase moving front, for
example) has to be taken into account in the variables defining the direct problem.
In the corresponding inverse problem, the shape of this boundary has to be first
parameterized in order to reconstruct it through inversion.

5. Inverse problems of optimal design=control
A usual process aimed at reducing estimation errors, in a characterization process
of type (1), consists in coupling it to an optimal conception=control problem for
the characterization experiment. This optimization allows the design and the
sizing of the experimental setup as well as the procedure for the trials that will
bring additional information necessary for this characterization. This approach
can provide a methodology for a pertinent choice of inputs, locations of meas-
urement points, time observation windows, etc. The choice of these design
quantities can be made in order to maximize a criterion based on the sensitivity
of the output observations to the parameters that are sought. In heat transfer,
characterization problems (that are structural parameter estimation or system
identification problems) are usually nonlinear, which means that optimization
of any design has to be implemented on the prior assumption that the sought
parameters are known, with an iterative approach, once a first estimation has
been found. This means that nominal values of these parameters are necessary for
such a design.

Remark

The use of any sensor that very often delivers an electrical output quantity (a tension V, for
example) requires the construction of a relationship between the quantity one wants to
measure, temperature T here, and this instrument output.
It is therefore necessary to find, on the basis of the physical principle the sensor and the

whole instrumental chain rely on, a model structure Vmo (T; bcalib) where temperature is
now the explanatory variable and where vector bcalib gathers all the parameters required
for calculating the theoretical output temperature signal (thermoelectric power and cold
junction temperature, in the case of a thermocouple sensor). Construction of the Vmo model
and estimation of parameters present in bcalib starting from simultaneous measurements of
both V and T (using a reference temperature sensor) constitute a calibration problem, that is,
by nature, a parameter estimation problem, that is a type (1) inverse problem (see section
above) that has to be dealt with this way.
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1.5.3.4 Measurement and Noise

In inverse measurements problems, the additional information is brought by the measured
output that differs from the model output ymo.
The difference e(t) between a sensor measurement y and the output of an ideal sensor y*

giving the true temperature at the sensor location can be introduced:

y(t) ¼ y*(t)þ e(t) (1:61)

The sensor giving y* is ideal for two reasons: (1) its presence does not affect the local
temperature of the medium (non-intrusive detector) and (2) it provides the true value of its
own temperature.
Equation 1.61 defines the measurement noise e(t) that can be considered as a random

variable caused by the imperfect character of both instrumentation and of digitization of
the signal. This noise is present, but its deterministic value can not be reached in practice.
This equation also shows that the measured signal is a random variable whose variance

is the same as noise e.
The assumption of a pertinent, that is, non-biased, model is made in practice:

y*(t) ¼ ymo(t, x*) (1:62)

where x* is the true value of the explanatory variables.
Verifying this assumption of consistency between model and measurements is crucial.

Corresponding tools exist (study of the residuals).

Remark

Form (1.61) should be defined for discrete values yi ¼ y(ti), ei ¼ e(ti), and yi* ¼ y*(ti)
corresponding to the sampling times ti of the measured signal, of the exact temperature,
and of the noise, respectively.

1.6 Choice of a Model

1.6.1 Objectives, Structure, Consistency, Complexity, and Parsimony

Before constructing amodel, themodel-builder has to be clear about theway hismodelwill be
used, that is, about the objective of such amodeling. The objectives depend on the application
and can belong to one of the following categories that can be listed in a non-limitative way:

. Estimation of thermophysical properties

. Heat source=flux estimation

. Initial temperature field estimation

. Defect detection and nondestructive testing

. Simulation of the system behavior for better design or future state forecasting

. Model reduction for faster computation or use for heat source=flux estimation

. Conception of a model for closed-loop (feedback) control
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So the type of model will not be the same for each application, because the required model
precision will differ: defect detection in a composite slab using infrared thermography
(Maillet et al., 1993) does not require a model with the same temperature resolution as in
thermophysical property estimation, such as the flash method for liquid diffusivity esti-
mation (Rémy and Degiovanni, 2005).
The accuracy of a model is determined by its consistency with the physical situation

modelized, that is, its ability to simulate closely the behavior of the studied system.
Internal representation, with the use of state-space models, should be generally favored,
because it provides a mathematical structure linked to the physics of the modeled problem
« for free ». In addition, this type of representation allows highlighting the intrinsic
parameters of the system, that is, its thermophysical properties or thermal resistances
and impedances.
The purpose of the model that is used for inverting measurements is not to reproduce

or to mimic the whole temperature field: it should only provide an output that can be
compared to the sensor output signal at the location where this one is embedded.
Structure, that is, scalar or vector function h used above, is what defines a model. Its
complexity should be adapted to the uncertainties associated with any description of a
physical system: the use of a model that is too much simplified (simple structure with a
low number of structural parameters, such as a lumped parameter model see Section 1.6.2)
can introduce a systematic error, a bias, in its output variables, that could depart too
much from model predictions and from the experimental observations to be used the
inverse way. Conversely, the choice of a too-detailed model, with a high number of
parameters

. Tends to make implementation of the inversion algorithm involved or to make it
numerically impossible or very difficult.

. May lead to unstable solutions for the inverse problem, because of noise amplifi-
cation (in case of inversion of measurements): the inverse problem becomes
ill-posed.

This dilemma pleads in favor of the purpose of parsimoniousmodels for inverse use, that is,
models that provide a good balance between antagonist criteria of the use of a minimum
number of parameters on the one hand and maximum agreement with reality (fidelity to
measurements) on the other hand.
Up-to-date capacities of numerical simulation tools as well as structure of the optimization

and regularization algorithms allow solving inverse problems with more and more complex
models, using mathematical model reduction techniques. These allow a very significant
reduction of the size of the state vector (temperature at different nodes of the numerical
grid here). So reduction of a model, followed by its implementation in an inverse proced-
ure, can bring an efficient approach for the most difficult cases, such as 3D heat transfer
with change of phase or advecto-diffusive transfers within flowing fluids, for example
(Girault et al., 2008). We will now focus on a different type of reduction technique, physical
model reduction.

1.6.2 Example 2: Physical Model Reduction

In order to show that a thermal model can be reduced on a physical basis and that many
models of different complexity and resolution are available to simulate the same heat

Modeling in Heat Transfer 39

  



transfer situation (nonuniqueness of a model), we will consider heat transfer in a slab,
whose characteristics are defined as follows:

. Homogeneous rectangular slab, thickness e, lengths ‘x and ‘y in its plane

. Thermal diffusivity and conductivity a and k, respectively, volumetric heat
rc ¼ k=a

This slab is stimulated by a surface power (absorption of solar radiation, for example) on its
front face, and temperature is measured at q points by sensors either embedded in the
material or located on the front or rear face of the slab (see Figure 1.21). The slab is
supposed to be insulated on its four (lateral) sides and exchanges heat with the surround-
ing environment T1 only on its rear face through a uniform heat transfer coefficient h that
represents its losses (convection and linearized radiative losses). Its initial temperature T0,
at time t¼ 0, when heating starts, is supposed to be uniform.
A model allowing to find the temperature response ymo,i(t) of sensor number i (i¼ 1 to q)

at time t is sought.

1.6.2.1 3D Model

Heat source u(x, y, t) (W m�2) is supposed to be nonuniform at the front face. Evolution
with time of the temperature field can be described by a three-dimension transient model
(see Figure 1.22a):

q2T
qx2
þ q2T

qy2
þ q2T

qz2
¼ 1

a
qT
qt

(1:63)

T ¼ T0 for t ¼ 0 (1:64)

qT
qx
¼ 0 at x ¼ 0, ‘x;

qT
qy
¼ 0 at y ¼ 0, ‘y (1:65)

�k qT
qz
¼ u(x, y, t) at z ¼ 0; �k qT

qz
¼ h(T � T1) at z ¼ e (1:66)

FIGURE 1.21
Model for temperature response of a slab heated on
one of its faces.

Absorbed surface power

Temperature sensors

e
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ℓy
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This system of eight equations constitutes model Ma that will be called ‘‘detailed model’’,
whose solution, noted T ¼ Ta here, determines the response of each sensor:

ymo, i ¼ hi(t, x) ¼ Ta(xi, yi, zi, t;u(x, y, t),T0,T1, h, ‘x, ‘y, e,l, a) (1:67)

In this equation, u, T0, and T1 are input quantities of the model, independent from the
structure of the material system (if they are all equal to zero, temperature stays to a zero
level everywhere in the slab), while the other quantities are the structural parameters b,
either linked to geometry (‘x, ‘y, e), or to the thermophysical properties (k, a) of the slab
material and to its coupling with the outside environment (h), or linked to the location of
the sensors (xi, yi, zi, for i ¼ 1 to q).
List x¼ {b, u, T0, T1} can be introduced now. It gathers structural parameters b, inputs u

and T1, and initial state T0 of this dynamical system composed of (3qþ 9) quantities.

1.6.2.1.1 Dimensionless 3D Model
The number of quantities present in Equations 1.63 to 1.66 can be reduced if they are
written in a dimensionless form: dimensionless temperature T* ¼ (T � T1)=DT appears,
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FIGURE 1.22
‘‘Physical’’ model reduction. (a) 3D model, (b) 2D model, (c) 1D model, (d) 2D fin model, (e) 1D fin model, (f) 0D
lumped model: « small » body.
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with DT ¼ T0 � T1, and it is the same for dimensionless time, Fourier number t* ¼ t=tdiff ,
and dimensionless heat transfer coefficient, Biot number H ¼ he=k. In a similar way,
dimensionless observation locations xi* ¼ xi=e, yi* ¼ yi=e, zi* ¼ zi=e and dimensions
‘x* ¼ ‘x=e and ‘y* ¼ ‘y=e are introduced.
Here, tdiff ¼ e2=a is the characteristic time, related to the duration of thermal diffusion in

the thickness of the slab. The resistance of the slab in the thickness direction, related to a
unit area, R ¼ e=k, can be introduced.
This new model Ma* that corresponds to the same response of the sensors becomes

ymo, i ¼ h*(t, x*) ¼ DT � T* xi*, yi*, zi*, t=tdiff ,R,u(x, y, t)=DT,H, ‘x*, ‘y*
� �þ T1 (1:68)

where the new list x*, gathering the variables necessary for calculating the temperature
response at a given time t, comprises one less parameters than the original x list (1.67):

x* ¼ b*, u,DT,T1f g with b* ¼ xi*, yi*, zi*ð Þ for i ¼ 1 to qð Þ, tdiff ,R,H, ‘x*, ‘y*Þ (1:69)

1.6.2.2 2D Model in X- and Z-Directions

Model Ma can be simplified: if one knows that stimulus u does not vary much in direction
y, or if the sensor whose response has to be simulated is not a point sensor but integrates
the temperature signal in this direction, a y-direction average temperature field Tb can be
rebuilt, with the definition of a new model Mb (see Figure 1.22b):

Tb(x, z, t) ¼ 1
‘y

ð‘y
0

Ta(x, y, z, t) dy (1:70)

This 2D temperature field is produced by a source that varies in one single space direction,
instead of two previously. This new source um(x, t) does not depend on y and, as tempera-
ture, is the mean, in this direction, of the previous stimulus:

um(x, t) ¼ 1
‘y

ð‘y
0

u(x, y, t) dy (1:71)

This mean temperature field verifies the following equations:

q2T
qx2
þ q2T

qz2
¼ 1

a
qT
qt

(1:72)

T ¼ T0 at t ¼ 0,
qT
qx
¼ 0 in x ¼ 0, ‘x (1:73)

�k qT
qz
¼ um(x, t) at z ¼ 0; �k qT

qz
¼ h(T � T1) at z ¼ e (1:74)

Once put in a dimensionless form, thisMb model comprises (2qþ 7) independent variables:

x ¼ {b,um,DT,T1} with b ¼
�
xi*, zi* for i ¼ 1 to qð Þ, tdiff ,R,H, ‘*x

	
(1:75)
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Let us note now that in order for this model to show really no bias for sensor i, this detector
should not be a point sensor, but a line sensor.
This is possible if the rear face (zi* ¼ 1) temperature field is measured by infrared

thermography. In that case, output of model Mb at location (xi, yi) is

ymod, i(tk) ¼ Tb(xi, zi ¼ e, tk) (1:76)

Its experimental counterpart can be scrutinized: one notes now Texp
k (xm, yj) the temperature

signal at time tk, for pixel (xm, yj) of the infrared frame, where (m, j) designates a pixel
located in the mth line and jth column.
The output (y-averaged) temperatures of the model have to be compared with the

corresponding experimental response yi(tk) of the ith detector: this can be obtained through
simple addition:

yi(tk) ¼ 1
ni

Xni
j¼1

Texp
k (xm, yj ¼ yi) (1:77)

where ni is the number of pixels in the ith column (constant xm). The reader should not be
confused by the present notation in Equation 1.77: yi(tk) is the experimental temperature
signal of the ith detector, while yi is its coordinate, in the y-direction.
If the average temperature in the y-direction is really measured by a line sensor, there

will be no model error in the estimation of um(x, t). However, the information on the
variation of u in the y-direction is lost by this reduced modeling, which means that the
description of u will be made with no resolution in this direction: people in charge of this
estimation would have therefore to reduce also their initial objective, that is, estimation of
um(x, t) instead of u(x, y, t).

1.6.2.3 1D Model in Z-Direction

Such an averaging can be pursued if one considers now the averaged value of the source
over the whole front face area. The same type of averaging is made for the temperature
field. This leads to model Mc, shown in Figure 1.22c:

umm(t) ¼ 1
‘x

ð‘x
0

um(x, t) dx (1:78)

Tc(z, t) ¼ 1
‘x

ð‘x
0

Tb(x, z, t) dx (1:79)

q2T
qz2
¼ 1

a
qT
qt

(1:80)

T ¼ T0 for t ¼ 0 (1:81)

�k qT
qz
¼ umm(t) at z ¼ 0; �k qT

qz
¼ h(T � T1) at z ¼ e (1:82)
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Once model Mc is put in a dimensionless form, only (qþ 6) independent variables remain
in the x list:

x ¼ {b, umm,DT,T1} with b ¼ zi*, for i ¼ 1 to qð Þ, tdiff ,R,H
� �

(1:83)

This reduction in the number of variables is made at the expense of the space resolution for
u that is completely lost here since it is replaced by its space average umm.

1.6.2.4 2D Fin Model in X- and Y-Directions

If the Biot number H¼ he=k is much lower than unity, temperature variations in the
z-direction, corresponding to the slab thickness, can be considered as negligible and,
consequently, heat transfer in the slab becomes two-dimensional (2D). The resulting 2D
temperature field stems from an integration, with respect to z, of the 3D temperature field
(see Figure 1.22d):

Td(x, z, t) ¼ 1
e

ðe
0

Ta(x, y, z, t) dz (1:84)

This reduced model Md corresponds to a 2D fin whose temperature verifies the following
equations:

q2T
qx2
þ q2T

qy2
� h(T � T1)

ke
þ u(x, y, t)

ke
¼ 1

a
qT
qt

(1:85)

T ¼ T0 at t ¼ 0 (1:86)

qT
qx
¼ 0 in x ¼ 0, ‘x;

qT
qy
¼ 0 in y ¼ 0, ‘y (1:87)

List x is now composed of (2qþ 8) independent variables:

x ¼ {b,u,DT,T1} with b ¼ xi*, yi* for i ¼ 1 to qð Þ, tdiff ,R,H, ‘*x , ‘
*
y

� 	
(1:88)

This relatively high number of variables allows however to keep the initial spatial reso-
lution of stimulus u.

1.6.2.5 1D Fin Model in X-Direction

The 2D-reduced model Mb can be used now to construct a 1D fin model, noted Me, with
the same condition on the Biot number H, through an integration in the z-direction (the
same model Me can be obtained through integration of model Md in y-direction [see
Figure 1.22e]):

Te(x, t) ¼ 1
e

ðe
0

Tb(x, z, t) dz (1:89)
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q2T
qx2
� h(T � T1)

ke
þ u(x, y, t)

ke
¼ 1

a
qT
qt

(1:90)

T ¼ T0 at t ¼ 0 (1:91)

qT
qx
¼ 0 in x ¼ 0, ‘x (1:92)

List x of the independent variables of the model is composed of (qþ 7) quantities:

x ¼ {b,um,DT,T1} with b ¼ zi* for i ¼ 1 to q
� �

, tdiff ,R,H, ‘x*
� �

(1:93)

1.6.2.6 0D Lumped Model

If the source is nearly uniform in space, with a low Biot number in direction z, or if the
sensor provides the volume-averaged temperature of the slab, one obtains a 0D Mf model,
also called lumped model or « small body » model. It corresponds to integration of model
Me in x-direction (see Figure 1.22f):

Tf (t) ¼ 1
‘x

ðe
0

Te(x, t) dx (1:94)

This temperature field is produced by a point source whose intensity umm(t) varies with
time, with

umm(t) ¼ 1
‘x

ð‘x
0

um(x, t) dx (1:95)

The heat equation becomes

rce
dT
dt
þ h(T � T1) ¼ umm(t) (1:96)

The x list of this model is now composed of only five independent variables, includ-
ing a convective resistance (based on a unit area) G¼ 1=h and a time constant
t ¼ rce=h ¼ tdiff =H:

x ¼ {b, umm,DT,T1} with b ¼ (t,G) and DT ¼ T0 � T1 (1:97)

An analytical solution can easily be found:

T ¼ T1 þ DT exp
�t
t

� �
þ G

t

ðt
0

umm(t0) exp � t� t0

t

� �
dt0 (1:98)
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This model is a limit model, only valid if the Biot number, based on the largest of the three
dimensions ‘x, ‘y or e, is much lower than unity. If not, it is a biased model, but its output Tf

can always be compared to the average temperature of the q sensors. This averaged
experimental temperature brings an interesting information on the time variation of the
average absorbed power density on the front face, umm (t).

1.6.2.7 1D Local Model

A last model, noted Mg here, can be used. It is a 1D « local » temperature defined by

ymo, i ¼ Tg(xi, yi, t) ¼ Tc(zi, t;u(xi, yi, t),DT,T1,b) (1:99)

with

bi ¼ (zi*, tdiff i,Ri,Hi) (1:100)

It corresponds to the previous 1D model Mc, applied locally for each sensor. Its response
depends on the sole excitation u(xi, yi, t) that prevails on the front face at the same (x, y)
location (see Figure 1.23).
This allows considering a 3D problem as a set of independent 1D problems, each

individual problem being associated to a specific sensor. Structural parameters belonging
to vector bi differ for each sensor. This vector is composed of a diffusion characteristic time
tdiff i, a resistance Ri, and a Biot number Hi that have all local values corresponding to
location of sensor i. These structural parameters are related to local thickness ei, local heat
transfer coefficient hi, and local conductivity ki and diffusivity ai.
For the whole set of sensors, this model is composed of (qþ 6) independent variables if

these sensors are embedded at the same depth in the slab and if the thermophysical
parameters, h, and the slab thickness do not vary in the x–y plane.
This model is valid only if heat transfer is negligible in the directions of this same plane,

that is, if the slab is made of a composite material that is homogenized but anisotropic: the
principal directions of conductivity tensor k should be those of the slab, with principal

0

y

u(x, y, t)

u(xi, yi, t)

ymo, i (t)

h
z

∂T
∂x

(xi, yi, zi, t) ≈ (xi, yi, zi, t) ≈ 0

zi

xi ℓx x

ymo, i (t)

ymo, i (t) = Tc (zi, t; u (xi, yi, t))

h
e

0

T∞
T∞

e

ℓx

ℓy

x

∂T
∂y

FIGURE 1.23
1D local model Mg.
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components kx ¼ ky ¼ 0, kz ¼ k. However, it is possible to use it with a reasonable bias for
sensors facing front face locations where stimulus u does not vary much (low gradient in
the plane of this face) and for low thickness and thermophysical local variations. This
model is also very interesting in nondestructive testing of composite slabs by infrared
thermography (see Benítez et al. [2008]).

Remarks

. The six reduced models Mb to Mg are all derived from the detailed model Ma and
have lower order dimensions than this original 3D model. They are also charac-
terized by a lower number of structural parameters (see Chapters 13 and 14 for
more details concerning the model reduction).

. Structural parameters of the slab and of the sensors either disappear or are
transferred from one model to a more reduced one along this progressive physical
reduction process. So, passing from model Me to model Mf makes parameter ‘*x , R,
and x*i disappear while parameters H and tdiff merge into a single parameter
t ¼ tdiff =H. This reduction of the parameters number is an irreversible one,
which means that it is not possible to rebuild values of H and tdiff starting from
the knowledge of t only.

. One can also note that during this reduction process, relationships between former
and new parameters are linear if the logarithms of these parameters are consid-
ered: ln (t) ¼ ln (tdiff )� ln (H). This gives an interesting relationship between
reduced sensitivities (see the corresponding course in this series).

. In parallel with the reduction in the number of parameters, a reduction of the space
dimension necessary for reproducing the sensor behavior appears: from an initial
u(x, y, t) stimulus for modelsMa andMd, one gets a um(x, t) stimulus for modelsMb

and Me to finally umm(t) for models Mc and Mf and ui(t) ¼ u(xi, yi, t) for model Mg.
. All these models rely on specific physical assumptions, and none of them corres-

ponds to the absolute reality, even model Ma: this one neglects convecto-radiative
losses on the front face and on the four sides of the slab, coefficient h is supposed to
be uniform in the rear face plane, and the same is true for the initial temperature
inside the slab.

This example shows that the user has to make his or her own choice for the model, since
several representations are generally possible. Accordingly, a more reduced model con-
veys less information about the spatial distribution of the heat source. However, this
inconvenience in direct modeling can become an asset when inversion to reconstruct the
source takes place.

1.6.3 Linear Input–Output Systems and Heat Sources

This section is devoted to the definition of what can be considered as a thermal power
stimulus u. It can be later used for the purpose of estimating u, in an inversion procedure.
It has been shown above, for two geometries, semi-infinite medium (Example 1), and

plane wall (Example 2), that the system-forced response u, to a surface heat flux stimulus,
can be written, for any point P inside the medium, as a convolution product in time (see
Equations 1.39 and 1.96), with a degenerate lumped body model in the second case.
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In a very similar way, a continuous stimulus, that is, a power volumetric density, u(P, t),
once discretized in space (or, more generally parameterized, using any basis of functions in
3D) as an input vector U(t), yields a forced response, in any point of the system, that
corresponds to a convolution product in time, if the heat equation as well as its associated
conditions are linear, with coefficients that can vary in space (nonhomogeneous system), but
not in time (time invariant system). Let us notice that we consider only, in this section, linear
heat sources, that is, sources that do not depend on state, here temperature, in the system.
This very general result can be applied to such a system in the specific case of a stimulus

u whose time dependency can be separated from its space dependency:

u(P, t) ¼ f (t)g(P) (1:101)

We assume here that the source intensity (W m�3) is associated to its time component f (t),
while its distribution in space g(P) is its characteristic function (no unit): its value is 1, if
point P belongs to the source and zero otherwise.
If the model is linear (in terms of the input=output relationship) and if its coefficients do

not vary with time, model response ymo, i(t) at time t, in any point Pi in the system, can be
written as a convolution product (Ozisik, 1980), for a zero initial temperature:

ymo, i(t) ¼
ðt
0

ð
V

Z(t� t, Pi; g(P),b) f (t) dV(P) dt (1:102)

In this equation, Z is a transfer function (impedance or space Green’s function) that
depends on location of the observed point Pi, on the model structural quantities, as well
as on the space distribution g(P) of the source, P being any point inside the system. The
convolution product is implemented between this impedance and the intensity f (t) of the
source.
If stimulus u(P, t) cannot be separated into a product of space and time distributions, this

means that several different sources coexist in the system. Each of them can be ‘‘separated’’
and is noted uk(P, t) ¼ fk(t)gk(P), where k is the number of the individual source. One can
think, for example, of two heating electrical resistances, embedded in a solid, and that are
not turned on at the same time. So, a superposition of solutions of the previous form (1.102)
can be implemented to get the global response in point Pi:

u(P, t) ¼
X
k

fk(t)gk(P) (1:103)

ymo, i(t) ¼
X
k

ðt
0

ð
V

Zk(t� t, Pi; gk(P),b) fk(t) dtdV(P) (1:104)

Forms (1.102) and (1.104) remain valid in the quite general case where thermophysical
properties of the constitutive materials, as well as the heat transfer coefficients and
interface resistances used in the model, vary in space (system composed of heterogeneous
materials).
However, if these parameters vary with time, the heat equation and its associated

conditions may be still linear, but convolution products or transfer functions cannot be
used for calculating the sensor responses anymore.
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Nomenclature

a thermal diffusivity (m2 s�1)
~a acceleration (m s�2)
A state matrix
b thermal effusivity (J s1=2 m�2 K�1)
B input matrix
c, cp specific heat (J kg�1 K�1)
C output matrix
D diameter (m)
e thickness (m)
E energy (J)
E( . . . ) vector function
exp(.) exponential of a matrix
f(.) function (for time variable)
~F force (N)
g(.) function (for space variable)
G coupling factor for the two-temperature model (W m�3 K�1) or convective

thermal resistance for a unit area of 0D lumped model (m2 K W�1)
G(.) Green’s function
grad(.) gradient vector
h heat transfer coefficient (W m�2 K�1)
�h Planck’s constant (J s)
H Biot number, or enthalpy by unit volume ( J m�3)
k thermal conductivity (W m�1 K�1)
kB Boltzmann’s constant ( J K�1)
~k wave vector (m�1)
k conductivity tensor, or thermal dispersion tensor (W m�1 K�1)
K thermal conductance for a unit area (W m�2 K�1)
K macroscopic conductivity tensor of the two-temperature model (W m�1 K�1)
‘, L length (m)
m number of data samples, or mass (kg)
M model
n number of parameterized input function components
N size of the state vector
Nq distribution function for mode q
Nj square of the function fj norm
p dim(B), or Laplace parameter (s�1)
P¼ (x, y, z) point coordinates
q number of measurement points
qvol distributed volumic heat source (W m�3)
~r position vector
R thermal resistance per unit area (m2 K W�1)
t time (s)
tc characteristic time (s)
t0 dumb integration variable (s)
T temperature (K)
T0 initial temperature (K)
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T1 temperature of the fluid environment (K)
T(t) column-vector of the discretized state (temperature)
TP(t) state (temperature) of the system, continuous version
u(.) single input function (W m�2 or W m�3)
uparam single input parameterized vector
U(t) inputs column-vector (dim p)
~v, v velocity vector (m s�1)
x list of data of direct problem
x data list for the direct problem
y measured signal (output of a single sensor)
ymo theoretical signal, output of a model
y experimental output column-vector (dim m)
ymo simulated column-vector (dim m)
Z thermal impedance (m2 K J�1)

Greek Variables

b parameter vector
x characteristic function
DT temperature difference (K)
e volume fraction or porosity, or measurement noise
ei noise at time ti (K)
h(:) function, output model structure
h(:) multiple-output model structure
l wavelength (m)
L mean free path (m)
r nabla operator (gradient)
f heat flux (W)
~w heat flux density (W m�2)
r mass density (kg m�3)
t time constant or relaxation time (s)
tdiff characteristic diffusion time (s)
QD Debye’s temperature (K)

Subscripts

c complementary (known)
calib calibration
det relative to a detailed model
e electron
H enthalpic
l lattice
m space average
mm double space average
mo model
n normal
0 initial
param parameterized
pos position
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P relative to point P
q mode number
r researched
red relative to a reduced model
s sensor
ss steady state
struct structural
t total
th thermal
x direction x
y direction y
z direction z
b b-phase
l relative to wavelength l
s s-phase

Superscripts

� time Laplace transform
¼ tensor
* exact value, or dimensionless quantity of a dimensionless model
T transposed matrix
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2.1 Introduction

The purpose of this chapter is twofold: first we present, in a didactic form, the main ideas
underlying the method of homogenization (also called homogenization theory) and, sec-
ond, we use the method as a tool to develop a multiscale modeling approach, able to
analyze a wide spectrum of transport phenomena in random heterogeneous media (media
whose microstructures may be described appropriately by non-trivial joint probability
density functions [JPDFs]). The approach is also based on variational calculus and the
finite element method and leads to the prediction of macroscopic effective properties of
heterogeneous media. Here, the multiscale approach is exposed in the context of the heat
conduction problem in composite materials, whose components are all thermally conduct-
ing. An expression for the tensorial effective thermal conductivity of such materials is
derived, and some properties of the effective conductivity are shown.
In this chapter, we present in detail the continuous formulations of the heat conduc-

tion problems, which are part of the multiscale approach. On the other hand, we only
summarize the main steps for numerical solution of these problems via the finite
element method. Sample numerical results for the effective thermal conductivity of
the 2D square array of circular cylindrical fibers and of the 3D simple cubic array of
spheres are presented up to maximum packing. The reader is referred to the works by
Cruz and Patera (1995), Cruz et al. (1995), Cruz (1997, 1998), Machado and Cruz (1999),
Matt (1999, 2003), Rocha (1999), Machado (2000), Rocha and Cruz (2001), Matt and Cruz
(2001, 2002a, 2002b, 2004, 2006, 2008), and Pereira et al. (2006) for more details of the
numerical solutions and for the presentations and analyses of numerical results for the
effective thermal conductivities of 2D and 3D, ordered and random composites. Various
computational techniques developed to address the heat conduction problem in com-
posite materials are reviewed by Pereira et al. (2006), Matt and Cruz (2006, 2008), and
Cruz (2001).
It should be remarked that there are several other approaches to analyze transport

phenomena in heterogeneous and multiphase systems. Phenomenological effective med-
ium approaches (see Torquato 2002) do not tackle the underlying physics at the micro-
structural level, such that they attempt to establish the macroscopic properties by
proposing ad hoc assumptions. Another much employed technique is volume averaging,
as discussed in Chapter 1 and in the monograph by Whitaker (1999). The main objective of
volume averaging is to formulate the spatially smoothed governing equations that are
valid everywhere in the heterogeneous medium of interest. The development of closure
problems is then necessary to permit the prediction of the medium’s effective transport
properties, which relate macroscopic fluxes to intensity gradients. Regarding both volume
averaging and homogenization approaches, it appears that much more research effort has
been devoted to formulating several different classes of transport problems in heteroge-
neous media than to computing the associated macroscopic properties. Therefore, a com-
parative analysis of effective property results arising from these alternative methods is
beyond the scope of the present work.
The outline of this chapter is as follows. In Section 2.2, the method of homogenization is

introduced didactically. We first offer a formal definition and then illustrate with physical
examples the mathematical problems involved in the definition. Next, we give a brief
overview of the analytical techniques that may be employed in the homogenization proced-
ure. Finally, we apply the method to a general elliptic model problem in strong form.
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In Section 2.3, we apply the method of homogenization to the heat conduction problem of
interest, adopting a variational approach and exploiting the analysis of Section 2.2.
Although some of our results are also shown, in a different form, in Auriault (1983), we
not only present a more detailed derivation here, but also the variational treatment makes
the final expressions directly suitable for subsequent numerical treatment using the finite
element method. In Sections 2.4 through 2.7, we describe the multiscale modeling approach,
which decomposes the original multiscale problem into the macroscale, mesoscale, and
microscale (sub)problems. In Section 2.8, we briefly discuss the numerical treatment of the
pertinent problems, and in Section 2.9 we present some representative results stemming
from solutions to the mesoscale and microscale problems. Finally, in Section 2.10, we state
the conclusions.

2.2 Method of Homogenization

The method of homogenization can be applied to analyze a variety of periodic hetero-
geneous systems—those composed of several macroscopic phases and=or dissimilar
constituents and characterized by a repetitive elementary structure. A comprehensive
treatment of the subject is given in Bensoussan et al. (1978), and a survey of applications
of homogenization theory to a wide spectrum of problems can be found in Babuška
(1975). The method has been applied to study neutron and radiative transport (Larsen
1975, Bensoussan et al. 1979), to tackle the problem of dynamic fluid–structure inter-
actions in large rod bundles (Schumann 1981) and to develop a procedure for shape
optimization of structures (Bendsøe and Kikuchi 1988). In Mei and Auriault (1989), the
method is the essence of the formulation of the creeping flow problem through periodic
porous media with several spatial scales, and in Mei and Auriault (1991) the approach is
extended to include the effect of weak inertia. Kami�nski and Kleiber (2000) have also
employed homogenization to investigate the behavior of random elastic composites
with stochastic interface defects.
In the heat transfer (or rather conduction) context, the objective is to determine the

effective thermal conductivity of an equivalent homogeneous medium, which will ther-
mally behave, in a macroscopic sense, as the original heterogeneous medium (Milton 2002).
Auriault (1983) and Auriault and Ene (1994) have used homogenization to determine the
effective conductivity of certain types of laminated composites. More recently, homogen-
ization theory has been applied in Cruz (1998) to derive an expression for the effective
conductivity of particulate composites whose continuous (the matrix) and dispersed (the
particles) components are thermally conducting. The dependence of the thermal conduct-
ivity of composite materials on temperature has been considered in Chung et al. (2001) by
applying homogenization.

2.2.1 Definition

In short, the method of homogenization employs volume averaging (see Chapter 1) to yield
a mathematically rigorous mixture-type model for a heterogeneous medium with periodic
microstructure and separated length scales. A formal definition may be offered by first
introducing three types of boundary value problems (BVPs).
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1. BVP-1

Aeue ¼ f in V, (2:1)

ue subject to boundary conditions on qV: (2:2)

The domain V is an open bounded set of Rn, qV is the bounding surface of V in
R
n�1, Ae is a general partial differential operator with periodically varying and

continuous coefficients, f : V ! R
m, m � n, is the source term, and ue is subject to

Dirichlet, Neumann, and=or mixed boundary conditions in (2.2).
The characteristic length scales of the domain V and of the periods of the

coefficients are, respectively, L and l; the positive parameter e is the ratio of
such scales, and it is assumed here that the scales are well separated, that is,

e � l

L
� 1, (2:3)

implying statistical homogeneity. BVP-1 is said to have rapidly oscillating coeffi-
cients.

2. BVP-2

AHuH ¼ f in V, (2:4)

uH subject to boundary conditions on qV: (2:5)

The partial differential operator AH has constant coefficients, that is, AH is a
homogeneous operator; thus, this BVP is said to be homogenized.

3. BVP-3

ACuC ¼ fC in VC, (2:6)

uC subject to boundary conditions on qVC: (2:7)

The domain VC, an open bounded set of Rn, is a periodic cell of characteristic size
l, that is, with dimensions proportional to l in all n coordinate directions. The
partial differential operator AC may have constant or variable coefficients within
VC, and uC and f C are l-periodic functions (functions that admit period Cjl, Cj¼O
(1) 2 R, in the direction xj, j¼ 1, . . . ,n). This BVP is called a cell problem.

We are now in a position to offer a formal definition of the method of homogenization:
the method is a rigorous mathematical technique whereby one can replace, in the limit
e! 0, a BVP with rapidly varying coefficients (type BVP-1) with a homogenized problem
(type BVP-2), whose coefficients must be determined through the solution of a cell problem
(type BVP-3). Although all three problems are, in general, hard to solve analytically, the
method of homogenization has the distinct advantage that problems of the types BVP-2
and BVP-3 are much easier to solve numerically than those of the type BVP-1, since the
latter not only require O(1=en) more degrees of freedom but are also much stiffer.
From the point of view of physics, problem BVP-1 may describe heat transfer, creeping

flow, or a neutron transport process in a heterogeneous medium of typical macroscale L
with a spatially periodic microstructure of period l. Problems BVP-2 and BVP-3 may
describe the same aforementioned phenomena, respectively, in a homogeneous, effective
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medium (in general anisotropic) of typical macroscale L and in a periodic cell of size l.
Note that the coefficients of AH in BVP-2 correspond, by definition, to the effective
macroscopic properties of the original heterogeneous medium considered in BVP-1.
Because the determination of such coefficients demands that a solution be found to a cell
problem defined in the periodic microstructure of the medium, of size l� L, it is said that
the method of homogenization allows one to describe macroscopically the behavior of a
heterogeneous medium through the analysis of the behavior of its underlying microscopic
structure; Figure 2.1 illustrates this process.
The lack of a unique precise definition of effective property of a heterogeneous medium

led to many reports in the past with discrepant results (Babuška 1975). The method of
homogenization not only provides a consistent way of computing effective properties for
heterogeneous materials with periodic microstructures, but it also relates global quantities
(e.g., bulk heat flow) defined for the original medium to those computed for the equivalent
homogeneous medium. It should be pointed out that, typically, real random heteroge-
neous media possess no period l, in which case homogenization theory does not directly
apply. The concept of the correlation length (Cruz and Patera 1995, Cruz 2005), developed
in Section 2.6.4, may be used to bridge the transition periodic ! random, provided such
length is small compared to the macroscale L.

2.2.2 Additional Considerations

As previously discussed in Chapter 1, the elaboration of a mathematical model to describe
a given physical phenomenon is relative to the desired scale of observation, and is a typical
product of scientific investigation. Frequently, the model leads to a problem of the type
BVP-1, particularly when one is dealing with heterogeneous systems; homogenization
theory can thus be employed to solve such model. In order to replace the operator Ae of
BVP-1 with the operator AH of BVP-2, several mathematical techniques can be used, based
on (see, e.g., Bensoussan et al. 1978) the following:

1. Asymptotic expansions using multiple scales, the fast scale proportional to l, and
the slow scale proportional to L

2. Energy estimates

3. Probabilistic arguments

4. Spectral decomposition of Ae

L
as
= +

L 0

BVP-1 BVP-2 BVP-3

Periodic multicomponent
medium

λ
λε

λ
Homogeneous (effective)

medium
Periodic

cell

L

FIGURE 2.1
Diagrammatic representation of the method of homogenization.
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The method of asymptotic expansions is attractive when dealing with problems of the type
BVP-1 because of the presence of a natural separation of scales, as evidenced by Equation 2.3;
note that such clear separation of scales is not present in turbulence. The procedure is then
to look for the solution ue¼ ue(x), x 2 R

n, of BVP-1 in the form of an asymptotic expansion
in terms of the small positive parameter e:

ue ¼ u0 þ eu1 þ e2u2 þ � � � , (2:8)

where the functions uj, j¼ 0,1, . . . , are now the new unknowns, having all the same order of
magnitude. Next, by inserting (2.8) into (2.1) and (2.2) and collecting equal powers of e, a
problem of the type BVP-2 is obtained for u0, with boundary conditions dependent on
those prescribed for the original problem. The main result of the method, shown by
Bensoussan et al. (1978), is that ue converges weakly to u0 as e ! 0 (weak convergence
means convergence of suitable averages). The explicit analytical construction of the homo-
geneous operator AH is crucial for the actual solution of the problem and involves solving a
l-periodic cell problem (type BVP-3), which yields the correct constant coefficients of AH.
In general, the homogenized and cell problems have to be solved numerically. In the
following section, we apply the asymptotic expansion technique to a typical elliptic
model problem.

2.2.3 Application to a Model Problem

Let us apply the method of homogenization to the following model problem in strong
form: in BVP-1, let

Ae ¼ � q
qxi

aij(y)
q
qxj

� �
þ a0(y), (2:9)

where x 2 R
3, y � x=e, and aij(y), i, j¼ 1, 2, 3, and a0(y) are continuous l-triply periodic

functions; we remark that the summation convention is adopted throughout this chapter.
Formally, a function is said to be l-triply periodic if it admits periods proportional to l in
all three coordinate directions. The second-order elliptic operator Ae in (2.9) models many
physical phenomena (e.g., heat or electrical conduction) in composite materials with
periodic microstructure. We are now interested in determining the behavior of the solution
ue of BVP-1, with Ae given in (2.9), as e ! 0.
The presence of the two disparate scales L and l in BVP-1, and the l-periodicity of Ae

motivate the application of the method of asymptotic expansions using multiple scales
(Bensoussan et al. 1978, Mei and Auriault 1989), whereby we look for the solution ue(x) in
the form

ue(x) ¼ u0 x,
x
e

� 	
þ eu1 x,

x
e

� 	
þ e2u2 x,

x
e

� 	
þ � � � , (2:10)

where uj(x,y), y � x=e, j¼ 0, 1, 2, . . . , are l-triply periodic in y. The ‘‘fast’’ variable y scales
(magnifies) the period l to L and is introduced here to separate the periodic and nonper-
iodic parts of ue, which vary, respectively, rapidly over l and slowly over L. The new BVPs
for the unknown functions uj are determined by first inserting (2.10) into (2.1), with Ae

given in (2.9), and then by collecting the terms with equal powers of e. Note that care is
necessary with the operator q=qxj: when operating on a function G¼ Ĝ(x)¼ �G(x,y), we
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must first treat x and y as independent variables, and subsequently replace y with x=e to
obtain

q
qxj

(G) ¼ qĜ
qxj
¼ q�G

qxj
þ 1

e
q�G
qyj

: (2:11)

If, furthermore, G can be expanded as G¼G0þ eG1þ e2G2þO(e3), then from (2.11)

q
qxj

(G) ¼ q�G0

qxj
þ 1

e
q�G0

qyj
þ e

q�G1

qxj
þ q�G1

qyj
þ e2

q�G2

qxj
þ e

q�G2

qyj
þO(e2): (2:12)

Inserting Equation 2.9 into 2.1, and using Equation 2.12, one obtains

Aeue ¼ (e�2A2 þ e�1A1 þ e0A0)ue ¼ f , (2:13)

where

A2 ¼ � q
qyi

aij(y)
q
qyj

� �
, (2:14)

A1 ¼ � q
qyi

aij(y)
q
qxj

� �
� q
qxi

aij(y)
q
qyj

� �
, (2:15)

A0 ¼ � q
qxi

aij(y)
q
qxj

� �
þ a0: (2:16)

Now inserting Equation 2.10 into 2.13, and collecting the powers e�2, e�1, and e0, the
following equations involving A0, A1, A2 and u0, u1, u2 result:

A2u0 ¼ 0, (2:17)

A2u1 þ A1u0 ¼ 0, (2:18)

A2u2 þ A1u1 þ A0u0 ¼ f : (2:19)

Before proceeding further, we state a result to be used in the development to follow. The
solvability condition (i.e., uniqueness up to an additive constant) for the problem

A2f ¼ F in Y,

f periodic in Y,

(
(2:20)

where A2 is given in (2.14) and Y is a region in R
3, is (see Bensoussan et al. 1978)ð

Y

F(y) dy ¼ 0: (2:21)

To arrive at (2.21), we integrate (2.20) over Y, apply the first form of Green’s theorem
(Hildebrand 1976), and then use the periodicity of f.
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Noting that the operator A2 involves y only, and considering the solvability condition
(2.21), we conclude that Equation 2.17 implies that u0 is a function of x only, that is,

u0 ¼ u0(x): (2:22)

Inserting Equations 2.15 and 2.22 into 2.18, we obtain

A2u1 ¼ q
qyi

aij(y)
� �

qu0(x)
qxj

; (2:23)

the separation of the variables x and y on the right-hand side (RHS) of (2.23) allows one to
represent u1 in the following simple form: if xj¼ xj(y) is defined as the l-triply periodic
solution (up to an additive constant) of

A2x
j ¼ � q

qyi
aij(y), (2:24)

then the general solution of (2.23) is given by

u1(x, y) ¼ �xj(y) qu0qxj
þ ~u1(x): (2:25)

The problem for u1 then reduces to finding xj(y); since A2 involves y only and both aij(y)
and xj(y) are l-triply periodic, Equation 2.24 (with proper boundary conditions) constitutes
the cell problem BVP-3.
From the condition (2.21), it is easily seen that one can solve (2.19) for u2, treating x as a

parameter, if ð
Y

(A1u1 þ A0u0) dy ¼
ð
Y

f dy (2:26)

(note that, here, Y has dimensions proportional to l in all coordinate directions); using
(2.15), (2.16), and (2.25) and the fact that f¼ f(x), (2.26) becomesð

Y

� q
qyi

aij(y)
qu1(x, y)

qxj

� �
� q
qxi

aik(y)
q
qyk

�xj(y) qu0
qxj
þ ~u1(x)

� �� �


� q
qxi

aij(y)
qu0
qxj

� �
þ a0u0

�
dy ¼ f

ð
Y

dy, (2:27)

or, since x is a parameter,

� 1
jYj

ð
Y

aij � aik
qxj

qyk

� �
dy

8<:
9=; q2u0

qxiqxj
þ 1
jYj

ð
Y

a0(y)dy

8<:
9=;u0 ¼ f , (2:28)
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where jYj is the measure of the entire region Y,

jYj �
ð
Y

dy: (2:29)

Clearly, the coefficients

Ceffij � �
1
jYj
ð
Y

aij � aik
qxj

qyk

� �
dy, (2:30)

and

C0 � 1
jYj
ð
Y

a0(y)dy (2:31)

are constants (y is integrated out); therefore, Equation 2.28 (with proper boundary condi-
tions) constitutes the homogenized problem BVP-2. We can thus write the homogenized
operator AH explicitly as

AH ¼ Ceffij
q2

qxiqxj
þ C0; (2:32)

defining, in general, the average

m(f) � 1
jYj
ð
Y

f(y)dy, (2:33)

then

Ceffij ¼ �m(aij)þm aik
qxj

qyk

� �
(2:34)

and

C0 ¼ m(a0): (2:35)

Mathematically, Ceffij and C0 are the effective coefficients of the operator Ae; physically, they
are the effective bulk properties of the heterogeneous medium, associated with the physical
process for which BVP-1 is the appropriate model.
It is worthwhile to conclude this section by stating the following results, which are

proved by Babuška (1975) and Bensoussan et al. (1978).

1. Symmetry. If Ae is symmetric (aij¼ aji), then AH is also symmetric.

2. Ellipticity. For our model problem, the operator AH, which does not depend on V,
is elliptic.
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3. Anisotropy. If Ae is diagonal (aij¼ 0 for i 6¼ j), AH is not necessarily diagonal.

4. Error. The method of asymptotic expansions is justified for both Dirichlet and
Neumann boundary conditions on qV; the end result for the error estimate is

kue � u0kL1(V) � Ce,

where C depends on V, f, and aij, but not on e.

5. Variational formulation. Using ‘‘energy’’ (‘‘weak’’) arguments, it can be proved that
the solution ue of BVP-1 converges weakly to u0 as e! 0, u0 being the solution to
the problem: find u0 2 V(V) such that

aH(u0, v) ¼ ( f , v) 8v 2 V(V),

where V(V) is an appropriate function space H1
0(V) � V � H1(V)

� �
, a0 ¼ 0, and

the bilinear form and inner product are defined, respectively, as

aH(u0, v) �
ð
V

�Ceffij
qu0
qxj

qv
qxi

dx,

( f , v) �
ð
V

fv dx:

To obtain the expression for aH, multiply (2.28) by v 2 V and integrate by parts
over V.

6. Fluxes. The fluxes associated with ue and u0,

qei ¼ aij
que
qxj

and q0i ¼ Ceffij
qu0
qxj

,

are not close, since the partial derivatives que=qxi do not converge strongly to
qu0=qxi; however,

qei � q0j
qxi

qxj

���� ����
L1(V)

� Ce:

The interpretation of q0i is that it represents average fluxes as e ! 0.

2.3 Homogenization Applied to Heat Conduction in Composites

Several techniques are available to address transport phenomena problems in heteroge-
neous media (e.g., Beran 1968, Kohn and Milton 1989, Torquato 2002). In this section, the
method of homogenization (Bensoussan et al. 1978) is applied to the problem of heat
conduction in a composite medium.
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2.3.1 Description of the Multiscale Problem

We consider a composite material, periodic (Figure 2.2) or not (Figure 2.3), whose continu-
ous and distributed components are, respectively, a matrix of thermal conductivity kc and
randomly and homogeneously distributed inclusions (fibers or particles) of thermal con-
ductivity kd; for the sake of simplicity, the conductivities kc and kd are taken constant. Both
components are assumed to be solid, homogeneous, and isotropic and have perfect
thermal contact (for defective thermal contact, see Auriault and Ene 1994, Rocha and
Cruz 2001, Matt and Cruz 2008). We define the conductivity ratio a, 0 � a<1, as

a � kd
kc

: (2:36)

The space coordinates are (x1, x2, x3)¼ x 2 R
3, and the geometric regions occupied by the

continuous and dispersed components are, respectively, Vc and Vd. Physically, the com-
posite extends throughout a characteristic length LC; temperature gradients DT=L are
imposed over the large scale L, called the macroscale, which is O(LC). The macroscale region
is indicated by Vma¼Vc [ Vd. In general, the volume fraction of inclusions is specified as a
concentration function, c(x): Vma! [0, 1], varying significantly on the macroscale only. The
smallest scale present is the characteristic size of the inclusions, d, called the microscale.

FIGURE 2.3
Random unidirectional fibrous composite in 2D.
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Γad

Γ0
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∂Ωma

T = T1
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d
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n

FIGURE 2.2
Periodic composite medium in two
dimensions.
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Ωpc
λ
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The representative volume element (RVE) of the composite, which may be a periodic cell
(Figure 2.2), contains many inclusions and is denoted by Vpc; the size of the RVE, l, is the
intermediate length scale, called the mesoscale (Section 2.6). The external boundaries of the
composite, where boundary conditions are specified, are denoted as qVma. In Figure 2.3,
qVma¼G0 [ G1 [ Gad, where G0, G1, and Gad are subregions of the boundary on which,
respectively, uniform temperatures T0 and T1, and adiabatic conditions are imposed.
The multiscale heat conduction problem in the medium described above, under steady-

state conditions, can be mathematically expressed by the following equations:

� q
qxj

kc
qTc

qxj

� �
¼ _gc in Vc, (2:37)

� q
qxj

kd
qTd

qxj

� �
¼ _gd in Vd, (2:38)

Tc ¼ Td on qVs, (2:39)

�kc qT
c

qxj
nj ¼ �kd qT

d

qxj
nj on qVs, (2:40)

Tc and Td subject to boundary conditions on qVma: (2:41)

Here Tc, _gc and Td, _gd are, respectively, the temperature field and the volumetric rate of
heat generation in the continuous and distributed components; qVs is the union of all the
interfaces between the matrix and the inclusions; and n is the unit vector locally normal to
qVs and pointing into Vd. Note that the external temperature gradients are imposed
through the boundary conditions in (2.41). Problems (2.37) through (2.41) can also be
written as

AeTe ¼ � q
qxj

k
qTe

qxj

� �
¼ _g in Vma, (2:42)

[Te]qVs
¼ 0, (2:43)

�k qTe

qxj

� �
qVs

nj ¼ 0, (2:44)

Te subject to boundary conditions on qVma, (2:45)

where, respectively,

k, Te, _g ¼
kc, Tc, _gc in Vc � Vma

kd, Td, _gd in Vd � Vma

(
(2:46)

and the notation [f]qVs
is used to indicate the discontinuity (or jump) of the function f at

qVs. We note that, for this problem, the oscillating coefficient aij¼ kdij (dij is the Kronecker
delta) of the operator Ae in Equation 2.42, in contrast to the coefficient in Equation 2.9 of
Section 2.2.3, is isotropic and discontinuous, assuming different (constant) values in the
two components; also, here a0¼ 0.
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2.3.2 Variational Formulation

A variational formulation (Cruz and Patera 1995, Rocha and Cruz 2001, Alzina et al. 2006)
of problem (2.42) through (2.45) is advantageous for carrying out the homogenization
procedure, because first, by transposing derivatives, we bypass the difficulty introduced
by the discontinuity of the coefficient aij¼ kdij, which prevents us from using Equations 2.24
and 2.25 directly; second, the flux boundary condition at the inclusion surfaces, Equation
2.44, is automatically taken care of.
We consider the function space X(Vma) ¼ w 2 H1

0(Vma)jwjVc�Vma ¼ wc, wjVd�Vma ¼ wd,
�

[w]qVs
¼ 0g, where H1

0(Vma) is the space of all functions which vanish on the portions of
qVma where Dirichlet boundary conditions apply, and for which both the function and
derivative are square integrable over Vma (Adams 1975). Multiplying (2.42) by v 2 X(Vma),
we obtain

�v q
qxj

k
qTe

qxj

� �
¼ v _g 8v 2 X(Vma): (2:47)

Integrating (2.47) over Vma, it follows thatð
Vma

�v q
qxj

k
qTe

qxj

� �
dx ¼

ð
Vma

v _g dx 8v 2 X(Vma): (2:48)

Next, applying the first form of Green’s theorem (Hildebrand 1976) to (2.48), and consider-
ing the continuity condition (2.44) and the definition of the space X, we deriveð

Vma

k
qTe

qxj

qv
qxj

dx�
ð

qVma

vk
qTe

qxj
nj ds ¼

ð
Vma

v _g dx 8v 2 X(Vma): (2:49)

Note that, due to the space X, only the portions of qVma subject to Neumann boundary
conditions contribute to the integral on qVma. To facilitate the presentation, such known
contributions are henceforth considered to be summed to the inhomogeneities on the RHS
of (2.49), and we can thus omit the integral on qVma.

2.3.3 Asymptotic Expansion

We now introduce the multiple-scale asymptotic expansions

Te(x) ¼ T0(x,y)þ eT1(x, y)þ e2T2(x,y)þO(e3), (2:50)

v(x) ¼ v0(x,y)þ ev1(x,y)þ e2v2(x,y)þO(e3), (2:51)

where, as before, e¼ l=L and y¼ x=e. Combining Equations 2.49 through 2.51, and 2.12
yields, to order e,ð

Vma

k
qT0

qxj
þ 1

e
qT0

qyj
þ e

qT1

qxj
þ qT1

qyj
þ e

qT2

qyj

� �
qv0
qxj
þ 1

e
qv0
qyj
þ e

qv1
qxj
þ qv1

qyj
þ e

qv2
qyj

� �
dx

¼
ð

Vma

(v0 þ ev1) _g dx 8v0, v1 2 X(Vma): (2:52)
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Inserting (2.50) into (2.43) and (2.44), we obtain

[T0 þ eT1 þ e2T2]qVs
¼ 0, (2:53)

�k q
qxj

(T0 þ eT1 þ e2T2)
� �

qVs

nj ¼ 0; (2:54)

applying (2.11) to (2.54), it follows that, to order e,

�k qT0

qxj
þ 1

e
qT0

qyj
þ e

qT1

qxj
þ qT1

qyj
þ e

qT2

qyj

� �� �
qVs

nj ¼ 0: (2:55)

The next step is simply to identify terms in (2.52), (2.53), and (2.55) which have equal
powers of e. The analysis presented below applies, provided the ratio kd= _gd, _gd 6¼ 0, is of the
same order of magnitude as the ratio kc= _gc, _gc 6¼ 0; equivalently, the analysis is valid if a �
kd=kc¼O( _gd= _gc).
Collecting terms of order 1=e in (2.52), of order 1 in (2.53), and of order 1=e in (2.55), we

obtain

ð
Vma

k
qT0

qxj

qv0
qyj
þ qT0

qyj

qv0
qxj
þ qT0

qyj

qv1
qyj
þ qT1

qyj

qv0
qyj

� �
dx ¼ 0 8v0, v1 2 X(Vma), (2:56)

[T0]qVs
¼ 0, (2:57)

�k qT0

qyj

� �
qVs

nj ¼ 0: (2:58)

Choosing v0¼ 0 2 X(Vma) in (2.56), we derive

ð
Vma

k
qT0

qyj

qv1
qyj

� �
dx ¼ 0 8v1 2 X(Vma): (2:59)

From (2.59) and considering the nontrivial case with k 6¼ 0, we conclude that

qT0

qyj
¼ 0 (2:60)

and thus, from (2.57) (Auriault 1983),

T0 ¼ Tc
0 ¼ Td

0 ¼ T0(x): (2:61)

Equation 2.61 can be motivated physically: the behavior of the function T0(x) is dictated by
the external boundary conditions on qVma, so that on the macroscale, such behavior is the
same in both components.
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Collecting terms of order 1 in (2.52), of order e in (2.53), and of order 1 in (2.55), and using
qT0=qyj¼ qv0=qyj¼ 0, we obtain

ð
Vma

k
qT0

qxj
þ qT1

qyj

� �
qv0
qxj
þ qv1

qyj

� �
dx ¼

ð
Vma

v0 _g dx 8v0, v1 2 X(Vma), (2:62)

[T1]qVs
¼ 0, (2:63)

�k qT0

qxj
þ qT1

qyj

� �� �
qVs

nj ¼ 0: (2:64)

We can break Equation 2.62 into two equations: we choose, first, v1¼ 0 and, second, v0¼ 0
to obtain

ð
Vma

k
qT0

qxj
þ qT1

qyj

� �
qv0
qxj

� �
dx ¼

ð
Vma

v0 _g dx 8v0 2 X(Vma), (2:65)

ð
Vma

k
qT0

qxj
þ qT1

qyj

� �
qv1
qyj

� �
dx ¼ 0 8v1 2 X(Vma): (2:66)

As we show in Section 2.4, Equations 2.65 and 2.66 will lead to the homogenized and cell
problems.

2.4 Multiscale Modeling Approach

For the multiscale composite material described in Section 2.3.1, it is apparent that finding
a solution to the heat conduction BVP in Vc [ Vd is an enormous task: analytically,
because of the geometrical complexity and numerically, because of the excessive number
of degrees of freedom required to resolve both the microscale and the macroscale.
Fortunately, however, it is not usually necessary to solve the problem down to local detail:
in engineering practice, one is typically interested in the macroscopic behavior and deter-
mination of bulk quantities. For a particular set of positions of the inclusions, an effective
(macroscopic) property of the medium associated with a given transport phenomenon can
be viewed as the ratio of the volume-averaged (bulk) flux through the medium and the
volume-averaged externally imposed gradient of the corresponding potential (Milton 2002).
In this section, we present the multiscale modeling approach to predict effective

properties and statistical correlation lengths of heterogeneous media. The approach is a
first-principle analytical–numerical methodology based upon the following (see Cruz and
Patera 1995, Cruz et al. 1995, Machado and Cruz 1999, Matt and Cruz 2002a, Cruz 2005):
(1) a variational, homogenization-based hierarchical decomposition procedure which
recasts the original multiscale problem as a sequence of three scale-decoupled (sub)
problems; (2) a variation-bound nip-element technique by means of which microscale
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models are incorporated into the mesoscale problem; and (3) numerical solution of the
resulting mesoscale problem by nested Monte Carlo and finite element methods (see
Figure 2.4). In the macroscale problem (Section 2.5) for heat conduction in composites,
the effective thermal conductivity of the homogenized medium is supplied (input) to
the energy equation in order to calculate the bulk heat flow rate of interest. In the
mesoscale problem (Section 2.6), the effective conductivity, as well as the statistical correl-
ation length, is determined (output) by solving an appropriate sequence of many-inclusion
periodic-cell problems generated in the Monte Carlo loop (Figure 2.4). The finite element
procedure to solve the mesoscale problem suffers from the severe geometric stiffness that
arises when treating the distorted domains associated with the presence of very close
inclusions. The boundaries of very close inclusions form nip regions that may be hard, or
even impossible, to mesh, rendering numerical solutions either prohibitively expensive,
due to excessive degrees of freedom and ill conditioning, or hopeless. In the microscale
problem (Section 2.7), the nearfield behavior of clustered inclusions is modeled, alleviating
the difficulties caused by geometric stiffness. The microscale problem is treated by a
variational-bound nip-element technique (Cruz et al. 1995, Machado and Cruz 1999,
Machado 2000, Matt and Cruz 2002a): an inner–outer decomposition of the geometrically
stiff problem is effected, by means of which analytical approximations in inner nip
regions—the microscale models—are folded into a modified outer problem defined
over a geometrically more homogeneous domain. As a result, by virtue of the variational
nature of the problem, rigorous upper and lower bounds for the configuration effective
property may be designed. This technique is rigorously applicable to problems for which
the effective property of interest is the extremum of a quadratic, symmetric, positive-
(semi) definite functional.

START
Level 4: for each dispersed-phase volume fraction ci, i¼ 1, . . . ,mc

Level 3: for each periodic cell size lj, j¼ 1, . . . ,ml

Level 2: Outer Monte-Carlo Loop
draw samples, {y}N, from dispersed-phase JPDF
construct periodic cell domain for configuration {y}N
Level 1: Inner Finite-Element Solution Kernel

loop: for each realization {y}N
construct mesh
effect discretization
solve periodic cell problem
compute effective property ke

0 ¼Ke(ci, lj, {y}N)
endloop

End of Level 1
perform statistical analysis (estimate <Ke>(ci, lj) and uncertainties)

End of Level 2
determine correlation length, lC(ci)
estimate ke(ci) � <Ke>(ci,1) 
 <Ke>(ci, l

C(ci))
End of Level 3
construct functional relation ke(c)

End of Level 4
END

FIGURE 2.4
Scheme of the four-level numerical algorithm to solve the mesoscale problem.
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2.5 Macroscale Problem

The key realization needed to derive the macroscale problem and, also, the mesoscale cell
problem is to assume, motivated by solvability (see Section 2.2.3, Equations 2.24 and 2.25),
that we can separate the functional dependence of T1 on the variables x and y:

T1(x,y) ¼ �xp(y)
L
DT

qT0(x)
qxp

¼ 0, (2:67)

xp(y) ¼
xcp(y) in Vc � Vma,

xdp (y) in Vd � Vma,

(
(2:68)

where the unknown function xp, p¼ 1, 2, 3, is a l-triply periodic solution (to (2.66)) corre-
sponding to a temperature gradient DT=L imposed in the xp direction (summation over p is
implied). Note that, since xp is a temperature, the inverse of the external temperature-
gradient scaling factor, L=DT, is necessary on the RHS of (2.67) to preserve dimensionality.
In order to derive the macroscale, or homogenized, problem for the function

T0(x) ¼ Tc
0(x) ¼ Td

0 (x), we first insert (2.67) into (2.65) to obtainð
Vma

k
qT0

qxj
� L
DT

qxp
qyj

qT0

qxp

� �
qv0
qxj

dx ¼
ð

Vma

v0 _g dx 8v0 2 X(Vma), (2:69)

where xp, p¼ 1, 2, 3, are now taken as known functions. Equation 2.69 can be shortened toð
Vma

k djp � L
DT

qxp
qyj

� �
qT0

qxp

qv0
qxj

dx ¼
ð

Vma

v0 _g dx 8v0 2 X(Vma): (2:70)

Because our heterogeneous medium is (assumed) periodic, we can use the periodicity
property (see Keller 1980, Auriault 1983, Bendsøe and Kikuchi 1988, Rocha and Cruz 2001),
which for our purposes can be expressed as

lim
e!0

ð
Vma

g(x,y)dx ¼
ð

Vma

1
jVpcj

ð
Vpc

g(x,y)dy

0B@
1CAdx, (2:71)

where jVpcj �
Ð
Vpc

dy is the total volume measure of a many-inclusion periodic-cell Vpc.

Property (2.71) expresses the fact that as e! 0, integration of a quantity overVma¼Vc [Vd

can be performed by just capturing the average of the quantity over a representative periodic
cell, since the latter becomes essentially a point relative to Vma.
Applying the periodicity property (2.71) to Equation 2.70 yields the weak-form homogen-

ized, or macroscale, problem

ð
Vma

1
jVpcj

ð
Vpc

k djp � L
DT

qxp
qyj

� �
dy

8><>:
9>=>; qT0

qxp

qv0
qxj

dx ¼
ð

Vma

1
jVpcj

ð
Vpc

v0 _g dy

8><>:
9>=>;dx 8v0 2 X(Vma),

(2:72)
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which can also be written as

ð
Vma

1
jVpcj

ð
Vpc,c

kc djp � L
DT

qxcp
qyj

� �
dyþ

ð
Vpc,d

kd djp � L
DT

qxdp
qyj

 !
dy

8><>:
9>=>; qT0

qxp

qv0
qxj

dx

¼
ð

Vma

1
jVpcj v0

ð
Vpc,c

_gc dyþ
ð

Vpc,d

_gd dy

0B@
1CAdx 8v0 2 X(Vma): (2:73)

In (2.73), Vpc,c and Vpc,d are, respectively, the portions of Vpc in the continuous and
dispersed components. The macroscale region Vma (see BVP-2 in Figure 2.1) is much less
geometrically complex than the individual regions Vc and Vd of the components, such that
it is easy to conclude that the homogenized problem will require only a small fraction of
the number of degrees of freedom demanded by the original problem. The macroscale
problem can then be routinely solved with state-of-the-art commercial software packages.

2.5.1 Nondimensional Homogenized Problem

In practice, a numerical treatment of the macroscale problem is based on the nondimen-
sional form of Equation 2.73. Choosing, arbitrarily, the inclusion size d as the characteristic
length, and TC¼DT(d=L) as the characteristic temperature, we define T0* � T0=T

C, x* �
x=TC, v* � v=T C, v0* � v0=T

C, x* � x=L, y* � y=d, and _g* � _g L2=kc TC. Using these
definitions to normalize Equation 2.73, and considering kc and kd to be constants, we obtain

ð
Vma

ð
Vpc,c

djp �
qx
cp
qyj*

� �
dy*þ

ð
Vpc,d

a djp �
qx
dp
qyj*

 !
dy*

8><>:
9>=>; qT0*

qxp*
qv0*
qxj*

dx*

¼
ð

Vma

v0*
ð

Vpc,c

_gc* dy*þ
ð

Vpc,d

_gd* dy*

0B@
1CAdx* 8v0* 2 X(Vma): (2:74)

The reader will note that problem (2.74) is analogous to (the nondimensional version of)
problem (2.49), that is, the weak form for problems (2.42) through (2.45), provided it is
identified that the effective thermal conductivity, introduced in Section 2.6.2, plays the
role of k.

2.6 Mesoscale Problem

The assumed statistical homogeneity of the analyzed (ordered or random) heterogeneous
medium leads to a natural assumption: there exists an intermediate length scale, called the
mesoscale l, d< l< L, which represents the size of the region around one inclusion, inside
which most of the interactions of the inclusion with neighboring inclusions occur. This
region is treated in the mesoscale problem of the multiscale approach. As illustrated in
Figure 2.4, the mesoscale problem encompasses four nested loops (Cruz and Patera 1995,
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Cruz 2005). The solution to this problem yields the appropriate function ke(c(x)) to the
macroscale problem. The microscale analysis, described in Section 2.7, must be incorpor-
ated into the mesoscale equations to circumvent the difficulty associated with the geomet-
rical stiffness arising from the presence of close inclusions.

2.6.1 Level 1—The Cell Problem

In level 1, themicrostructure of the compositemediummust be prescribed: a volume fraction,
or concentration, of inclusions, c, is assumed; next, a particular configuration (i.e., realization)
of the composite is considered, by introducing a representative periodic cell of specified
edge length l, which contains many inclusions, whose geometrical centers are located at
{y}N¼ y1, . . . ,yN; N is the number of inclusions, for example, N¼ 4cl2=pd2 for circular cylin-
ders. An illustration of a 2D periodic cell with many inclusions (long, circular, cylindrical
fibers) is shown in Figure 2.5. Given themodel for themedium’smicrostructure,we nowneed
to derive the appropriate BVP for the transport phenomenon being investigated.
To derive the periodic-cell problem, we first insert (2.67) into (2.66) to arrive atð

Vma

k
qT0

qxj
þ q
qyj

�xp(y)
L
DT

qT0

qxp

� �
 �
qv1
qyj

dx ¼ 0 8v1 2 X(Vma): (2:75)

Equation 2.75 can be rewritten asð
Vma

k djp � L
DT

qxp
qyj

� �
qT0

qxp

qv1
qyj

dx ¼ 0 8v1 2 X(Vma), (2:76)

where dij is the Kronecker delta. Because the heterogeneous medium is considered peri-
odic, we can, again, apply the periodicity property (2.71) (Keller 1980, Auriault 1983,
Bendsøe and Kikuchi 1988, Rocha and Cruz 2001) to Equation 2.76 to yield

ð
Vma

1
jVpcj

ð
Vpc

k djp � L
DT

qxp
qyj

� �
qv1
qyj

dy

8><>:
9>=>; qT0

qxp
dx ¼ 0 8v1 2 X(Vma): (2:77)

FIGURE 2.5
Realization of a 2D periodic cell with many inclusions.
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y1
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d
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Equation 2.77 implies that the inner integral must be zero for any l-triply periodic test
function v:

ð
Vpc

k djp � L
DT

qxp
qyj

� �
qv
qyj

dy ¼ 0 8v 2 Y(Vpc), (2:78)

or

ð
Vpc

k
L
DT

qxp
qyj

qv
qyj

dy ¼
ð
Vpc

k
qv
qyp

dy 8v 2 Y(Vpc), (2:79)

where Y(Vpc) ¼ w 2 H1
#(Vpc)jwjVpc,c�Vpc ¼ wc, wjVpc,d�Vpc ¼ wd, [w]qVpc,s

¼ 0
n o

, H1
#(Vpc) is

the space of all l-triply periodic functions (subscript #) in Vpc for which both the function
and derivative are square integrable over Vpc (H

1(Vpc)), and qVpc,s is the portion of qVs in
the cell. Equation 2.79 is the appropriate mesoscale cell problem, which is clearly solvable:
setting v¼ 0 2 Y(Vpc), both sides of (2.79) vanish. Note that the left-hand side of (2.79) is the
standard (negative) Laplacian operator, and the RHS, although slightly nonstandard, is
easily computed for a chosen test function. The cell-problem boundary conditions imposed
by (2.79) and the space Y(Vpc) are l-triple periodicity for xp; from (2.61), (2.63), and (2.67),

[xp]qVpc,s
¼ 0; (2:80)

and, from (2.64) and (2.67), the following flux condition is naturally enforced:

�k djp � L
DT

qxp
qyj

� �
qT0

qxp

� �
qVpc,s

nj ¼ 0: (2:81)

We can rewrite the cell problem in the following way:

ð
Vpc,c

kc
L
DT

qxcp
qyj

qvc

qyj
dyþ

ð
Vpc,d

kd
L
DT

qxdp
qyj

qvd

qyj
dy ¼

ð
Vpc,c

kc
qvc

qyp
dyþ

ð
Vpc,d

kd
qvd

qyp
dy 8v 2 Y(Vpc):

(2:82)

The imposed boundary conditions, besides the l-triple periodicity of xp, become

xcp ¼ xdp on qVpc,s (2:83)

and from (2.61),

�kc djp � L
DT

qxcp
qyj

� �
nj ¼ �kd djp � L

DT

qxdp
qyj

 !
nj on qVpc,s: (2:84)
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In (2.82) through (2.84), the functions xcp and xdp are determined up to a (common) constant;
thus we further require for uniqueness thatð

Vpc,c

xcp dyþ
ð

Vpc,d

xdp dy ¼ 0: (2:85)

2.6.1.1 Nondimensional Cell Problem

In practice, a numerical treatment of the cell problem is based on the nondimensional
form of Equations 2.82 and 2.85. Using the same nondimensional variables as before
(Section 2.5), and considering kc and kd to be constants, we obtain

ð
Vpc,c

qxp*
c

qyj*
qv*c

qyj*
dy*þ

ð
Vpc,d

a
qxp*

d

qyj*
qv*d

qyj*
dy*

¼
ð

Vpc,c

qv*c

qyp*
dy*þ

ð
Vpc,d

a
qv*d

qyp*
dy* 8v* 2 Y(Vpc) (2:86)

and ð
Vpc,c

xp*
c dy*þ

ð
Vpc,d

xp*
d dy* ¼ 0: (2:87)

2.6.2 The Configuration Effective Conductivity

For the particular cell configuration of level 1, by simply inspecting Equation 2.72, we
easily recognize the tensorial effective thermal conductivity to be

k0epq ¼
1
jVpcj

ð
Vpc

k dpq � L
DT

qxq
qyp

� �
dy; (2:88)

alternatively, k0epq can be written as

k0epq ¼
1
jVpcj

ð
Vpc,c

kc dpq � L
DT

qxcq
qyp

� �
dyþ

ð
Vpc,d

kd dpq � L
DT

qxdq
qyp

 !
dy

8><>:
9>=>;: (2:89)

The prime in Equations 2.88 and 2.89 is used to designate the configuration effective
conductivity, which corresponds to the particular realization of the representative cell of
the heterogeneous medium. Note the presence of the factor 1=jVpcj in Equation 2.89
multiplying the integrals over Vpc,c and Vpc,d, irrespective of whether kc or kd is zero.
A physical motivation for the division by the total periodic cell measure, jVpcj, is that the
homogenized medium occupies the total extension of the cell; therefore, division by jVpcj
yields the correct average over the periodic cell (Cruz and Patera 1995).
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2.6.2.1 Nondimensional Effective Conductivity

The nondimensional effective conductivity is given by

kepq
0* ¼ 1
jVpcj*

ð
Vpc,c

dpq �
qxq*

c

qyp*

� �
dy*þ

ð
Vpc,d

a dpq �
qxq*

d

qyp*

 !
dy*

8><>:
9>=>;, (2:90)

where kepq
0* � k0epq=kc jVpcj* � jVpcj=d3.

2.6.2.2 Properties of k0epq
We can now show some properties of k0epq .

1. Symmetry. From Equation 2.82, taking v 2 Y(Vpc) such that vc ¼ xcq and vd ¼ xdq , we
obtain

ð
Vpc,c

kc
qxcq
qyp

dyþ
ð

Vpc,d

kd
qxdq
qyp

dy ¼
ð

Vpc,c

kc
L
DT

qxcp
qyj

qxcq
qyj

dyþ
ð

Vpc,d

kd
L
DT

qxdp
qyj

qxdq
qyj

dy; (2:91)

therefore, switching p and q in (2.91), we conclude thatð
Vpc,c

kc
qxcq
qyp

dyþ
ð

Vpc,d

kd
qxdq
qyp

dy ¼
ð

Vpc,c

kc
qxcp
qyq

dyþ
ð

Vpc,d

kd
qxdp
qyq

dy (2:92)

or, in short, ð
Vpc

k
L
DT

qxp
qyj

qxq
qyj

dy ¼
ð
Vpc

k
qxq
qyp

dy ¼
ð
Vpc

k
qxp
qyq

dy: (2:93)

From (2.89) and (2.92), and the fact that dij¼ dji, we conclude that k0epq is symmetric.

2. An equivalent expression. We now show that k0epq can alternatively be written as

k0epq ¼
1
jVpcj

ð
Vpc

k
q
qyj

yp � L
DT

xp

� �
q
qyj

yq � L
DT

xq

� �
 �
dy: (2:94)

Expanding the RHS of (2.94), we obtain

RHS ¼ 1
jVpcj

ð
Vpc

k djpdjq � L
DT

qxp
qyj

djq � L
DT

qxq
qyj

djp þ L2

DT2

qxp
qyj

qxq
qyj

� �
dy; (2:95)

simplifying the terms with the Kronecker delta, we get

RHS ¼ 1
jVpcj

ð
Vpc

k dpq � L
DT

qxp
qyq
� L
DT

qxq
qyp
þ L2

DT2

qxp
qyj

qxq
qyj

� �
dy: (2:96)
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Using (2.93), (2.96) simplifies to

RHS ¼ 1
jVpcj

ð
Vpc

k dpq � L
DT

qxq
qyp

� �
dy; (2:97)

from (2.88) and (2.97), we deduce that (2.94) is true.

3. Positive definiteness. From Equation 2.94, it follows that for any vector function
cp 2 R

3,

cpk
0
epqcq ¼

1
jVpcj

ð
Vpc

k
q
qyj

cp yp � L
DT

xp

� �
q
qyj

cq yq � L
DT

xq

� �
 �
dy, (2:98)

which is essentially the square of the modulus of the gradient of cp(yp� xp)
integrated over Vpc; hence, cpk

0
epqcq � 0. We conclude that k0epq is positive definite,

which guarantees the well posedness and uniqueness for the homogenized prob-
lem (2.72) (Lax–Milgram lemma).

2.6.2.3 Extremizing Property

We now show an extremizing property of k0epq . Defining the functional IpV,

IpV(v) ¼
ð
V

k
L
DT

qv
qyp

dy: (2:99)

Equation 2.88 can be rewritten as

k0epq ¼
1
jVpcj

ð
Vpc

kdpq dy� IpVpc
(xq)

8><>:
9>=>;: (2:100)

We also introduce the functional JpV,

JpV(v) ¼
ð
V

k
L2

DT2

qv
qyj

qv
qyj

dy� 2IpV(v), (2:101)

the first term of which is a positive-definite bilinear form. From (2.99) and (2.101), we
have that

JpVpc
(xp) ¼

ð
Vpc

k
L2

DT2

qxp
qyj

qxp
qyj

dy� 2
ð
Vpc

k
L
DT

qxp
qyp

dy; (2:102)

but from (2.93) we know thatð
Vpc

k
L2

DT2

qxp
qyj

qxp
qyj

dy ¼
ð
Vpc

k
L
DT

qxp
qyp

dy: (2:103)
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Thus, from (2.102) and (2.103), we conclude that

JpVpc
(xp) ¼ �

ð
Vpc

k
L
DT

qxp
qyp

dy, (2:104)

or

IpVpc
(xp) ¼ �JpVpc

(xp) ¼
ð
Vpc

k
L2

DT2

qxp
qyj

qxp
qyj

dy: (2:105)

Now note that the solution xp in (2.79) can also be written as (Bendsøe and Kikuchi 1988,
Cruz and Patera 1995, Matt and Cruz 2002a)

xp ¼ arg min
v2Y(Vpc)

JpVpc
(v): (2:106)

Clearly, the weak form for xp presented in (2.79) derives from the first variation of the
functional JpVpc

(v):

dJpVpc
(v) ¼ 2

ð
Vpc

k
L2

DT2

qv
qyj

qw
qyj

dy� 2
ð
Vpc

k
L
DT

qw
qyp

dy, (2:107)

where w¼ dv 2 Y(Vpc) is the variation of v; the function that minimizes JpVpc
(v), denoted as

xp, must be such that dJpVpc
(xp) ¼ 0, and, therefore, dividing (2.107) through by 2(L=DT), we

obtain ð
Vpc

k
L
DT

qxp
qyj

qw
qyj

dy�
ð
Vpc

k
qw
qyp

dy ¼ 0 8w 2 Y(Vpc), (2:108)

which is the same as Equation 2.79.
From (2.100) and (2.105), it follows that

k0epp ¼
1
jVpcj

ð
Vpc

k dy� IpVpc
(xp)

8><>:
9>=>;

¼ 1
jVpcj

ð
Vpc

k dyþ JpVpc
(xp)

8><>:
9>=>;

¼ 1
jVpcj

ð
Vpc

k dy�
ð
Vpc

k
L2

DT2

qxp
qyj

qxp
qyj

dy

8><>:
9>=>;; (2:109)
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thus, from (2.106) and (2.109), we derive

k0epp ¼
1
jVpcj

ð
Vpc

k dyþ min
v2Y(Vpc)

JpVpc
(v)

8><>:
9>=>;: (2:110)

Finally, defining the bilinear form

apqVpc
(v,w) ¼ 1

jVpcj
ð
Vpc

k
q
qyj

yp � L
DT

v
� �

q
qyj

yq � L
DT

w
� �
 �

dy, (2:111)

we can rewrite k0epq as given in (2.94) in the equivalent form

k0epq ¼ apqVpc
(xp, xq): (2:112)

Since, using (2.103) and (2.106),

appVpc
(xp, xp) ¼

1
jVpcj

ð
Vpc

k
q
qyj

yp � L
DT

xp

� �
q
qyj

yp � L
DT

xp

� �
 �
dy

¼ 1
jVpcj

ð
Vpc

k 1� L
DT

qxp
qyp
� L
DT

qxp
qyp
þ L2

DT2

qxp
qyj

qxp
qyj


 �
dy

¼ 1
jVpcj

ð
Vpc

k dyþ JpVpc
(xp)

8><>:
9>=>;

¼ 1
jVpcj

ð
Vpc

k dyþ min
v2Y(Vpc)

JpVpc
(v)

8><>:
9>=>;: (2:113)

It finally follows that

k0epp ¼ min
v2Y(Vpc)

appVpc
(v, v) ¼ appVpc

(xp, xp): (2:114)

The extremizing property (here, minimum) (2.114) can be extended to the off-diagonal
terms of the effective conductivity tensor in a form similar to the inequalities derived in Nir
et al. (1975) for the components of the shearing tensor. Property (2.114) is crucial for the
development of the microscale models (see Section 2.7).

2.6.3 Level 2—The Sample of Cell Configurations

In level 1, as described in Section 2.6.1, the volume fraction of inclusions, c, and the periodic
cell size, l, are prescribed quantities; furthermore, the configuration of the N inclusions in
the cell, expressed by their positions {y}N, is assumed to be given. The configuration
effective conductivity of the cell is then determined as k0epq (c,l, {y}N), Equation 2.89.
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In level 2, we consider the spatial distribution of the dispersed phase (i.e., the inclusions)
in the periodic cell (Cruz and Patera 1995). The positions of the geometric centers of
the inclusions in the cell are now treated as continuous random variables, {Y}N¼Y1, . . . ,
YN 2 Vpc, and the spatial distribution of the centers is specified by means of a JPDF,
PN({y}N). Naturally, any results obtained for the effective property based on an assumed
JPDF for the microstructure will be practically relevant, only if the random medium under
study is well characterized with respect to the geometry and distribution of inclusions, or if
the behavior of the medium is (known to be) rather insensitive to the geometry and
distribution of the inclusions.
For a real random medium, there appears to be no unique approach to determine the

JPDF which (best) characterizes its microstructure. The JPDF can, in some cases, be known
a priori, for example, when the heterogeneous medium is manufactured via a well-known
controlled process. In general, it is very difficult to ascertain an assumed JPDF experimen-
tally a posteriori.
A much utilized JPDF is the one corresponding to the random sequential addition

process (Torquato 2002), illustrated in Figure 2.6. This JPDF is defined and constructed
recursively from conditional JPDFs. Each conditional JPDF is uniform over the available
region in the cell, in a manner to impose the condition that any two inclusions must not
overlap. The statistical properties of this JPDF approximate well-defined limits as l, and
therefore N, tend to infinity. The JPDF corresponding to the random sequential addition
process is isotropic and homogeneous, and is equivalent to the equilibrium distribution of
the hard disk fluid up to third-order moments. Still, one may conjecture that this JPDF is
similar to the one associated with the (physically intuitive) hypothesis that all possible
configurations in which there is no overlap of inclusions are equally likely to occur.
The effective conductivity of the composite medium, in this level, is thus a random

variable, expressed by Kepq ¼ k0epq (c,l, {y}N). The objective in level 2 is, therefore, to deter-
mine the average effective conductivity of the composite over the ensemble of possible
configurations, hKepqi(c, l),

hKepqi(c,l) ¼
ð

[Vpc]N

k0epq (c,l, {y}N)PN({y}N) dy1 � � � dyN : (2:115)

Acceptable space for y2 Acceptable space for y3

d

d

2d

Ωpc

Inclusion 1 Inclusion 1Inclusion 2

FIGURE 2.6
Illustration of the random sequential addition process.
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As shown in Figure 2.4, in order to solve the multidimensional integral in (2.115), Monte
Carlo methods can be used (see, e.g., the studies by Ghaddar 1995 and Lisboa 2000 on flow
through fibrous porous media), which require repetition of the level-1 procedure for many
realizations of the medium.

2.6.4 Level 3—The Size of the Cell

In level 3, we progressively increase, for each concentration value c, the size l (and,
thus, N) of the periodic cell, with the objective to determine the correlation length of the
composite, lC(c) (Cruz and Patera 1995). The concept of the correlation length is based on
the regularity assumption, according to which the limit liml!1 hKepqi(c,l) � kepq(c) exists.
The correlation length is defined as that value of the edge length of the periodic cell for
which two conditions are satisfied:

1. For l> lC(c), the value of hKepqi(c,l) does not change appreciably, such that the
quantity

jhKepqi c,l > lC(c)
� �� kepq (c)j

kepq (c)
(2:116)

is smaller than a small prescribed tolerance, e1.

2. The standard deviation of hKepqi c,l > lC(c)
� �

is smaller than a small prescribed
fraction, e2, of kepq (c).

The first condition guarantees that, as the edge length of the periodic cell increases
beyond lC (therefore incorporating more inclusions), the average hKepqi does not
change appreciably; the condition on the standard deviation of Kepq guarantees that, for
l> lC, a particular realization of the medium will have an effective conductivity suffi-
ciently close to the mean hKepqi. The correlation length is, thus, a key quantity of the
multiscale modeling approach and establishes the connection between the behaviors of
periodic and random media. We observe, furthermore, that an important practical appli-
cation of the correlation length lC is that it indicates whether a given heterogeneous
body is large enough to apply kepq (c) 
 hKepqi(c,lC) to compute global (engineering)
quantities.

2.6.5 Level 4—The Volume Fraction of Inclusions in the Cell

Finally, in level 4, we determine, by repeating the evaluation procedure of level 3 for
different values of c, the functional dependencies lC(c) and hKepqi c,lC(c)

� �
for 0< c< cmax,

where cmax is an appropriate maximum packing for the particular inclusion geometry and
distribution under consideration.
Given the four-level mesoscale procedure described in this section, the problem of heat

conduction in a composite material—or, in general, the transport phenomenon problem in
a heterogeneous medium—for which the concentration distribution, c(x), varies appre-
ciably only on the macroscale, L, and for which the macroscale is large compared to
maxx2Vma l

C c(x)ð Þ, is basically solved: with high quantifiable probability, the macroscale
result for the bulk flux will accurately predict the one for the original problem for any
particular realization of the random composite medium.
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2.7 Microscale Problem

In Cruz et al. (1995), Machado and Cruz (1999), Machado (2000), and Matt and Cruz
(2002a), the microscale component of the macro-meso-microscale approach for the heat
conduction problem in composite materials is described and discussed in detail. Similarly,
in Ghaddar (1995), Cruz et al. (1995), and Lisboa (2000), the macro-meso-microscale
approach for the fluid flow problem in fibrous porous media is presented. Here, we
formulate isotropic microscale models to avoid the nip regions between close inclusions
which hamper mesh generation. In this section, the nip-region models are presented and
applied to the 3D isotropic heat conduction problem in particulate media (i.e., the inclusions
are particles) with thermally conducting phases; for a particular configuration containing
nips, the models lead to lower and upper bounds for the corresponding effective conduct-
ivity k0e � k0epp . The bounds rely on the minimization property, Equation 2.114, of k0e. The
variational forms of the microscale-prepared mesoscale problems associated with the
lower and upper bounds resemble Equation 2.106, and are respectively defined over
the modified (‘‘less stiff’’) domains L and U, as shown in the following.

2.7.1 Nips Geometries

When dealing with random media, as the concentration increases, it is more likely that one
particle in a cell will get very close to other particles in the same cell or in neighboring cells;
in ordered media, the number of neighbors of one particle in the cell is fixed, and regular
clusters of very close particles will be formed when the concentration is high enough. Here,
we postulate that a pair of close unitary diameter particles forms a nip region when the
center-to-center (nondimensional) separation distance 1þ g is less than 1þ gc, where gc is a
‘‘small’’ prescribed parameter. A nip region between two close spherical particles, as
illustrated in Figure 2.7, is delimited by a circular cylindrical surface of radius b and
with the axis parallel to the line joining the particles’ centers, and two spherical end caps
on the particle surfaces. Figure 2.8 shows the geometries of vertical y1�y2 cuts of the nip
regions for the lower (Figure 2.8a) and upper (Figure 2.8b) bounds, for which we, respect-
ively, define thatDLB,n andDUB,n are the domains associatedwith nip region n, n¼ 1, . . . ,N ,
N is the number of nips in the cell (note that N ¼ 3 for the simple cubic array);
L ¼ Vpcn[Nn¼1 DLB,n and U ¼ Vpcn[Nn¼1 DUB,n are the associated modified cell domains;
and qDLB,n and qDUB,n are the boundary surfaces of nips DLB,n and DUB,n.
In the next two sections, we employ isotropic microscale models to construct rigorous

lower and upper bounds for the effective conductivity, kLB � k0e � kUB, based only on

FIGURE 2.7
One 3D nip region between two proximal spherical par-
ticles; a circular cylindrical surface and two spherical end
caps delimit the nip.
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solutions defined over L and U, respectively: we avoid the hard- or impossible-to-mesh
nip regions, while maintaining strict control over the resulting error.

2.7.2 Lower Bound

A lower bound for k0e, kLB, can be obtained by simply assuming that the material in the nip
regionsDLB,n, n¼ 1, . . . ,N , is an isotropic insulator, Figure 2.8a; thus, since the total available
volume for heat flow is decreased, we physically expect kLB to be a lower bound. Because
the thermal conductivity is zero inside the nips, the inner problems in [Nn¼1DLB,n

are irrelevant. The lower bound kLB will depend on the temperature field xLB inside the
modified cell domain L ¼ Lc [Vpc,d, Lc ¼ Vpc,cn[Nn¼1 DLB,n, which is given by the vari-
ational form

xLB ¼ arg min
w2X#, LB(L)

JL(w), (2:117)

where X#,LB(L) ¼ w 2 H1
#(L)jwjLc ¼ wc, wjVpc,d

¼ wd,
Ð
Lc

wc dyþ ÐVpc,d
wd dy ¼ 0

n o
. From

Equation 2.101, we write JL (w) as

JL(w) ¼
ð
Lc

qwc

qyj

qwc

qyj
dyþ

ð
Vpc,d

a
qwd

qyj

qwd

qyj
dy� 2

ð
Lc

qwc

qy1
dyþ

ð
Vpc,d

a
qwd

qy1
dy

0B@
1CA: (2:118)

Therefore, from the first variation of JL(w), we derive the weak form for the field of
the microscale-prepared mesoscale lower-bound problem: Find xLB 2 X#,LB(L) such that
8v 2 X#,LB(L):ð

Lc

qxcLB
qyj

qvc

qyj
dyþ

ð
Vpc,d

a
qxdLB
qyj

qvd

qyj
dy ¼

ð
Lc

qvc

qy1
dyþ

ð
Vpc,d

a
qvd

qy1
dy: (2:119)

The main difference between problem (2.119) and the original problem (2.82) is that Lc in
the former substitutes Vpc,c in the latter. Equation 2.119 naturally enforces the appropriate
Neumann boundary conditions on xLB at the three curved surfaces of qDLB,n of each

Isotropic insulator

LB,n

γ
(a)

y1

β

y2 Isotropic superconductor

UB,n

γ
(b)

y1

β

y2

FIGURE 2.8
Geometries of vertical cuts across the y1�y2 plane of (a) one lower-bound nip region filled with an isotropic
insulator and (b) one upper-bound nip region filled with an isotropic superconductor.
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insulating nip region n,n¼ 1, . . . ,N , such that the global (macroscopic) heat flux is
zero at these surfaces.
In view of the results in the previous section for the effective conductivity k0e, we now

define, based on the solution xLB of the modified problem (2.119) in L, the quantity kLB as

kLB � aL(xLB), (2:120)

which is shown below to be a lower bound for k0e. From Equations 2.117 through 2.120 and
(2.111), it follows that (Cruz et al. 1995, Machado 2000)

kLB ¼ min
w2X#, LB(L)

aL(w): (2:121)

Also, from Equations 2.119 through 2.120 and (2.111), we can rewrite kLB as

kLB ¼ (1� ~c)þ ac� 1
jVpcj

ð
Lc

qxcLB
qy1

dyþ
ð

Vpc,d

a
qxdLB
qy1

dy

0B@
1CA, (2:122)

where ~c is an ‘‘effective concentration’’ given by ~c ¼ 1� 1=jVpcj
� � Ð

Lc
dy.

Finally, we now prove mathematically the physically expected bounding property of kLB,
by using domain embedding arguments:

kLB ¼ aL(xLB) ¼ min
w2X#, LB(L)

aL(w)

� aL(xjL þ s) ¼ aL(xjL) (2:123)

� aVpc (x) ¼ k
0
e: (2:124)

In (2.123), xjL is the solution to the original mesoscale problem (2.82) restricted to L, and
s 2 R is the required shift such that

Ð
L

xjL þ sð Þdy ¼ 0. The inequality (2.123) follows from
the fact that (xjLþ s) 2 X#,LB(L); the inequality (2.124) follows from the positive (semi)
definiteness of the quadratic form defined in Equation 2.111, which leads to a positive
contribution over Vpc\L.

2.7.3 Upper Bound

An upper bound for k0e, kUB, can be obtained by simply assuming that the material in the
nip regions DUB,n, n¼ 1, . . . ,N , is an isotropic superconductor, Figure 2.8b; thus, since the
total volumetric capacity for heat flow is increased, we physically expect kUB to be an upper
bound. Because the thermal conductivity is infinite inside the nip regions, the inner
problems in [Nn¼1DUB, n have trivial solutions: the nips are isothermal, so that the tempera-
ture field xUB over the cell domain Vpc is constant inside each superconducting nip. The
upper bound kUB will depend on xUB, whose variational form is

xUB ¼ arg min
w2W#, UB(Vpc)

JVpc (w), (2:125)

where W#, UB(Vpc) ¼ w 2 H1
#(Vpc)jwjUc ¼ wc, wjVpc,d

¼ wd, wjDUB,n ¼ Cn, n ¼ 1, . . . ,N ,
n

Ð
Vpc

w dy ¼ 0
o
, the constants Cn 2 R are part of the solution, and U is the modified cell
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domain, U ¼Uc [ Vpc,d, Uc ¼ Vpc,cn[Nn¼1 DUB,n; it is important to note that W#,UB(Vpc) �
Y(Vpc) (function space restriction). We can express the functional JVpc (w) as

JVpc (w) ¼ JU(wjU)þ
XN
n¼1

JDUB,n (wjDUB,n ), (2:126)

where wjU and wjDUB,n
are the restrictions of w(y) to U and DUB,n, respectively.

We can now break the problem (2.125) into N inner (microscale) problems defined over
the nip regions,

xUB,in {y; �Cn} ¼ arg min
w2WUB(DUB,n)

JDUB,n (w), n ¼ 1, . . . , N , (2:127)

and one outer problem defined over U,

xUB,out ¼ arg min
w2 �W#, UB(U)

JU(w)þ
XN
n¼1

JDUB,n (xUB,in{y;wjqDUB,n })

 !
, (2:128)

where WUB(DUB,n) is the rather trivial set of all functions w(y) 2 H1(DUB,n) for which
w¼ �Cn, �Cn 2 R given (inner nip regions are isothermal); �W#,UB(U)¼ {w2H1

#(U)jwjUc ¼wc,
wjVpc,d ¼wd,wjqDUB,n ¼Cn,n¼1, . . . ,N ,

Ð
U
wdy¼0}, Cn 2 R part of the (outer) solution; and

xUB, out ¼ xUBjU þ s0, xUB, in {y; xUB, outjqDUB,n
} ¼ xUBjDUB,n

þ s0, n ¼ 1, . . . ,N , (2:129)

s0 2 R is a constant shift such that
Ð
Vpc

xUB dy ¼ 0 and
Ð
U xUB,out dy¼ 0 may be obtained.

The inner problems have trivial solutions, since by assumption xUB,in{y; �Cn}¼ �Cn, n¼
1, . . . , N . The outer problem thus becomes

xUB,out ¼ arg min
w2 �W# , UB(U)

JU(w), (2:130)

since JDUB,n
(xUB,in{y; �Cn})¼ 0, n¼ 1, . . . , N . Taking the first variation of JU(w), we obtain the

weak form for the field of the microscale-prepared mesoscale upper-bound problem: Find
xUB,out 2 �W#,UB(U) such that 8v 2 �W#,UB(U):

ð
Uc

qxcUB, out

qyj

qvc

qyj
dyþ

ð
Vpc,d

a
qxdUB,out

qyj

qvd

qyj
dy ¼

ð
Uc

qvc

qy1
dyþ

ð
Vpc,d

a
qvd

qy1
dy: (2:131)

Problem (2.131) differs from the original problem (2.82) in that Uc and �W#,UB(U) in the
former, respectively, substitute Vpc,c and Y(Vpc) in the latter.
In view of the previous results for the effective conductivity k0e and lower bound kLB,

we now write, based on the solution xUB,out of the modified problem (2.131) in U, the
quantity kUB as

kUB � aVpc (xUB) ¼ min
w2W#,UB(Vpc)

aVpc (w), (2:132)
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which is shown below to be an upper bound for k0e. From Equations 2.131, 2.132, and 2.111,
and the fact that JDUB,n

(xUB,in {y; �Cn}¼ 0, n¼ 1, . . . ,N , kUB) can be rewritten as (see algebraic
details in Machado 2000)

kUB ¼ 1þ (a� 1)c� 1
jVpcj

ð
Uc

qxcUB, out

qy1
dyþ

ð
Vpc,d

a
qxdUB,out

qy1
dy

0B@
1CA: (2:133)

Finally, we now prove mathematically the physically expected bounding property of kUB,
by using function space restriction arguments:

kUB ¼ aVpc (xUB) ¼ min
w2W#,UB(Vpc)

aVpc (w)

� min
w2Y(Vpc)

aVpc (w) ¼ aVpc (x) ¼ k0e, (2:134)

where x is the solution to the original cell problem (2.82). The inequality (2.134) follows
from the fact that W#,UB(Vpc) � Y(Vpc).

2.7.4 Application of the Bounds

In Figure 2.9, we show an illustrative periodic cell with 10 fibers in which a medium-
grained triangular finite element mesh has been generated and which has been prepared
for the lower- and upper-bound microscale models (Machado 2000). In Figure 2.10, we
show a 3D cell for the simple cubic array, containing one sphere in which a tetrahedral
finite element mesh has been generated and which has been prepared with three nips for
the microscale models (Matt and Cruz 2002a). As previously remarked, the cell must be
prepared for the microscale models in two situations: when the cell possesses nip regions
that prevent the generation of a mesh, or when a mesh can be generated, but the geomet-
rical stiffness is so high as to prevent that a numerical solution be found. Therefore, for a
level-1 periodic cell configuration, or realization, such as those in Figures 2.9 and 2.10, the

FIGURE 2.9
Microscale-prepared medium-grained triangular finite
element mesh for a 2D periodic cell with 10 fibers.
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configuration effective conductivity k0e cannot be directly computed; in this case, the
configuration effective conductivity must be substituted by its estimate, k0e,est, given by

k0e,est ¼
kLB þ kUB

2
: (2:135)

The absolute error incurred with the substitution of k0e by k0e,est is equal to half of the
difference (kUB� kLB), and it can be made to be of the same order of magnitude as the
discretization error (Machado 2000, Matt and Cruz 2002a). The corresponding relative
error is equal to the absolute error divided by k0e,est, multiplied by 100%.

2.8 Numerical Solution

Numerical solution of problems (2.82), (2.119), and (2.131) requires three steps: geometry
and mesh generation (Section 2.8.1), finite element discretization, and solution of the
resultant linear system of algebraic equations (Section 2.8.2).

2.8.1 Geometry and Mesh Generation

Finite element discretization requires that the physical domain of interest be meshed, that
is, subdivided into a collection of nonoverlapping conforming subdomains called the
elements. Thus, geometry and mesh generation are needed for the domains representing
the microstructures of the class of composite materials under study. An automatic or
semiautomatic geometry and mesh generation procedure must be developed, preferably
based on third-party accredited software; for example, in Cruz and Patera (1995) and
Machado (2000), the program MSHPTG developed at INRIA (Hecht and Saltel 1990) is
used, while in Matt and Cruz (2002a) and Matt (2003), the program NETGEN developed in
Austria (Schöberl 1997, 2001) is employed. NETGEN can perform boolean operations with
many different primitive solids and can generate 2D and 3D unstructured meshes using

FIGURE 2.10
Microscale-prepared tetrahedral finite element mesh for a
3D periodic cubic cell with one spherical particle.
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the advancing front algorithm. The user may also choose to effect a smoothing operation to
optimize the shape of the finite elements. For planar and surface meshes, linear or quad-
ratic triangles can be chosen; for volume meshes, linear or quadratic tetrahedra can be
chosen. The reader is referred to Machado (2000) and Matt (2003) for detailed descriptions,
as well as several illustrative figures, of the domain and mesh generation procedures
developed to study heat conduction in 2D and 3D composites, respectively.

2.8.2 Finite Element Discretization and Iterative Solution

In this section, we discretize the heat conduction problems formulated previously, but for
the isotropic case. Therefore, the associated effective conductivities k0e, kLB, and kUB are scalar
quantities, and xp is simply x. We first present the discretization procedure for the problem
in the standard cell domain, Vpc, and then describe the procedural differences for the
problems in the modified cell domains, L and U.
The field variable of interest in the periodic cell Vpc is the temperature x(y) 2 Y(Vpc),

given by Equation 2.82, rewritten here in the general form

a(v, x) ¼ ‘(v) 8v 2 Y(Vpc), (2:136)

where a(v,w) � ÐVpc
f (y)(qv=qyj)(qw=qyj) dy is the symmetric bilinear form, where f(y)¼ 1

if y belongs to the continuous-phase portion of the domain and f(y)¼a if y belongs to the
particle-phase portion of the domain; ‘(v) � ÐVpc

f (y)(qv=qy1) dy is the linear functional on
the RHS of Equation 2.82.
An accurate representation of the geometry is increasingly necessary as the conductivity

ratio a increases. It is thus appropriate to effect quadratic isoparametric discretization
(Bathe 1982, Hughes 2000, Reddy and Gartling 2001), for which the Galerkin approxima-
tion to (2.136) can be written as

a(v,xh) ¼ ‘(v) 8v 2 Yh(Vpc,h), (2:137)

where
xh is the discrete approximation to x
Yh(Vpc,h) ¼ {wjtk 2 P2(tk)} \H1

#(Vpc,h), where P2(tk) is the space of all polynomials of
degree 2 defined on the kth element tk

numerical domain Vpc,h is the quadratic representation of Vpc

All the quadratic-element midside nodes, generated by the mesh generator, which belong
to edges whose extremities lie on a curved surface in Vpc are thus moved to the curved
surface by changing their (y1, y2, y3) coordinates appropriately.
Expressing the space coordinates yj, j¼ 1, 2, 3; xh and v in (2.137) in terms of the usual

nodal second-order Lagrangian interpolants (or shape functions), and performing all the
quadratures numerically using Gauss integration (Bathe 1982), the discrete linear system of
equations is obtained:

Ax
h
¼ F, (2:138)

where
A is the global system matrix corresponding to the discrete (negative) Laplacian operator
x
h
and F are, respectively, the global vector of unknown nodal values of the scalar field
x
h
and the global vector of nodal values of the inhomogeneity ‘(v)
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The uniqueness condition, given in continuous form in the definition of the space Y(Vpc), is
discretely imposed by requiring that xh have zero algebraic average.
The discrete equation for the numerical equivalent of the effective conductivity, k0e,h,

nondimensionalized with respect to kc, is obtained by substituting xh for x andVpc,h forVpc

in Equation 2.90,

k0e,h ¼
1

(l=d)3

ð
Vpc,h

f (y) 1� qxh
qy1

� �
dy

8><>:
9>=>;: (2:139)

As verified in Matt and Cruz (2002a) and Matt (2003), k0e,h is optimally approximated by the
finite element method, in that cubic convergence of k0e,h is obtained when quadratic
isoparametric elements are used.
Solution of the discrete problem (2.138) can be carried out iteratively, using the well-

known conjugate gradient algorithm (Golub and Van Loan 1989), with or without pre-
conditioning. The global system matrix A is not formed; instead, the memory-efficient
technique of elemental evaluation of the operator (Fischer and Patera 1994, Cruz and
Patera 1995, Machado 2000) is used. The iteration proceeds until a criterion for the
incomplete-iteration error, based on the Euclidean norm of the residual, is satisfied; the
stopping criterion should be such that the incomplete-iteration error is made much smaller
than the discretization error.
Finally, we now describe the differences of the numerical solutions of problems (2.119)

and (2.131) with respect to that of problem (2.82). For problem (2.119) in the modified cell
domain L, equations similar to (2.137), (2.138), and (2.139) are obtained: in Equation 2.136,
we substitute xLB, L, and X#,LB(L) for x, Vpc, and Y(Vpc), respectively, and follow the same
discretization and iterative solution procedures indicated above. Note that the appropriate
Neumann boundary conditions on xLB at the curved surfaces of qDLB,n of each insulating
nip region n, n¼ 1, . . . ,N , are naturally enforced. All the midside nodes that belong to
element edges whose extremities lie on the curved surfaces of qDLB,n, n¼ 1, . . . ,N , in L are
moved to the curved surfaces. For problem (2.131) in the modified cell domain U,
equations similar to (2.137), (2.138), and (2.139) are also obtained: in Equation 2.136, we
substitute xUB,out, U, and �W#,UB (U) for x, Vpc, and Y(Vpc), respectively, and slightly
modify the discretization procedure to impose the appropriate boundary conditions on
the nips surfaces. Constant temperature conditions are enforced by making all the finite
element global nodes on the boundaries of each nip region DUB,n to correspond to the same
temperature degree of freedom Cn, n¼ 1, . . . ,N (Cruz et al. 1995, Machado and Cruz 1999,
Machado 2000). All the midside nodes that belong to element edges whose extremities lie
on the curved surfaces of qDUB,n, n¼ 1, . . . ,N , in U are moved to the curved surfaces. The
iterative solution procedure is the same as that for xh.

2.9 Sample Results

In this section, for completeness of the chapter, we present some sample numerical results
for the effective conductivity (1) of the 2D square array of circular cylindrical fibers (Cruz
1997, Machado and Cruz 1999) in Table 2.1 and (2) of the 3D simple cubic array of spheres
(Matt and Cruz 2002) in Table 2.2. Both sets of results are made nondimensional with
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TABLE 2.1

Numerical Results, ke,h, for the Transverse Effective Conductivity of the Square
Array of Circular Cylindrical Fibers, as a Function of the Dispersed Phase Volume
Fraction, c, and Conductivity Ratio, a

ke,h

c a¼ 2 a¼ 10 a¼ 50

0.10 1.069 1.178 1.213
0.20 1.143 1.391 1.476
0.30 1.222 1.652 1.813
0.40 1.308 1.980 2.263
0.50 1.401 2.415 2.915
0.60 1.503 3.037 3.990
0.70 1.615 4.063 6.342
0.75 1.677 4.946 9.546
0.77 1.702 5.469 12.75
0.78 1.715 5.805 16.32
p=4 1.714 (�0.53%) 5.9 (�4.1%) 18 (�26%)

Source: Cruz, M.E., Two-dimensional simulation of heat conduction in ordered composites
with a thermally-conducting dispersed phase, Proceedings of the 14th Brazilian
Congress of Mechanical Engineering (COBEM), Paper COB288, December 8–12,
Bauru, Sao Paulo, Brazil, 1997; Machado, L.B. and Cruz, M.E., Bounds for the
effective conductivity of unidirectional composites based on isotropic microscale
models, Proceedings of the 15th Brazilian Congress of Mechanical Engineering
(COBEM), Paper AACEDD, November 22–26, Sao Paulo, Brazil, 1999.

TABLE 2.2

Numerical Results, ke,h, for the Effective Conductivity of the Simple Cubic
Array of Spheres, as a Function of the Dispersed Phase Volume Fraction, c,
and Conductivity Ratio, a

ke,h

c a¼ 2 a¼ 5 a¼ 10 a¼ 50

0.05 1.0380 1.0883 1.1169 1.1484
0.10 1.0769 1.1819 1.2434 1.3123
0.15 1.1169 1.2817 1.3814 1.4954
0.20 1.1580 1.3883 1.5324 1.7018
0.25 1.2003 1.5035 1.6998 1.9399
0.30 1.2438 1.6278 1.889 2.220
0.35 1.2887 1.7649 2.106 2.568
0.40 1.3351 1.9173 2.364 3.016
0.45 1.3836 2.094 2.692 3.674
0.50 1.434 2.304 3.147 4.920
0.51 1.444 2.353 3.269 5.411
p=6 1.458 2.420 (�0.06%) 3.465 (�0.3%) 6.9 (�6.9%)

Source: Matt, C.F. and Cruz, M.E., Effective conductivity of longitudinally-aligned composites
with cylindrically orthotropic short fibers, Proceedings of the 12th International Heat
Transfer Conference (IHTC), Vol. 3, pp. 21–26, August 18–23, Grenoble, France, 2002a.
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respect to the matrix thermal conductivity and are given as functions of the dispersed
phase volume fraction c and phase conductivity ratio a. The volume fraction c increases all
the way up to the corresponding maximum packing values, such that the techniques for
the conductivity lower and upper bounds, described in Section 2.7 and illustrated in
Figures 2.7 through 2.10, have been applied. To obtain the results in Tables 2.1 and 2.2,
respectively, linear triangles and isoparametric quadratic tetrahedra have been used. The
results in the tables are shown with the proper number of significant digits and have been
validated in Cruz (1997) and Machado and Cruz (1999) for the 2D case, and in Matt and
Cruz (2002a) for the 3D case. For the maximum packing volume fractions in Tables 2.1 and
2.2, the relative errors incurred with the substitution of the configuration conductivity with
the estimated conductivity are also indicated.
For numerical effective conductivity results for other 2D and 3D, ordered and random

geometries, the reader is referred to the works by Cruz and Patera (1995), Cruz et al. (1995),
Cruz (1997, 1998), Machado and Cruz (1999), Matt (1999, 2003), Rocha (1999), Machado
(2000), Rocha and Cruz (2001), Matt and Cruz (2001, 2002a, 2002b, 2004, 2006, 2008), and
Pereira et al. (2006).

2.10 Conclusions

In this chapter, we have presented the continuous formulations of the problems that are
part of the multiscale modeling approach, a technique applicable to the analysis of trans-
port phenomena in random heterogeneous media. The approach consists in the variational
hierarchical decoupling of the length scales of the original multiscale problem, such that
the macroscale, mesoscale, and microscale (sub)problems are derived. In the macroscale
problem, for which the effective property is input data, one seeks to compute global
quantities. In the mesoscale problem, in four levels, the random nature of the medium is
considered, and one seeks to calculate not only the effective property of interest but also the
statistical correlation length. Finally, in the microscale problem, local effects are modeled,
mitigating the difficulty associated with the geometrical stiffness present in some realiza-
tions of the periodic cells with many inclusions.
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Nomenclature

a bilinear form
A operator
c dispersed phase volume fraction
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d microscale
f, F, G generic functions
I, J functionals
k thermal conductivity
‘ linear functional
L macroscale
P space of polynomials
q flux
R set of real numbers
T temperature
u solution function
W,X, Y function spaces
x, y space coordinates

Greek Variables

a conductivity ratio
b radius of 3D nip region
x mesoscale temperature
e ratio of fast scale to slow scale
l mesoscale
V domain

Superscripts
0 quantity pertaining to a cell configuration
* nondimensional quantity
c continuous phase
C pertaining to correlation length
d dispersed phase

Subscripts

c continuous phase
d dispersed phase
e effective
in pertaining to inner problem
LB lower bound
out pertaining to outer problem
pc periodic cell
UB upper bound
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3.1 Introduction

What is temperature exactly? How to measure it? These are two simple questions but the
answers are complex. A brief history of the temperature measurement gives us the keys to
understand how the intuitive concept of temperature becomes a scientific reality [1].
Temperature ‘‘measures’’ hot and cold and the word is Latin in origin: temperare—to
mix. It was mostly used when liquids are mixed that cannot afterward be separated, like
wine and water. The ‘‘-tur’’ of the present tense indicates that some liquid is being mixed
with another one. For Hippocrates of Cos, the Greek physician, proper mixing represented
an imbalance of the bodily fluids blood, phlegm, and black and yellow bile that was
supposed to lead to disease that made the body unusually hot or cold or dry or moist.
Klaudios Galenos, another Greek physician, took up the idea and elaborated on it. He
assumed an influence of the climate on the mix of body fluids that would then determine
the character, or temperament, of a person.
Until about 260 years ago, temperature measurement was very subjective. Intuitively,

people have known about temperature for a long time: fire is hot and snow is cold, and the
first temperature measurement was mainly indicated to confirm the presence or absence of
fever. In the time of Hippocrates, only the hand was used to detect the hot or cold of the
human body, although fever and chills were known as signs of morbid medical processes.
In the Middle Ages, the four humors were assigned the qualities of hot, cold, dry, and
moist, and thus fever again acquired importance. Galileo in 1592 devised a crude tempera-
ture-measuring instrument, but it had no scale and therefore no numerical readings;
further, it was affected by atmospheric pressure. A large step forward was achieved by
Sanctorio Sanctorius who invented a mouth thermometer [2]. He described his inventions
in 1625. He produced several designs, but all were cumbersome and required a long time
to measure the oral temperature. To this day, the time to get an accurate, stable reading
remains difficult.
By the early eighteenth century, as many as 35 different temperature scales had been

devised. In 1714, Daniel Gabriel Fahrenheit invented both the mercury and the alcohol
thermometer. Fahrenheit’s mercury thermometer consists of a capillary tube that after
being filled with mercury is heated to expand the mercury and expel the air from the
tube. The tube is then sealed, leaving the mercury free to expand and contract with
temperature changes. Although the mercury thermometer is not as sensitive as the air
thermometer, by being sealed, it is not affected by the atmospheric pressure. Mercury
freezes at�398C, so it cannot be used to measure temperature below this point. Alcohol, on
the other hand, freezes at �1138C, allowing much lower temperatures to be measured.
At the time, thermometers were calibrated between the freezing point of salted water

and the human body temperature. Fahrenheit subdivided this range into 96 points,
giving his thermometers more resolution and a temperature scale very close to today’s
Fahrenheit scale. Later in the eighteenth century, Anders Celsius realized that it would
be advantageous to use more common calibration references and to divide the scale
into 100 increments instead of 96. He chose to use 1008 as the freezing point and 08
as the boiling point of water. This scale was later reversed and the centigrade scale
was born.
Lord Kelvin, or William Thomson, postulated the existence of an absolute zero and

established the absolute scale of temperature. Sir William Hershel discovered that when
sunlight was spread into a color swath using a prism, he could detect an increase in
temperature when moving a blackened thermometer across the spectrum of colors.
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Hershel found that the heating effect increased toward and beyond the red in the region we
now call ‘‘infrared.’’ He measured radiation effects from fires, candles, and stoves and
deduced the similarity of light and radiant heat. However, it was not until well into the
following century that this knowledge was exploited to measure temperature.
In 1821, Thomas Johann Seebeck discovered that a current could be produced by

unequally heating two junctions of two dissimilar metals, the thermocouple effect. Seebeck
assigned constants to each type of metal and used these constants to compute total amount
of current flowing. Also in 1821, Sir Humphrey Davy discovered that all metals have a
positive temperature coefficient of resistance and that platinum could be used as an
excellent resistance temperature detector (RTD). These two discoveries marked the begin-
ning of serious electrical sensors. The late nineteenth century saw the introduction of
bimetallic temperature sensor. These thermometers contain no liquid but operate on the
principle of unequal expansion between two metals.
The twentieth century has seen the discovery of semiconductor devices, such as the

thermistor, the integrated circuit sensor, a range of noncontact sensors, and also the fiber-
optic temperature sensors. Also, Lord Kelvin was finally rewarded for his early work in
temperature measurement. The increments of the Kelvin scale were changed from degrees
to kelvins. The twentieth century also saw the refinement of the temperature scale.
Temperatures can now be measured to within about 0.0018C over a wide range,
although it is not a simple task. The most recent change occurred with the updating of
the International Temperature Scale in 1990 [3] to the International Temperature Scale
of 1990 (ITS-90).
The twenty-first century will see the new definition of the kelvin. The international

measurement community, through the International Committee for Weights and Meas-
ures, is considering updating the International System of Units (SI). This update, which
will probably occur in 2011, will redefine the kilogram, the ampere, and the kelvin in
terms of fundamental physical constants. The kelvin, instead of being defined by the
triple point of water as it is currently, will be defined by assigning an exact numerical
value to Boltzmann’s constant. The change would generalize the definition, making it
independent of any material substance, measurement technique, and temperature range,
to ensure the long-term stability of the unit. This new definition will allow the accuracy of
temperature measurements to gradually improve without the limitations associated with
the manufacture and use of triple point of water cells. For some temperature ranges at
least, true thermodynamic methods are expected to eventually replace the International
Temperature Scale as the primary standard of temperature. The unit of thermodynamic
temperature, also referred to as Kelvin temperature or absolute temperature, is kelvin (K) [4].
It is defined in terms of the interval between the absolute zero and triple point of pure
water, 273.16 K. Kelvin is the fraction 1=273.16 of that temperature. In addition to the
thermodynamic temperature, the Celsius (8C) temperature is defined as equal to the
thermodynamic temperature minus 273.15, and the magnitude of 18C is numerically
equal to 1 K.
The numerous measurement techniques can be classified into three different categories

depending on the nature of contact between the sensor and the external system (gaseous,
liquid, or solid) [5]. The first one is invasive: the sensor is in direct contact with the medium
(i.e., sensor in liquid). The second one is semi-invasive: the medium is treated in some
manner to enable remote observation (i.e., temperature sensitive paint). The third category
concerns noninvasive method: the medium is observed remotely (i.e., pyrometry, infrared
thermography). Besides, the usual temperature sensors present a lot of limitations: the
different thermal processes allowing to obtain the equilibrium of sensors are based on
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relatively slow phenomena, inducing a low time resolution; the association of the three
basic modes of heat transfer in these processes induces difficulties for the theoretical
modeling. Then, most often, a temperature sensor only gives its own temperature, which
can be quite different from the fluid one. Of course, the sensor volume appears always as a
main parameter: it governs the intrusive character of the measurement and its spatial
resolution. Being omnipresent in the heat transfer equations, its effect on the thermal
inertia and thus on the time resolution is preponderant too. This is why a reduction of
the volume of the sensors is a very interesting way.
Among the numerous families of sensors, thermoelectric junctions present a well-known

disadvantage: their limited sensitivity, due to the low level of the thermal electromotive
force (EMF), imposes efficient electronic devices in order to amplify the signal and a lot
of precautions in order to maintain a good signal-to-noise ratio. But they present also a lot
of advantages, particularly a large temperature range and a good linearity. Above all, they
make very good competitors in the race for the volume reducing, and the term ‘‘micro-
thermocouple’’ is now usual in the scientific literature.

3.2 Measurement of Thermocouple Voltage

3.2.1 Thermoelectric Effects

The thermocouple is the most widely used electrical sensor in thermometry, and it appears
to be the simplest of electrical transducers. Thermocouples are inexpensive, small in size,
rugged, and remarkably accurate when used with an understanding of their peculiarities.
Accurate temperature measurements are typically important in many scientific fields for
the control, the performance, and the operation of many engineering processes. A simple
thermocouple is a device that converts thermal energy to electric energy. Its operation is
based upon the findings of Seebeck [6]. When two different metals A and B form a closed
electric circuit and their junctions are kept at different temperatures T1 and T2 (Figure 3.1),
a small electric current appears.
The electromotive force, EMF, produced under these conditions is called the Seebeck

EMF. The amount of electric energy produced is used to measure temperature. The EMF
depends on materials used in the couple and the temperature difference T1�T2. Seebeck
effect is actually the combined result of two other phenomena, Peltier effect [7] and
Thomson effect [8]. Peltier discovered that temperature gradients along conductors in a
circuit generate an EMF. Thomson observed the existence of an electromotive force due to
the contact of two dissimilar metals. Thomson effect is normally much smaller in magni-
tude than the Peltier effect and can be minimized and disregarded with proper thermo-
couple design.

FIGURE 3.1
Thermocouple circuit.
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T1
T2
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3.2.1.1 Peltier Effect

APeltierEMFVM � VN is createdat the junctionof twodifferentmaterials (wireorfilm)Aand
B, at the same temperature T, depending on the material and the temperature T (Figure 3.2):

VM � VN ¼ PT
AB (3:1)

where PAB is the Peltier coefficient at temperature T.
When a current I flows through a thermocouple junction (Figure 3.3), heat QP is either

absorbed or dissipated depending on the direction of current. This effect is independent of
Joule heating.

dQP ¼ (VM � VN) � I � dt ¼ PT
AB � I � dt (3:2)

where QP is the heat quantity exchanged with the external environment to maintain the
junction at the constant temperature T.
The phenomenon is reversible, depending on the direction of the current flow and

PT
AB ¼ �PT

BA (3:3)

3.2.1.2 Volta’s Law

In an isothermal circuit composed by different materials, the sum of the Peltier EMFs is null
(Figure 3.4) and

PAB þPBC þPCD þPDA ¼ 0 (3:4)

3.2.1.3 Thomson Effect

Thomson EMFs correspond to the tension eA(T1,T2) between two points M and N of the
same conductor, submitted to a temperature gradient, depending only on the nature of
the conductor (Figure 3.5):

eA(T1,T2) ¼
ðT2

T1

tAdT (3:5)

where tA is the Thomson coefficient of the material A.

FIGURE 3.2
Peltier effect without current flow.

T
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ΠAB
T

FIGURE 3.3
Peltier effect with current flow.
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When a current I flows through a conductor within a thermal gradient (T1 – T2), heat QT

is either absorbed or dissipated (Figure 3.6):

dQT ¼ eA(T1,T2)I dt ¼
ðT2

T1

tAdT I dt (3:6)

3.2.1.4 Seebeck Effect

When a circuit is formed by a junction of two different metals A and B and the junctions are
held at two different temperatures T1 and T2, a current I flows in the circuit caused by the
difference in temperature between the two junctions (Figure 3.7).

FIGURE 3.4
Volta’s law with four materials.
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FIGURE 3.5
Thomson effect without current flow.
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FIGURE 3.6
Thomson effect with current flow.
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FIGURE 3.7
Seebeck effect.
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The sum of the different Peltier and Thomson EMFs for the circuit corresponds to the
Seebeck EMF:

EAB(T2,T1) ¼ PT1
AB þPT2

BA þ
ðT2

T1

tB dT þ
ðT1

T2

tA dT

EAB(T2,T1) ¼ PT1
AB �PT2

AB þ
ðT1

T2

(tA � tB) dT

(3:7)

Then, the Seebeck EMF becomes

EAB(T1,T2) ¼ sAB(T1 � T2) (3:8)

where sAB is the Seebeck coefficient for the A and B metals of the couple (mV 8C�1 or mV
K�1). This coefficient corresponds to a constant of proportionality between the Seebeck
voltage and the temperature difference.
If the circuit is open at the center (Figure 3.8), the net open voltage is a function of the

junction temperature and the composition of the two metals.
The thermoelectric power, or sensitivity, of a thermocouple is given by (Table 3.1)

sAB ¼ dEAB

dT
(3:9)

Thermocouples are made by the association of dissimilar materials producing the biggest
possible Seebeck. In industrial processes, the common thermocouples are presented in
Table 3.2.

3.2.2 Practical Measurement of Thermocouple Voltage

3.2.2.1 Measurement of Junction Voltage

We consider a thermocouple composed by two dissimilar materials A and B (Figure 3.9)
[9,10]. The hot junction is submitted to a mediumwhose temperature needs to be measured
(T2). The voltage EAB is measured by a voltmeter placed at the cold end of the thermo-
couple at temperature T1. The Seebeck EMF is

EAB ¼
ðT2

T1

sA dT þ
ðT1

T2

sB dT ¼ (sA � sB)(T2 � T1) (3:10)

EAB ¼ sAB(T2 � T1) where sAB ¼ sA � sB (3:11)

FIGURE 3.8
Seebeck voltage.
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3.2.2.2 Intermediate Metal

A third isothermal metal (i.e., metal C) is inserted between the two metals A and B (Figure
3.10). Then, the Seebeck EMF EAB becomes

EAB ¼
ðT2

T1

sA dT þ
ðT1

T2

sB dT

EAB ¼ sAB(T2 � T1)

(3:12)

The output voltage EAB is not influenced by the additional isothermal metal C.

3.2.2.3 Temperature Gradient along a Metal Element

Heating or cooling is provided along a metal element (Figure 3.11). This phenomenon
creates a temperature gradient (T3�T4). The Seebeck voltage EAB is

EAB ¼
ðT2

T1

sA dT þ
ðT3

T2

sB dT þ
ðT4

T3

sB dT þ
ðT1

T4

sB dT (3:13)

EAB ¼ sA(T2 � T1)� sB(T2 � T1) (3:14)

EAB ¼ sAB(T2 � T1) (3:15)

The temperature gradient along the element of metal B does not affect the output voltage.

TABLE 3.1

Seebeck Coefficients of Various Thermocouple Materials Relative
to Platinum at 08C

Material
Seebeck

Coefficient (mV 8C�1) Material
Seebeck

Coefficient (mV 8C�1)

Bismuth �72 Silver 6.5

Constantan �35 Copper 6.5
Alumel �17.3 Gold 6.5

Nickel �15 Tungsten 7.5

Potassium �9 Cadmium 7.5

Sodium �2 Iron 18.5

Platinum 0 Chromel 21.7

Mercury 0.6 Nichrome 25

Carbon 3 Antimony 47

Aluminum 3.5 Germanium 300
Lead 4 Silicium 440

Tantalum 4.5 Tellurium 500

Rhodium 6 Selenium 900

Source: Rathakrishnan, E., Instrumentation, Measurements and Experiments in
Fluids, CRC Press, Boca Raton, FL, 2007.

Platinum¼Platinum is the reference material for calculating the Seebeck
coefficient of all other materials, because its value is 0 mV 8C�1.
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TABLE 3.2

Thermocouple Types

Type Metal A (þ) Metal B (�)
Temperature
Range (8C)

Seebeck
Coefficient a
(mV=8C) at T8C

Standard
Error (%)

Minimal
Error (%) Comments

B Platinum–30% rhodium Platinum–6% platinum 0 to 1820 5.96 mV at 6008C 0.5 0.25 Idem R type
(glass industry)

E Nickel–10% chromium Copper–nickel alloy
(constantan)

�270 to 1000 58.67 mV at 08C 1.7–0.5 1–0.4 Interesting sensitivity

J Iron Copper–nickel alloy
(constantan)

�210 to 1200 50.38 mV at 08C 2.2–0.75 1.1–0.4 For atmosphere reduced
(plastic industry)

K Nickel–chromium
alloy (chromel)

Nickel–aluminum
alloy (alumel)

�270 to 1372 39.45 mV at 08C 2.2–0.75 1.1–0.2 The most widely used
because of its wide
temperature range,
supports an oxidizing
atmosphere

N Nickel–chromium–

silicium alloy (Nicrosil)
Nickel–silicium
alloy (nisil)

�270 to 1300 25.93 mV at 08C 2.2–0.75 1.1–0.4 New combination
very stable

R Platinum–13% rhodium Platinum �50 to 1768 11.36 mV at 6008C 1.5–0.25 0.6–0.1 High temperature
applications,
resists oxidation

S Platinum–10% rhodium Platinum �50 to 1768 10.21 mV at 6008C 1.5–0.25 0.6–0.1 Idem R type

T Copper Copper–nickel alloy
(constantan)

�270 to 400 38.75 mV at 08C 1–0.75 0.5–0.4 Cryogenic applications

W Tungsten Tungsten–26% rhenium þ20 to þ2300 Sensitive to oxidizing
atmospheres,
linear response and good
performance in high
temperature

W3 Tungsten–3% rhenium Tungsten–25% rhenium þ20 to þ2000 Idem W type

W5 Tungsten–5% rhenium Tungsten–26% rhenium þ20 to þ2300 Idem W type

Source: Devin, E., Techniques de l’Ingénieur, tome R2594:1–26, 1997.
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3.2.2.4 External Reference Junction

The circuit contains two thermocouples in differential mode (Figure 3.12). This circuit
maintains one thermocouple at an external reference temperature Tref¼ 08C. The output
EMF voltage EAB is

EAB ¼
ðTref

T1

sB dT þ
ðT2

Tref

sA dT þ
ðT1

T2

sB dT (3:16)

EAB ¼ sAB(T2 � Tref ) (3:17)

If Tref ¼ 08C, then the output voltage becomes EAB ¼ sAB T2. This method is used to
determine the Seebeck coefficient for any thermocouple. For example, if one metal A is
Platinum (for which Seebeck effect is null), this method provides Seebeck coefficient for the
metal B and allows the construction of tables [4].

FIGURE 3.9
Basic thermocouple measurement voltage.

T
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Metal BMetal A

Cold junction at T1

Hot junction at T2

FIGURE 3.10
Isothermal intermediate material.

T

EAT T
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Metal BMetal A

FIGURE 3.11
Temperature gradient along a metal element.
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3.2.2.5 Thermocouple Extension=Compensation Wire

The wire connecting the thermocouple to the instrument may be made of the same material
as the thermocouple with the same physical characteristics. But, this is not always the most
cost-effective method. So, a less expensive substitute material is selected. Thermocouples
can be connected to an instrument by the following:

. Thermocouple wires: The same material as that used to manufacture the thermo-
couple. This solution can be expensive.

. Extension wires: Wires with chemical composition and EMF characteristics similar
to the thermocouple materials over a limited temperature range.

. Compensating wires (Figure 3.13): Alloys that have EMF characteristics similar to
the thermocouple alloy, less expensive than thermocouples. Then, the output
voltage is

EAB ¼
ðT3

T1

sA0 dT þ
ðT2

T3

sA dT þ
ðT3

T2

sB dT þ
ðT1

T3

sB0 dT (3:18)

with sA 
 sA0 and sB 
 sB0

EAB 

ðT2

T1

sA dT þ
ðT1

T2

sB dT (3:19)

EAB 
 sAB(T2 � T1) (3:20)

The correction appears at the cold junction at temperature T1.

FIGURE 3.12
Reference junction kept at Tref¼ 08C.
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T1
Metal B

Ice bath 
Tref = 0°C 

FIGURE 3.13
Compensation wires.
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3.2.2.6 Connection with Copper Wires

The thermocouple is connected to the instrument with two copper (Cu) wires (Figure 3.14).
In this case, the output voltage is

EAB ¼
ðT3

T1

sCu dT þ
ðT2

T3

sA dT þ
ðT3

T2

sB dT þ
ðT1

T3

sCu dT (3:21)

EAB ¼
ðT2

T3

sA dT þ
ðT3

T2

sB dT (3:22)

EAB ¼ sAB(T2 � T3) (3:23)

The correction of the cold junction is at temperature T3. Then, if T3¼T1, the output voltage
is equal to

EAB ¼ sAB(T2 � T1) (3:24)

3.2.2.7 Thermopile Connection

Figure 3.15 presents the circuit with n thermocouples A –B (n¼ 4 in this example) placed in
series arrangement. The objective is to multiply the EMF of one thermocouple by the
number of thermocouples. The output voltage EAB for four thermocouples is equal to

EAB ¼
ðT3

T1

sCu dT þ 4
ðT2

T3

sA dT þ 4
ðT3

T2

sB dT þ
ðT1

T3

sCu dT (3:25)

EAB ¼ 4
ðT2

T3

sA dT þ 4
ðT3

T2

sB dT (3:26)

FIGURE 3.14
Connection with copper wires.
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FIGURE 3.15
Thermopile connection (serial connection of thermocouples). T2
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Finally,

EAB ¼ nsAB(T2 � T3) and for n ¼ 4 EAB ¼ 4sAB(T2 � T3) (3:27)

If T3¼T1, then,

EAB ¼ nsAB(T2 � T1) and for n ¼ 4 EAB ¼ 4sAB(T2 � T1) (3:28)

3.2.2.8 Parallel Thermocouple Arrangement

The thermocouples are placed in a parallel arrangement (Figure 3.16). They are connected
to a common cold junction. This method needs equal electrical resistance Ri for each i
thermocouple. A thermocouple is associated to an electric generator with voltage E and an
electric resistance R. The parallel arrangement presents an equivalent electrical resistance
Requ (Figure 3.17):

1
Requ
¼ 1

R1
þ 1
R2
þ � � � þ 1

Rn
and if R1 ¼ R2 ¼ � � � ¼ Rn ¼ R then Requ ¼ R

n
(3:29)

The measured temperature Tmes becomes

Eequ ¼
Pn

1 (Ei=Ri)Pn
1 (1=Ri)

¼ (1=R)
Pn

1 Ei

(n=R)
¼ 1

n

Xn
1

Ei ) Tmes ¼ 1
n

Xn
1

Ti (3:30)

FIGURE 3.16
Parallel connections of thermocouples.
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FIGURE 3.17
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In this example, n¼ 4 for the four temperatures Ta, Tb, Tc, and Tb :

Tmes ¼ 1
4
(Ta þ Tb þ Tc þ Td) (3:31)

This complicated method can be used to measure a mean temperature.

3.2.2.9 Differential Thermocouple

In this method, two thermocouples are mounted in a series arrangement (Figure 3.18). The
differential thermocouple is composed of two similar wires A joined to a single dissimilar
wire B with the two measuring junctions normally at different temperatures. The resulting
EMF is the difference between the two junctions, commonly referred to as the differential
temperature. So that

EAB ¼
ðT3

T1

sCu dT þ
ðT20

T3

sA dT þ
ðT2

T20

sB dT þ
ðT3

T2

sA dT þ
ðT1

T3

sCu dT (3:32)

EAB ¼ sA(T20 � T3)þ sA(T3 � T2)þ sB(T2 � T20 ) (3:33)

EAB ¼ sAB(T20 � T2) (3:34)

3.3 Wire Microthermocouple Measurements

A microthermocouple has two major interests: small size and good response to transient
phenomena. The small size is the most important geometric parameter for systems with
very small sizes like microsystems. For the last 10 years, the intense development of micro
electromechanical systems (MEMS) has prompted the growth of modern hydrodynamics,
thermodynamics, and heat transfer with applications in areas as various as aerospace,
mechanical engineering, biology, chemical analysis, and optics. The development of the
first transistor by Shockley in 1948 [11], Bardeen and Brattein [12] has opened the way of
electronic miniaturization called microelectronics, and very high density of components
has been achieved ever since. Today, a MEMS includes a variety of devices, structures, and
systems that contains both electrical and mechanical components with characteristic
sizes ranging from nanometers to millimeters [13]. In this chapter, we limit our discussion
to temperature measurement with microthermocouple wires in systems for which the

FIGURE 3.18
Differential thermocouple.
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miniaturization of components introduces quantitative downscaling effects [14,15]. Then, it
becomes very difficult to measure physical quantities like temperature, heat flux, pressure
drop, fluid flows, and velocities in microchannels. These measurements are a real challenge
for designing new mechanical and physical systems.
A good response to transient phenomena is the second major interest for a thermocouple

to accurately monitor the time–temperature history. However, when a thermocouple is
placed in a gas flow, or on the external surface of a material or embedded, and when its
temperature suddenly changes, it indicates a temperature different from that of the true
value at any time before the thermodynamic equilibrium has been reached.
This chapter presents experimental and theoretical results for the dynamic calibration of

microthermocouples ranging in wire size from 0.5 to 50 mm applied to fluid temperature
measurements.

3.3.1 Typical Microthermocouple Designs

Different methods are used to design a thermocouple probe. It consists of a sensing
element assembly, a protecting tube, and terminations. Two dissimilar wires are joined
at one end to form the measuring junction, which can be a bare thermocouple element
twisted and welded or butt welded. The protecting tube protects the sensing element
assembly from the external atmosphere by a non-ceramic insulation, a hard fired ceramic
insulator, or a sheeted compact ceramic insulator [16–19].
The thermocouple probe consists of two wires inserted in a ceramic double bore tube

with length and external diameter depending on the experimentation. The wires are cut
with a razor blade to produce a flat edge perpendicular to the axis. To realize the junction,
the thermocouple wires are connected to a bank of condensers (Figure 3.19).
The two extremities are approached together in the same time, and the beaded junctions

are made by a sparking method. The energy release produced by the voltage–capacitance
pair is sufficient to weld together the wires. One advantage of this technique is that the
resulting junction diameter is not significantly greater than the wires diameter (Figure
3.20). Aside from the low heat capacity effect, another consequence is that the cross-
sectional area of the wire itself can be used to calculate time constants. A drop of glue is
deposited at the tube extremity and pushed down around both wires to minimize the
probe fragility (Figure 3.21).
Materials used for thermocouples are numerous and classified in terms of thermoelectric

polarity. A thermocouple associates a positive wire and a negative wire. A positive material

Bank of condensers

Wire A

Wire B

FIGURE 3.19
Thermocouple spark welding device (FEMTO-ST Belfort).
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has an EMF that increases with temperature along its length, and a negative material has an
EMF that decreases with temperature along its length. This chapter deals only with micro-
thermocouples designedwith two kinds of couples, chromel–alumel couples and platinum–

rhodium couples. The chromel–alumel thermocouple, called K type thermocouple, with a
positive chromelwire and a negative alumelwire, is recommended for use in clean oxidizing
atmospheres. It is the thermocouple that is most widely used in industrial applications. The
operating range for this alloy is 12608C for the largest wire sizes. Smaller wires should
operate at lower temperatures correspondingly. The K type thermocouples exhibit a number
of instabilities and inaccuracies at higher temperatures, changing their EMF versus tem-
perature characteristics.
The commercial wire diameters are 7.6, 12.7, 25.4, and 50 mm. The Seebeck coefficient is

40 mV 8C�1 in the linear region at 208C. The temperature–EMF data have been extracted
from NIST Monograph 175 [19] (Figure 3.22 and Table 3.2). The platinum–rhodium
thermocouple, called S type thermocouple, is a noble-metal thermocouple in common
use. The S type thermocouples show a positive wire of 90% platinum and 10% rhodium
used with a negative wire of pure platinum. Both metals have a high resistance to
oxidation and corrosion. However, hydrogen, carbon, and many metal vapors can con-
taminate a platinum–rhodium thermocouple. The recommended operating range for
the platinum–rhodium alloys is 15408C. The commercial wire diameters are 0.5, 1.27, 5.4,
25.4, and 50 mm. The Seebeck coefficient is 6 mV 8C�1 in the linear region at 208C [20]
(Figure 3.22).

(a) (b)

FIGURE 3.20
K type thermocouples. (a) Diameter¼ 12.7 mm. (b) Diameter¼ 53 mm.

FIGURE 3.21
Thermocouple probe (diameter of the wires¼ 1.27 mm).
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3.3.2 Dynamic Temperature Measurements in Fluids

3.3.2.1 Introduction

Transient phenomena appear in many industrial processes, and many researchers and
engineers have been paying attention to the measurement of temperature fluctuations in
turbulent-reacting flows, compressible flows, boiling, cryogenic apparatus, fire environ-
ments, under the condition of simultaneous periodical variations of velocity, flow density,
viscosity, and thermal conduction in gas [21–28].
There has been considerable progress in recent years in transient thermometry tech-

niques. Some of these techniques are applicable for solid material characterization while
others are suitable only for fluid thermometry. This chapter deals only with temperature
thermocouple measurements in fluids (gases and liquids). Many concepts involved in the
temperature measurements in fluids are common to both types and they are discussed
here. The techniques for temperature measurement in a fluid consist in inserting a thermo-
couple, allowing it to come to thermal equilibrium, and measuring the generated electrical
signal. When a thermocouple is submitted to a rapid temperature change, it will take some
time to respond. If the sensor response time is slow in comparison with the rate of change
of the measured temperature, then the thermocouple will not be able to faithfully represent
the dynamic response of the temperature fluctuations. Then, the problem is to measure the
true temperature of the fluid because a thermocouple gives its own temperature only. The
temperature differences between the fluid and the sensor are also influenced by thermal
transport processes taking place between the fluid to be measured, the temperature sensor,
the environment, and the location of the thermocouple. Consequently, the measured
temperature values must be corrected. Whereas in steady conditions only the contributions
of the conductive, convective, and radiative heat exchanges with the external medium
occur, unsteady behavior introduces another parameter, which becomes predominant: the
junction thermal lag that is strongly related to its heat capacity and thermal conductivity.
The corrections generally decrease with the thermocouple diameters, and both temporal
and spatial resolutions are improved. However, while spatial resolution is fairly directly
connected with the thermocouple dimensions, the temporal resolution does not only
depend on the dimensions and the thermocouple physical characteristics, but also on the
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EMF and Seebeck coefficients versus temperature for different thermocouples (ITS-90).
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rather complex heat balance of the whole thermocouple. To obtain the dynamic character-
istics of any temperature probe, we analyze its response to an excitation step from which
the corresponding first time constant t can be defined as

t ¼ rcV
hA

(3:35)

where
t is the time constant
r is the density
c is the specific heat
V is the volume of the thermocouple
A is the area of the fluid film surrounding the thermocouple while h is the heat transfer

coefficient

The goal of this work consists in calculating or measuring time constants of thermo-
couples and comparing their behavior according to different dynamical external heating
like convective, radiative, and pseudo-conductive excitations.

3.3.2.2 Theory

An accurate calibration method is an essential element of any quantitative thermometry
technique, and the goal of any measurement is to correctly evaluate the difference between
the ‘‘true’’ temperature and the sensor temperature. Figure 3.23 shows the energy balance
performed at the butt-welded junction of a thermocouple for a junction element dx result-
ing from the thermal balance between the rate of heat stored by the junction d _Qth and heat
transfer caused by the following:

. Convection in the boundary layer around the thermocouple d _Qcv

. Conduction along the wires d _Qcd

. Radiation between the wires and the external medium d _Qrad

. Contribution of another source of heat power (a laser source in our work) d _Qext

During a transient period, because of its thermal capacity, the thermocouple temperature
will lag behind any gas temperature variation. This leads to an error from which a
thermocouple time constant can be defined. The general heat balance for a junction of
length dx is expressed as

d _Qth ¼ d _Qcv þ d _Qcd þ d _Qrad þ d _Qext (3:36)

FIGURE 3.23
Heat balance of the probe.
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The thermoelectric junction stores the heat by unit time d _Qth:

d _Qth ¼ rthcth
pd2

4
qTth

qt
dx (3:37)

where rth, cth, and Tth are the density, the specific heat, and the temperature of the junction,
respectively.
The junction is approximated by a cylinder whose diameter equals the wire diameter d.

This does not exactly fit reality but remains currently used in numerical calculations
[29–35]. Moreover, if the wires are uniformly curved, the observation near the junction
confirms the previous assumption (Figures 3.20 and 3.21). Newton’s law of cooling is

d _Qcv ¼ p � dx �Nu � lg(Tg � Tth) (3:38)

where lg and Tg are the thermal conductivity and the static temperature of the gas,
respectively. The difficulty is to obtain an accurate relation between the Nusselt number
Nu and the flow characteristics around the junction assumed as a cylinder [31,36–39].
Indeed, such a thermocouple is surrounded by both a thermal and aerodynamic gradient

that acts as a thermal resistance that is estimated from empiric approaches. A purely
convective heat transfer coefficient h is generally deduced from correlations about the
Nusselt number that is generally expressed as a combination of other dimensionless
numbers, such as Eckert, Reynolds, Prandtl, or Grashof numbers. Table 3.3 presents a list
of dimensionless numbers relevant to heat transfer. However, if many cases have been

TABLE 3.3

Selected Dimensionless Groups of Heat Transfer

Group Definition Interpretation

Eckert number Ec ¼ V2

cp(T � T1)
Kinetic energy of the flow relative
to the boundary layer enthalpy difference

Grashof number Grx ¼ gb(T � T1)L
n2

Ratio of buoyancy to viscous forces

Knudsen number Kn ¼ ‘

L
Ratio between the mean free path
of a gas molecule and the macroscopic dimension

Mach number Ma ¼ V
c

Ratio between the speed of matter relative to the local speed
of sound

Nusselt number Nu ¼ hL
l

Dimensionless temperature gradient at the surface,
it represents the ratio between the heat transfer by convection
and the transfer by conduction alone

Prandtl number Pr ¼ n

a
Ratio of the momentum and thermal diffusivities

Reynolds number Re ¼ VL
n

Ratio of the inertia and viscous forces

V is the fluid velocity, T and T1 are the surface and fluid temperatures, cp is the specific heat capacity, g is the
gravitational acceleration, b is the fluid dilatation coefficient, L is the representative macroscopic dimension (i.e.,
diameter, local or mean length), c is the speed of sound, ‘ is the mean free path of a molecule, n is the kinematic
viscosity, h is the convection coefficient, l is the thermal conductivity, and a is the thermal diffusivity.
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investigated, the example of thin cylinders cooling process is still an open question.
Table 3.4 gives a list of the main Nusselt correlations in this particular case.
Conduction heat transfer d _Qcd that occurs along the wires to the thermocouple supports

has the following general expression:

d _Qcd ¼ lth
pd2

4
q2Tth

qx2
dx (3:39)

However, different studies and experiments have shown that conduction dissipation
effects along cylindrical wires can be neglected when the aspect ratio between the length
and the diameter is large enough [17,40–46]. Indeed, practical cases of anemometry and
thermometry have led to fix such a condition:

L
d
> 100 (3:40)

Hence, the temperature gradient can be considered null in the axial direction of the
thermocouple wire. The thermocouple is placed in an enclosure at temperature Tw.

TABLE 3.4

Heat Transfer Laws

Author

Temperature
for l, r,
and m Correlation

Reynold’s Number
Domain

Andrews Tf Nu ¼ 0:34þ 0:65Re0:45 0:015 < Re < 0:20

Bradley and Mathews Tf Nu ¼ 0:435Pr0:25 þ 0:53Pr0:33 Re0:52 0:006 < Re < 0:05
0:7 < Pr < 1

Churchill and Brier Tf Nu ¼ 0:535Re0:50(Tf =Tth)
0:12 300 < Re < 2,300

Collis and Williams Tfilm Nu ¼ (0:24þ 0:56Re0:45)(Tfilm=Tgaz)0:17 0:02 < Re < 44
Collis and Williams Tfilm Nu ¼ (0:48Re0:45)(Tfilm=Tgaz)0:17 44 < Re < 140

Davies and Fisher Tf Nu ¼ (2:6=gp)Re0:33 0:01 < Re < 50

Eckert and Soehngen = Nu ¼ 0:43þ 0:48Re0:5 1 < Re < 4,000

Glawe and Johnson Tf Nu ¼ 0:428Re0:50 400 < Re < 3,000

King Tfilm Nu ¼ 0:318þ 0:69Re0:5 0:55 < Re < 55

Kramers Tfilm Nu ¼ 0:42Pr0:2 þ 0:57Pr0:33 Re0:5 0:01 < Re < 10,000
0:7 < Pr < 1,000

McAdams Tfilm and
Tf for r

Nu ¼ 0:32þ 0:43Re0:52 40 < Re < 4, 000

Olivari and
Carbonaro

Tfilm Nu ¼ 0:34þ 0:65Re0:45 0:015 < Re < 20
L=d > 40

Parnas Tf Nu ¼ 0:823Re0:5(Tth=Tf )
0:085 10 < Re < 60

Richardson = Nu ¼ 0:3737þ 0:37Re0:5 þ 0:056Re0:66 1 < Re < 105

Scadron and
Warshawski

Tf Nu ¼ 0:431Re0:50 250 < Re < 3,000

Van den Hegge
Zijnen

Tfilm Nu ¼ 0:38Pr0:2 þ (0:56Re0:5 þ 0:01Re)Pr0:33 0:01 < Re < 104

These laws describe the heat transfer from a cylinder of infinite length. The film temperature Tfilm is defined as the
mean value between the fluid temperature Tf and the thermocouple temperature Tth [30–32,34–39,43–47].
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The enclosure dimensions are assumed to be large with respect to the probe dimensions.
Then, the influence of the radiative heat transfer can be expressed by the simplified form:

d _Qrad ¼ �se(Tth) T4
th � T4

w

� �
dSray (3:41)

where
s is the Stefan–Boltzmann constant
e(Tth) is the emissivity of the wire at the temperature Tth

The exchange surface of the radiative heat transfer dSrad ¼ pd dx nearly equals the surface
exposed to the convective heat flux. This supposes that the radiative heat transfer between
the sensor and the walls is greater than between the gas and the sensor. Here, the
assumption is that the gas is transparent; however, it is not satisfied in several practical
applications like temperature measurements in flames.
In Section 3.3.2.3.2, we consider a radiative calibration so that the thermocouple junction

is submitted to an external heat contribution d _Qext produced by a laser beam [41].

d _Qext ¼
ffiffiffiffi
2
p

r
(1� R)

a
PL erf

d

a
ffiffiffi
2
p

� �
exp �2 x

2

a2

� �
dx (3:42)

where
PL is the laser beam power
R is the mean reflection coefficient of the thermocouple junction surface
d is the diameter of the junction
a is the laser beam radius (this value corresponds to the diameter for which one has 99%

of the power of the laser beam)

The total heat balance of the thermocouple may be written as follows [18]:

rthcth
pd2

4
qTth

qt
¼ Nu lg(Tg � Tth)þ lth

pd2

4
q2Tth

qx2

�se(Tth) T4
th � T4

w

� �
pdþ

ffiffiffiffi
2
p

r
(1� R)

a
PL erf

d

a
ffiffiffi
2
p

� �
exp �2 x

2

a2

� �
(3:43)

The expression of the gas temperature Tg is deduced from Equation 3.43:

Tg ¼ Tth þ tcv

qTth

qt
� lth
rthcth

q2Tth

qx2
þ 4se(Tth)

rthcthd
T4
th � T4

w

� �
� 4
rthcthd2

ffiffiffiffi
2
p

r
(1� R)

a
PL erf

d

a
ffiffiffi
2
p

� �
exp �2 x

2

a2

� �
266664

377775 (3:44)

Equation 3.44 represents a general expression of the thermocouple dynamic behavior,
including each of the heat transfer modes. In this expression, the time constant tcv of the
thermocouple junction is defined by

tcv ¼ rthcthd
2

4Nu lg
¼ rthcthd

4h
(3:45)
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If the radiation, the conduction, and the external heat supply are neglected, the gas
temperature simplifies to

Tg ¼ Tth þ tcv
qTth

qt
(3:46)

The time-response of a temperature sensor is then characterized by a simple first order
equation. This is a common but erroneous way. For a step change in temperature, Equation
3.46 reduces to

Tg � Tth

Tg � Ti
¼ exp � t

tcv

� �
(3:47)

where Ti is the initial temperature.
Conventionally, the time constant tcv is defined as the duration required for the sensor to

exhibit a 63% (¼ 1� e�1) change from an external temperature step, in the case of a single-
order equation. Actually, the fact that different kinds of heat transfers are involved should
lead to a global time constant in which the different phenomena contributions are included
[30,43]. As a consequence, the ability of a thermocouple to follow any modification of its
thermal equilibrium is resulting from a multi-ordered time response where the most
accessible experimental parameter remains the global time constant. The multi-ordered
temperature response of a thermocouple can be represented by the general relation:

Tg � Tth

Tg � Ti
¼ K1 exp � t

t1

� �
� K2 exp � t

t2

� �
� � � � � Kn exp � t

tn

� �
(3:48)

where
Ti is the initial temperature
Tg is the fluid temperature

The values of the constants K1, K2, . . . , Kn as well as the time constants t1, t2, . . . , tn depend
on the heat flow pattern between the thermocouple and the surrounding fluid
If experiments have shown that most configurations involve nearly first-order behaviors,

themeasured time constant does not allow isolating each of the different contributionmodes.
Therefore, the remaining problem of experiments is to relate this global time constant to

the different implied heat transfer modes. Then, our contribution in this section will be to
show the influence of the heat transfer condition on the measured time constant value
through three different methods of dynamic calibration.
Classical testing of thermocouples often involves plunging them into a water or oil bath

and for providing some information only about the response of the thermocouple under
those particular conditions. It does not provide information about the sensor response
under process operating conditions where the sensor is used. In order to improve thermo-
couple transient measurements, a better understanding of the dynamic characteristics of
the sensor capability is necessary.

3.3.2.3 Dynamic Calibration with Single-Wire Thermocouple Technique

The calibration methods consist of a series of heating and cooling histories performed by
submitting the thermocouple to different excitation modes. Then, the resulting exponential
rise and decay times of the thermocouple signals allow estimating the time constant t. The
thermocouple signal is amplified with a low-noise amplifier having a �3 dB bandwidth of
25 kHz (Gain¼ 1000). The output voltage is finally recorded by a digital oscilloscope.
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3.3.2.3.1 Convective Calibration
Figure 3.24 illustrates the convective experimental device. The thermocouple junction is
exposed continuously to a constant cold airstream at constant temperature TMIN. A second
hot airflow excites periodically the thermocouple and creates a temperature fluctuation of
frequency f [18,47]. The response of a thermocouple submitted to successive steps
of heating or cooling is close to a classical exponential first-order response from which
the time constant can be determined (Figure 3.25). It can be deduced from the measure-
ment of four temperatures, TMAX, TMIN, Tthmax, and Tthmin:

TMAX: the maximal temperature when the thermocouple is submitted to a constant hot
flow

TMIN: the minimal thermocouple temperature in a constant cold flow

FIGURE 3.24
Experimental device for the convective
calibration.
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FIGURE 3.25
Typical exponential responses: temperature histories for a 12.7 mm K type thermocouple.
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Tthmax: the maximal temperature when the thermocouple is submitted to the periodic hot
flow

Tthmin: the minimal temperature when the thermocouple is submitted to the periodic hot
flow

For the heating period th, we define the temperature differences d1h and d2h:

d1h ¼ TMAX � Tthmin (3:49)

and

d2h ¼ TMAX � Tthmax (3:50)

For the cooling period tc, the temperature differences d1c and d2c by

d1c ¼ Tthmax � TMIN (3:51)

and

d2c ¼ Tthmin � TMIN (3:52)

Then, the two convective time constants are defined while the thermocouple is heating (th)
and cooling (tc). If we consider a first-order response of the sensor, we obtain the expres-
sions as follows:

th ¼ th
ln (d1h=d2h)

(3:53)

and

tc ¼ tc
ln (d1c=d2c)

(3:54)

Then the period of the thermocouple response is as follows:

qresp ¼ tc þ th (3:55)

Figure 3.25 presents temperature histories for a 12.7 mm K type thermocouple. The
excitation frequency is 37 Hz. The velocities of both hot and cold air are 13 m s�1 at the
outlet of the airflow tubes. In any case, the measured time constants are longer during
the heating phase than during the cooling one. This phenomenon corresponds to a greater
magnitude of the convection coefficient (h). Table 3.5 presents convective time constants for
the different thermocouple diameters, resulting from heating periods only and for two
airflow velocities (13 and 23 m s�1) and for a 5–72 Hz explored frequency bandwidth. One
can notice that time constants decrease when increasing the flow velocity because of a
larger surface over volume ratio exposed to the flow. Finally, even if the repeatability is
good, such a calibration method remains however quite difficult to perform because the
fragility of the sensor increases when the wires’ dimension decreases and the fluid flow
increases.
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3.3.2.3.2 Radiative Calibration
This calibration method is based on a radiative excitation produced by a continuous argon
laser [18,48,49]. A set of two spherical lenses allows locating the beam waist on the junction
and an optical chopper generates a periodic modulation of the continuous laser beam.
In order to avoid parasitic turbulences around the junction, the sensor is placed in a
transparent enclosure (Figure 3.26). The signal obtained is close to a first-order response,
which gives immediately the sensors dynamic performances. Time constant decreases as
diameter and heat transfer (the laser power) increase (Figures 3.27 and 3.28). This is
consistent with the effect of an increasing value of the power density or a decreasing of
the beam radius that both act on the power to heated mass ratio. Table 3.6 presents the
radiative time constant for all the thermocouple junction diameters, and the explored
frequency bandwidth ranges from 5 to 2274 Hz.

Chopper

Beamsplitter

Enclosure Sensor

Photodetector

Optical telescope

Chopper controller
1480 Hz

Hz 100 Hz kHz MHz

Oscilloscope

Argon laser (2 W)

FIGURE 3.26
Radiative excitation device.

TABLE 3.5

Convective Time Constant tcv (ms) and Bandwidth Df (Hz) versus
Junction Diameters

Junction Diameter Air Velocity: 13 m s�1 Air Velocity: 23 m s�1

d (mm) tcv (ms) Df (Hz) tcv (ms) Df (Hz)

S 0.5 — — — —

1.27 — — — —

5 2.9 55 2.2 72

K 12.7 15.2 10.5 8.5 18.7

25 20 8 17 9.4
250 32 5 25 6.4

The thermocouple mechanical resistance is not sufficient for the flows with 13 and
23 m s�1 air velocities.
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FIGURE 3.27
Calibration of K thermocouples with a laser beam step.
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FIGURE 3.28
Calibration of S thermocouples with a laser beam step.

TABLE 3.6

Radiative Time Constant trad (ms) and Bandwidth Df (Hz)
versus Junction Diameters

Junction Diameter Radiative Time Constant Bandwidth
d (mm) trad (ms) Df (Hz)

S 0.5 0.07 2274

1.27 0.18 884

5 1.3 123

K 12.7 8.5 19

25 34 5

50 64.5 2.5
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3.3.2.3.3 Shock Tube Calibration
The experimental device is based on a shock tube. This process is generally used for
pressure sensors calibration. Experiments were performed in a tube with an overall length
of 20 m and a diameter of 0.5 m as illustrated in Figure 3.29. The shock tube and high
pressure chamber (filled with dry air) are isolated from each other with cellophane
membranes. A quartz pressure transducer and the thermocouples are mounted flush
with the end wall of the shock tube. Nevertheless, in this experiment, the pressure step,
which propagates in the tube and reflects off the end wall of the shock tube, produces a
suitable temperature step used to test the thermocouple [41] (Figure 3.30). The quartz
pressure transducer signal is used to identify the transient pressure step and to compare
with the response of the different thermocouples. The thermal exchange between the
junction and the gas is not radiative. In fact, both conduction and convection take
place. Table 3.7 presents the pseudo-convective time constant for thermocouple whose
time responses are compatible with the excitation duration produced by the shock tube.
This one being limited to about 6 ms, this technique is not available for the larger
thermocouples (K types). The explored frequency bandwidth ranges from 100 to 758 Hz.
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FIGURE 3.29
Radiative excitation device.
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FIGURE 3.30
Calibration of S thermocouples with a pressure step.
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3.3.3 Measurements in Fluids with Multi-Wire Thermocouple Technique

Measuring fluid temperatures with a single thermocouple requires knowledge of the fluid
velocity and fluid properties to determine the global heat transfer coefficient of the wire,
integrating convection, conduction and radiation, and its natural frequency. In such a case,
the thermal inertia of the thermocouples acts as first-order low-pass filters attenuating the
high frequency fluctuations. Another technique consists of temperature measurements
with a probe using two [19,27,50–54] or three thermocouples [55,56] of same nature but
different in diameter located close together at the measurement point (Figure 3.31). This
method was first used to characterize fluctuating gas flows for combusting flows. A two or
multithermocouple probe allows simultaneously the estimation of thermocouple time
constants and the compensation of thermocouple response.

3.3.3.1 Basic Analysis of a Two-Thermocouple Probe

The basic analysis neglects the effects of the radiative and conductive environment in
which the thermocouple junction is located and the effects of catalytic reaction on the
thermocouple wire surface [19,50].

FIGURE 3.31
Two-thermocouple probe with K (chromel–alumel) type
wires (FEMTO-ST Belfort). (From Lanzetta, F. et al., Two-
microthermocouple probe for temperature and velocity
measurements in an oscillating flow in a heat exchanger
of Stirling machine, ASME ATI Conference, Energy: Produc-
tion, Distribution and Conservation, Milan, Italy, May 14–17,
2006, pp. 633–642.)

φd1 φd2 > d1

TABLE 3.7

Pseudo-Convective Time Constant tpc (ms)
and Bandwidth Df (Hz) versus Junction Diameters

Junction Diameter
Pseudo-Convective
Time Constant Bandwidth

d (mm) tpc (ms) Df (Hz)

S 0.5 0.21 758

1.27 0.45 354

5 1.50 106

K 12.7 — —

25 — —

50 — —

The thermocouple is not sensitive to the temperature variation
and the signal is totally integrated during the pressure step.
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The instantaneous heat balance written for each thermocouple permits to estimate the
gas temperatures Tg1 and Tg2 function of the measured temperatures T1 and T2 and the
time constants t1 and t2, respectively:

Tg1 ¼ T1 þ t1
dT1

dt
(3:56)

and

Tg2 ¼ T2 þ t2
dT2

dt
(3:57)

The two thermocouples are assumed to be exposed to identical flow conditions. Since the
velocity V is the same for both thermocouple junctions, the time constants can be written
from Equation 3.45 as follows:

t1 ¼ Kd2�m1 V�m (3:58)

and

t2 ¼ Kd2�m2 V�m (3:59)

where
K is a constant
d1 and d2 are the thermocouple junction diameters
m is an exponent function of the ratio between the Nusselt and Reynolds numbers and is

generally assumed to lie in the range

0:3 � m � 0:7 (3:60)

From Equation 3.58, a constant a can be defined as the ratio of the time constants:

a ¼ t1
t2
¼ d1

d2

� �2�m
(3:61)

3.3.3.1.1 Frequency Domain Reconstruction
The Fast Fourier Transform (FFT) of Equations 3.56 and 3.57 is used for reconstruction of
signals from a two-thermocouple measuring rig [52,53,55,56] to obtain the following
frequency domain equation, assuming Tg ¼ Tg1 ¼ Tg2:

Tg ¼ T1T2(a� 1)
aT1 � T2

(3:62)

where T denotes the FFT.
Then, the time–domain representation is found by taking the inverse FFT:

Tg ¼ FFT�1(Tg) (3:63)

This method is simple, but it presents the inconvenient to be dependent on singularities
and noise.
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3.3.3.1.2 Time–Domain Reconstruction
In order to reconstruct the gas temperature, another technique consists in data smoothing
followed by parameter estimation in the time domain [19,27,51,54,55,58]. Data smoothing is
implemented through filtering the data with a low-pass filter or through a moving window
averaging.
The next step consists in estimating the time constants t1 and t2, assuming Tg ¼

Tg1 ¼ Tg2, by minimizing the time-average difference between the two reconstructed
temperatures Tg1, Tg2 and then (Tg1 � Tg2)2.
For a given data window, an ordinary linear least square estimation based on a

one parameter (t2) model ymo for the difference of the two observable quantities
Ti ¼ Tg þ ti(dTi=dt) (for i ¼ 1, 2), see Equations 3.56, 3.57, and 3.61, can be constructed. It
is based on the following least square sum, see Chapter 7:

SOLS(t2) ¼
XN
i¼1

(yi � ymo(t; t2))
2 (3:64)

with

ymo(t; t2) ¼ �t2 a
dT1

dt
� dT2

dt

� �
and with their experimental counterparts: yi ¼ Ti

1 � Ti
2 with

Ti
1 ¼ Texp

1 (ti); Ti
2 ¼ Texp

2 (ti);
dTi

1

dt
¼ Ti

1 � Ti�1
1

Dt
;

dTi
2

dt
¼ Ti

2 � Ti�1
2

Dt

The sensitivity coefficient to t2 can be calculated with experimental temperatures:

X ¼ qymo

qt2
¼ a

dT1

dt
� dT2

dt
) Xi 
 a

dTi
1

dt
� dTi

2

dt
(3:65)

Estimation of t2 is calculated with the linear estimator, see Chapter 7, where X and y are
column vectors constructed with the different values in time of both X and y.

t̂2 ¼ (XTX)�1XTy ¼
PN

i¼1 Ti
2 � Ti

1

� �
a
dTi

1

dt
� dTi

2

dt

� �� �
PN

i¼1 a
dTi

1

dt
� dTi

2

dt

� � (3:66)

t̂1 ¼ a t̂2 (3:67)

Finally, after determining the two time constants t1 and t2, the temperatures Tg1 and Tg2 are
calculated from Equations 3.56 and 3.57.

3.3.3.2 Fluid Velocity Measurement with a Two-Thermocouple Probe

The goal of this technique is to measure the temperature and the velocity of the periodic
flow inside an engine (Stirling machine in our case) with different two-microthermocouple
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probes [57]. Once the time constants t1 and t2 are determined, it is possible to extract the
value of the fluid velocity V from Equations 3.58 and 3.59, and

V ¼ t2

Kd2�m2

� ��1=m
¼ t1

Kd2�m1

� ��1=m
(3:68)

The experimental apparatus consists of a rigid circular tube with a diameter of 10 mm
placed before and after the regenerator of a Stirling machine (Figure 3.32). A sinusoidal
flow is generated by the way of a compression cylinder, a piston, and a crankshaft with
adjustable stroke lengths. The crankshaft is driven by a dc electric motor with variable
speed. In the present experiments, oscillating frequencies vary from 1 to 10 Hz. With this
maximal frequency and the diameter of the tube, the mean flow can be considered
laminar. The sinusoidal pulsating flow in a rigid circular tube may be described by the
frequency of pulsation, the mean-flow velocity and temperature, and the magnitude of
the harmonic velocity and temperature. The reconstructed signal from the two-wire
microthermocouple probe allows the determination of the temperature of the fluid. The
frequency response of the fine-wire thermocouples can be described as a first-order lag
system in the presence of convective heat transfer only without radiation and negligible
conduction along the wires. For this last point, each thermocouple presents the ratio wire
length on diameter greater than 200 (Figure 3.33), and thus, the conduction can be
effectively neglected.
Figures 3.34 through 3.36 give the temperature measurements with the three different

probes composed by the wires with 7.6, 12.7, 25.4, and 50 mm diameters. After having
smoothed the curves, we calculate the mean time constant on a cycle for each thermo-
couple with Equation 3.67.
The results are given in Table 3.8. They show that the smallest sensors answer with a

very small response time. Table 3.9 gives the values of flow velocities calculated by
Equation 3.68. The values are relatively close. They show a difference of 4% between the
extreme values.

FIGURE 3.32
Experimental setup.

Cold exchanger

Regenerator
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3.3.3.3 More Realistic Analysis of a Two-Thermocouple Probe

The basic analysis neglects radiation and catalytic effects. We consider a fluid at high
temperature and an ambient medium at Tamb temperature [19,27,51]. Heat is exchanged
between the wires and the fluid only by convection and radiation. In these conditions, the
heat balance, Equations 3.56 and 3.57, becomes

Tg1 ¼ T1 þ t1
dT1

dt
þ se

h1
T4
1 � T4

amb

� �
(3:69)

FIGURE 3.33
Two-microthermocouple probe (FEMTO-ST Belfort).
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FIGURE 3.34
Measurements with a 7.6=12.7 mm probe (frequency¼ 8 Hz).
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FIGURE 3.35
Measurements with a 12.7=25.4 mm probe (frequency¼ 8 Hz).
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FIGURE 3.36
Measurements with a 25.4=50 mm probe (frequency¼ 8 Hz).

TABLE 3.8

Experimental Time Constants

d (mm) t (ms)

7.6 5.2

12.7 12

25.4 34

50 91
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and

Tg2 ¼ T2 þ t2
dT2

dt
þ se

h2
T4
2 � T4

amb

� �
(3:70)

where
s is the Stefan–Boltzmann constant
e is the emissivity of the thermocouple
Tamb is the ambient temperature with the assumption Tamb < T1, 2

Then, the set of two Equation 3.68 becomes

Tg1 ¼ T1 þ t1
dT1

dt
þ b

d1
T4
1

� �
(3:71)

and

Tg2 ¼ T2 þ t2
dT2

dt
þ b

d2
T4
2

� �
(3:72)

where b ¼ (4te=rc) is an independent constant, taking account of the fluid flow conditions.
The two time constants are calculated as previously in the time domain, and the new

corresponding expressions are as follows:
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with

Ri
1 ¼

dTi
1

dt
þ b

d1
Ti
1

� �4
(3:75)

TABLE 3.9

Velocity Calculated by Equation 3.68

d2
d1

a ¼ t1
t2

a ¼ d1
d2

� �2�m
V (m s�1)

7.6=12.7 2.30 2.20 0.86
12.7=25.4 2.83 2.90 0.83

25.4=50 2.68 2.83 0.86

Thermocouple: K type (chromel–alumel): r¼ 8600 kg m�3;
c¼ 480 J kg�1 K�1; fluid¼ air (358C): l¼ 0.0268 W m�1 K�1;
r¼ 1.146 kg m�3; m¼ 1.78	 10�5 Pa s.
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and

Ri
2 ¼

dTi
2

dt
þ b

d2
Ti
2

� �4
(3:76)

Finally, after determining the two time constants t1 and t2, the temperatures Tg1 and Tg2

are calculated from Equations 3.71 and 3.72.

3.3.4 Fluid Velocities and Static Pressure Measurements with Thermocouples

This paragraph presents the development of a microthermocouple sensor for velocity=
temperature measurements or pressure=temperature measurements [59–62]. The transient
thermocouple sensor consists of two type K microthermocouples used in an electronic oscil-
lator.One is placed in the systemand the other takes place in a reference volume.During a half
period, the two microthermocouples are heated to a suitable temperature above ambient.
During the next half period,when the supply of current is interrupted, themicrothermocouple
placed in the system measures the flow (or pressure) while the other compensates for the
ambient temperature changes. Cooling caused by experimental conditions under variable
flow (or pressure) results in a change in the oscillator frequency. The sensor is developed in
order to measure flows (or pressures) and temperatures in microsystems like small channels
(width< 500 mm), microtubes (diameter< 50 mm), and small structures (volume <100 mm3).
The working principle of the anemometer consists in heating two identical K type

thermocouples (Figure 3.37) during a predetermined time th by means of an electrical
current step. One of the thermocouples, Thsens, is put inside the fluid in which the meas-
urement of the velocity (or the pressure) is required, while the other one, Thref, is disposed
in a closed volume to avoid the external disturbances. The probe Thref is used for the
generation of a reference signal (Figure 3.38). At the end of the heating state, the thermo-
couple Thsens attains a temperature higher than that of the fluid temperature Tf. The time tr
necessary to the sensor during the cooling phase to reach the value Tf depends directly on
the fluid velocity V (or the pressure P). The general form of the signal detected from the

FIGURE 3.37
Microthermocouple (K type, diameter 25.4 mm).
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thermocouple Thsens placed in the flow is shown in Figure 3.39a in which the two periods
are clearly distinguishable.
The first, whose issued voltage from the thermocouple is constant, corresponds to the

heating time th. The amplifier is then saturated resulting in a voltage nearly equal to
the supply one. The second period corresponds to the relaxation state of the sensor. Its
duration tr is not constant, and it depends directly upon the velocity V (or the pressure) of
the fluid. The action of the fluid is then traceable only during the cooling phase, and the
frequency f of the obtained signal is directly proportional to the fluid velocity V.

3.3.4.1 Velocity and Temperature Measurements

3.3.4.1.1 Theory
The theoretical analysis is conducted through the dynamic behavior of the resistive wire
subjected to a periodic heating and cooling by forced convection. The two thermocouple
wires are modeled by a single wire whose average thermo-physics characteristics are
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FIGURE 3.38
Block diagram of the sensor.

0
(a) (b)

Se
ns

or
 v

ol
ta

ge
 (V

)

Se
ns

or
 v

ol
ta

ge
 (V

)10

6

2

–2 –1
0.5 1

Time (s) Time (s)

Cooling phase (tr) Cooling phase (tr)

Fluid
temperature Tf

Heating phase th

1.5

2

2

3

2.5

0

1 1.1 1.2 1.3 1.40.9

Uinf

Usup
1

FIGURE 3.39
Sensor response in ambient conditions and without flow (I¼ 32 mA, th¼ 1 s). (a) Heating and cooling phases.
(b) Zoom of the cooling phase.
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considered as constants. Thermocouple wires are assembled for forming a wire of length
2L and diameter d placed in the fluid. The wire is heated by Joule effect by intensity of
current I and dissipates the heat produced into the surrounding fluid of temperature Tf by
convection. The air fluid characteristics are supposed constant. The one-dimensional
thermal balance interprets the equality between the accumulated power by the cylindrical
volume of the wire and the sum of the following modes of heat transfer: the convection
through the boundary layer surrounding the wire, the conduction along the wires towards
the support of the thermocouple, the radiation between the probe and the surrounding
wall of the conduit, and the internal heating by Joule effect:

qT
qt
¼ a

q2T
qx2
� 4(hcv þ hrad)

rcpd
(T � Tf )þ A[1þ ath(T � Tf )]I2 (3:77)

with ath the coefficient of thermal dependency of the resistivity of the wire material

A ¼ 4
pd2

� �2
r0
rcp

(3:78)

with r0 the electrical resistivity at reference temperature that corresponds to the fluid
temperature Tf.
Equation 3.36 interprets the thermal balance between a wire of circular section heated by

Joule effect and the surrounding fluid and wall. This equation brings in two thermo-physics
parameters representing the quality of the thermal exchange between the wire surface and
the fluid: the convection coefficients hcv and the linear radiative heat transfer coefficient hrad.
The convective time constant of the wire is defined by the classical expression

tcv ¼
rcpd
4hcv

¼ rcpd2

4lf Nu
(3:79)

with

Nu ¼ hcvd
lf
¼ C1 þ C2 Ren (3:80)

the Nusselt number of the flow where the Reynolds number Re is based on the wire
diameter d and the local velocity V. We consider the relation of Olivari and Carbonaro
(Table 3.4), valid for a Reynolds number 0:015 < Re < 20 with

C1 ¼ 0:34, C2 ¼ 0:65 and n ¼ 0:45 (3:81)

The radiative time constant of wire is also defined by the expression:

trad ¼
rcpd
4hrad

¼ rcpd
16esT3

f

(3:82)

with hrad ¼ 4esT3
f the linear radiative heat transfer coefficient (the heating of the wire is

very small, its surface temperature remains near to that of the fluid flow).
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Moreover, the time constant corresponding to the heating of the wire next to the heat
accumulation by the Joule effect is defined as follows:

tel ¼ 1
AaI2

(3:83)

Finally, we call tg the global time constant of the sensor that can be defined by the relation:

1
tg
¼ 1

tcv
þ 1
trad
� 1
tel

(3:84)

Then, Equation 3.77 can be modified by introducing the global time constant tg:

qT
qt
¼ a

q2T
qx2
� (T � Tf )

tg
þ AI2 (3:85)

The conduction effect along the wire can be neglected with respect to the convection for the
aspect ratio L=d > 200 sufficiently large. Taking into account the simplifying hypotheses,
the thermal balance is finally written in the form of a differential equation of first degree
whose solution gives the temperature profile of the wire during the heating and relaxation
states of the wire:

dT
dt
þ (T � Tf )

tg
� AI2 ¼ 0 (3:86)

3.3.4.1.2 Heating Phase
The solution of the differential equation (3.86) describes the temperature rising of the wire
during the time:

T(t) ¼ Tf þ AI2tg þ (Tinf � Tf � AI2tg) e(�t=tg) (3:87)

with the initial condition:

T(t ¼ 0) ¼ Tinf (3:88)

where Tinf is the reference temperature corresponding to the threshold temperature for
heating the wire. The temperature Tsup can be expressed at the end of the heating period th.
T(t¼ th)¼Tsup and Equation 3.88 written as (3.89)

Tsup ¼ Tf þ AI2tg þ (Tinf � Tf � AI2tg) e(�th=tg) (3:89)

If, under convective conditions, duration th of heating is much larger than characteristic
time tg (tg << th), the sensor can reach thermodynamic equilibrium with the fluid, at
temperature level Tsup (Figure 3.38):

Tsup 
 Tf þ AI2tg (3:90)
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hence, for a heating with respect to the average temperature of the flowing fluid,

Tsup � Tf 
 AI2tg (3:91)

3.3.4.1.3 Relaxation Phase
The relaxation phenomenon, of duration tr (Figure 3.38), is due to the cooling of the
thermocouple wire caused by the fluid flowing at the velocity V. In this way, the duration
of dynamic cooling produces two informations relative to the local velocity of the flow and
the temperature of the thermocouple when its thermal equilibrium is reached with the
fluid. The wire is cooled by forced convection from the new temperature Tsup, obtained at
the end of heating period th. It tends towards the corresponding temperature Tinf, either to
the threshold temperature where the voltage is fixed by the electronic system or to the
regime of thermal equilibrium if the inertia of the wire is sufficient. The differential
equation that governs the relaxation phenomenon is obtained from the balance equation
(3.86) for which the heating current is set to zero.
So, for I¼ 0:

dT
dt
þ (T � Tf )

tg*
¼ 0 (3:92)

with the initial condition:

T(t ¼ th) ¼ Tsup (3:93)

and now the global time constant of the sensor becomes

1
tg*
¼ 1

tcv
þ 1
trad

(3:94)

Considering Equations 3.93 and 3.94, the solution of the wire temperature has the follow-
ing expression:

T(t) ¼ Tf þ (Tsup � Tf )e �(t�th)=tg*ð Þ (3:95)

From Equation 3.95, the temperature Tinf corresponds to the threshold temperature
attained by the sensor at the end of relaxation time tr:

T(t ¼ tr) � Tinf ¼ Tf þ (Tsup � Tf ) e �(tr�th)=tg*ð Þ (3:96)

Or on heating

Tinf � Tf ¼ (Tsup � Tf ) e �(tr�th)=tg*ð Þ (3:97)

From Equation 3.97, we can express the relaxation time tr at the end when the temperature
tends towards the value Tinf. Then, it occurs T(t ¼ tr) ¼ Tinf and, finally,

tr ¼ th � tg* ln
Tinf � Tf

Tsup � Tf

� �
(3:98)
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3.3.4.1.4 Oscillation Frequency
The sensor is heated by an electric current during a constant time th. Next, it is cooled by
convection during a variable time tr, which depends upon the nature of the flow and the
fluid properties. The temperature then attains the threshold value Tinf fixed by the elec-
tronic system. A new heating is thus achieved. By this way, the sensor is subjected to an
oscillation whose frequency is proportional to the cooling and thus to the velocity of the
flow as well. The oscillation frequency f of the sensor can be related by putting the heating
time as a parameter fixed by the electronic system. So we get

f ¼ 1
th þ tr

¼ 1

2th � tg* ln
Tinf � Tf

Tsup � Tf

� � (3:99)

Finally, the oscillation frequency of the sensor can be expressed as a function of the
following parameters: flow velocity V and wire diameter d (taking place in the expressions
of the time constant tg* and tg), heating duration th, heating current I, and relaxation
heating Tinf � Tf .

f ¼ 2th � tg* ln
Tinf � Tf

AI2tg þ Tinf � Tf � AI2tg
� �

e(�th=tg)

 !" #�1
(3:100)

3.3.4.1.5 Applications
In the case of gas velocity measurement, the sensor calibration system is presented in
Figure 3.40. The calibrated airflow is at ambient temperature, and the flow rate may be
regulated with a Brooks calibration mass flowmeter. This flow is realized in a long cylin-
drical tube of length 20 cm in order to obtain a sufficient length of flow establishment, and
of circular section of diameter 2 mm. The thermocouple Thsens is then installed in the center
of the section. The Brooks flowmeter being used as a reference, it allows fixing a flow rate in
the tube and therefore measuring the signal frequency for different values of flow rate. For
these operating conditions, the velocity range obtained is 0–3.5 m s�1, corresponding to a
laminar flow regime (Figure 3.41). The measured frequency is then directly proportional to
the maximum velocity since the thermocouple is introduced at the center of the tube.

FIGURE 3.40
Microflow in a circular tube (internal diameter
2 mm).
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3.3.4.2 Pressure and Temperature Measurements

3.3.4.2.1 Theory
The sensor is used for the measurements of pressure from 10�1 to 105 Pa range. In this
pressure range, the pressure dependence of the conductivity can be split up into three
regimes: molecular, viscous slip, and viscous. In such type of sensor, heat from the heating
element is dissipated to the ambient through thermal conduction of physical parts of the
sensor, radiation, convection, and thermal conduction of surrounding gas. Heat dissipation
by convection and thermal conduction of gas has an essential effect on the sensor charac-
teristics versus pressure [63–65].

3.3.4.2.2 Heating Phase
The heat balance is the same than in the previous paragraph. We obtain a differential
equation where the convection effects are estimated by a general Morgan correlation (Table
3.10). The initial condition is T(0)¼Tinf. The heating time tc is a given data.

dT
dt
þ (T � Tf ) K(P)(T � Tf )

m þ 1
trad
� 1
t�el

� �
� AI2 ¼ 0 (3:101)
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FIGURE 3.41
Flow measurement in a circular tube.

TABLE 3.10

Morgan Relations

Nu¼C(Gr Pr)m

C m Gr Pr Range

0.675 0.058 10�10 < GrPr < 10�2

1.020 0.148 10�2 < GrPr < 102

0.850 0.188 102 < GrPr < 104

0.480 0.250 104 < GrPr < 107

0.125 0.333 107 < GrPr < 1012

Physical characteristics at Tfilm ¼ (Tf þ T)=2.
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where

A ¼ 4
pd2

� �2
r0
rcp

; trad ¼
rcpd

16esT3
f

; t�el ¼ 1
AaI2

Gr ¼ g � b � (T � Tf ) � L3
n2f

; Pr ¼ mf � cpf
lf

1
tcv
¼ K(P)(T � Tf )

m with K(P) ¼ 4lf C
rcpd2

gcp f d3

T2
f lf nf r

P

 !m
(3:102)

3.3.4.2.3 Relaxation Phase
The relaxation phase corresponds to the cooling of the wire by natural convection varying
with the mass of gas in the system, that is, the pressure. This dynamical phase gives two
informations: one corresponds to the gas pressure and the other to the gas temperature at
steady state. The wire is cooled from the temperature Tsup, obtained at the end of the
heating period by natural convection, and drops to the temperature Tinf, corresponding to
the thermal equilibrium of the wire. The differential equation is obtained with a heat
balance without electrical current (I¼ 0):

dT
dt
þ (T � Tf ) K(P)(T � Tf )

m þ 1
trad

� �
¼ 0 (3:103)

The relaxation phase is represented by a nonlinear differential equation, the solution of
which gives the wire temperature along the time.

3.3.4.2.4 Oscillation Frequency
The oscillation frequency f of the sensor can be related by putting the heating time as a
parameter fixed by the electronic system:

f ¼ 1
th þ tr

(3:104)

3.3.4.2.5 Applications
Figure 3.42 shows the schematic diagramof the calibration system for pressuremeasurement
application. It consists of the microthermocouple Thsens introduced in a measurement cham-
ber, a vacuum pump, and two valves to control the vacuum. Themeasurement chamber is a
copper cylinder of interior volume equal to 90 cm3, and the interior pressure is regulated by
two valves. The first valveO1 allows connecting directly the pump to the measure chamber
and so as to establish the vacuum in this volume. The second valve O2 is connected to the
ambient pressure and is used to adjust theworking pressure in the cylinder.At the beginning
of the experiment,O2 is closed andO1 open until reachingwith the pump aprimary vacuum.
Then O1 isolates the pump to the chamber and the valve O2 is used to increase the pressure
in the chamber. The measure range obtained with this device corresponds to 10�1 to 105 Pa.
A Pirani vacuum gauge (Thermovac TM 20) introduced close to the measurement volume
gives the value of the pressure and is used as reference. The characterization of the sensor
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consists in measuring the signal frequency as a function of the static pressure. Figure 3.43
gives the experimental and theoretical results of the oscillatory frequency versus pressure
realized in the test section presented above.

3.4 Conclusion

The thermocouple is one of the most widely used devices for temperature measurement. It
presents advantages: inexpensive, rugged, simply constructed, fast in the response to
changes in temperature (microthermocouples), and capable of being used to directly meas-
ure temperatures from �2008C up to 26008C. But, disadvantages exist too: temperature

FIGURE 3.43
Frequency versus vacuum.
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FIGURE 3.42
Frequency versus pressure in a test volume.
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measurement with a thermocouple requires in fact independent measurements of two
temperatures, the junction at the hot junction and the junction where wires meet the
instrumentation copper wires (cold junction). To avoid error, the cold junction temperature
is in general compensated in the electronic instruments bymeasuring the temperature at the
terminal block using with a semiconductor, thermistor, or RTD. Thermocouple operation is
relatively complex with potential sources of error. The materials of thermocouple wires are
not inert, and the thermoelectric voltage developed along the length of the thermocouple
wire may be influenced by corrosion, etc. The relationship between the process temperature
and the thermocouple signal (millivolt) is not linear. The calibration of the thermocouple
should be carried out while it is in use by comparing it to a nearby comparison thermo-
couple.
The size reduction of thermal sensors has been significant during the last 20 years. So, the

reducing of the time and spatial resolutions and the increasing of the nonintrusive charac-
ter of measurements have opened the way to a real improvement of performances and to
various new applications. Wire microthermocouples, well adapted to fluid investigations,
are champions in the field of low inertia measurements: micronic and even submicronic
junctions are operative today. A diameter of 1.3 mm is almost usual in advanced research
laboratories and a diameter of 0.5 mm possible, but both are subject to specific cautions
because of their weakness. The present limit (0.5 mm) is essentially due to the commercial
unavailability of smaller thermoelectrical wires.

Nomenclature

a thermal diffusivity (m2 s�1)
A area (m2)
c heat capacity (J kg�1 K�1)
C constant
d diameter (m)
E tension (V)
Ec Eckert number
EMF thermocouple electromotive force (V)
f frequency (Hz)
Gr Grashof number
h convection coefficient (W m�2 K�1)
I electric intensity (A)
K constant
Kn Knudsen number
‘ mean free path (m)
L length (m)
m constant
Ma Mach number
Nu Nusselt number
Pr Prandtl number
Q heat quantity (J)
_Q rate of heat (W)
R electric resistance (V)
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Re Reynolds number
S least square sum (Equation 3.64)
t time (s)
T absolute temperature (K)
T fast Fourier transform of the temperature
V volume (m3)
X sensitivity coefficient
X column vector of the sensitivity coefficients
y difference of observable quantities (Equation 3.64)
y column vector of the difference of observable temperatures

Greek Symbols

a ratio of time constant
d temperature difference (K)
e emissivity
l thermal conductivity (W m�1 K�1)
P Peltier voltage (V)
r density (kg m�3)
s Seebeck coefficient (V K�1)
t time constant (s)
n kinematic viscosity (m2 s�1)
q period (s)

Subscripts

cd conduction
cv convection
el electric
equ equivalent
ext external
f fluid
film film
g gas
h heating
inf inferior
L laser
mea measured
mod model
OLS ordinary least square
P Peltier effect
r relaxation
rad radiation
ref reference
sup superior
S Seebeck effect
th thermocouple
T Thomson effect
w wall
0 temperature reference
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4.1 Introduction

Temperature, as well as pressure, acceleration, and so on, is a variable that can be
measured to acquire information about a physical process to be scientifically described
and mastered in an engineering application. To do this, one must interact with the process
through a measuring system embedding a physical phenomenon capable of translating the
process variable into an ‘‘indicated’’ suitable signal, usually some electrical variable such
as voltage, current, capacitance, etc. The indicated signal should be of electrical nature
because further processing can be accomplished through analog circuits and digital micro-
processors that are basically electronic devices. Possibly, in a near future, signal processing
will be accomplished through photonic devices and our transducers will be based on
physical phenomena through which the process variable modulates some light-related
variable as, for example, the effect of temperature on a fiber Bragg grating sensor. Anyway,
the fundamental and frequently overlooked concept here is that the measured or indicated
variable is the response to the stimulus imposed by the process and, as such, it contains
transformed rather than original information about the process. Thus, any measurement
problem is actually an inverse problem (in the mathematical sense of the term) because one
wants to recover the original information from the transformed information, that is, the
process signal from the indicated signal. The question of if and how this is possible
constitutes an important new research area.
One important type of sensor is the resistance temperature detector or resistive thermal

device (RTD) whose working principle is based on the change in electrical resistance of
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some material with changing temperature. Several materials can be used, such as iron and
copper. However, platinum is the most common resistance thermometer (PRT) because of
its linearity with temperature and chemical stability. RTDs are gradually becoming pre-
dominant in industrial applications, particularly in applications under 6008C, due to their
higher accuracy and repeatability, in addition to the simplicity of its conditioning electron-
ics compared with thermocouples or other types of thermal sensors. More specifically, the
RTD being essentially a resistor element, one can take advantage of a great number of
standard electronic measurement techniques and integrated components suitable for meas-
uring under myriads of practical condition.
Specifying the most adequate RTD to a particular application can be a difficult task, as it

can be for all other types of sensor. To ensure the desired performance, one must consider a
number of aspects such as thermochemical compatibility and materials, dimensions and
size, temperature range and dynamics, accuracy, precision and errors, effects of lead
wiring configuration, conditioning electronics, and nominal resistance and temperature
coefficients. Some of these aspects are informed by the manufacturers of the sensor,
electronic components, etc., and others are dictated by the specificities of the application.
Platinum RTD (PRT) standards help defining a general frame of reference within which
these issues can be addressed. The European standard DIN=IEC 60751, one of the most
commonly adopted worldwide, requires that the RTD’s electrical resistance has to be of
100.00V at 08Cwith a temperature coefficient of resistance of 0.00385V=V=8C between 08C
and 1008C. In DIN=IEC 60751, there are two classes of resistance tolerances: Class
A¼ 100.00� 0.06 V @ 08C and Class B¼ 100.00� 0.12 V @ 08C. The combination of
resistance tolerance and temperature coefficient defines the resistance=temperature char-
acteristics of the sensor and, ultimately, an envelope around the nominal transduction
equation within which lies the actual calibration curve of each particular sensor. (This point
will be elaborated in the section dedicated to error analysis.) Consequently, the greater the
sensor’s resistance tolerance the more the calibration curve will deviate from the general-
ized curve and more variation there will be from sensor to sensor. Interchangeability is an
important issue in applications where the sensor is expected to be replaced from time to
time, particularly if the RTD’s information is used for billing purposes, such as in custody
transfer in the petroleum industry.
As mentioned above, some aspects to be considered when specifying an RTD are

intrinsic to the sensor, and others are application dependent. Among the intrinsic aspects,
probably the most important one is the necessary conditioning electronics and lead wiring.
An RTD is intrinsically a two-wire resistance that must be connected to its conditioning
electronics through lead wires, which introduce stray impedances to the circuit. Therefore,
most applications are developed based on three- or four-wire circuitry to compensate for
these stray effects producing a truer indication of the measured temperature. Figure 4.1
shows the corresponding diagrams. The three-wire circuit is based on the assumption that
the lead wires have the same impedance that can be cancelled out by adding a third
resistance to one of the adjoining arms. Due to its simplicity and the availability of high-
quality connection cables, this is a very common choice in industrial applications in which
the distance between the sensor and the conditioning electronics is less than 500 m. The
four-wire Kelvin connection uses separate pairs of current-carrying and voltage-sensing
cables, providing virtually full cancellation of stray impedances of up to 15 V cables. Due
to its complexity, this configuration is commonly restricted to laboratory applications
where very high accuracies are required.
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4.2 Transduction Equation and Conditioning Electronics

A thermal measurement system interacts with the process and generates a response
voltage, or other electrical variable, which is indicative of the stimulus temperature. This
is generally done through a physical phenomenon that responds electrically to a thermal
stimulus such as Seebeck’s effect used in thermocouples, photosensitivity used in photo-
detectors, and Joule’s effect used in RTDs. In addition to this, some electronic circuitry is
always necessary to transform the transduced electrical variable into a more convenient
one, usually by magnification, denoising, offset correction, etc. The overall relation between
the stimulus and the indicated variables is described by a mathematical model embedding
both physical transduction effects and the associated conditioning electronics. We will see
this in more details, starting by analyzing usual electronic configurations.
One of the simplest electronic conditioning configurations is the Wheatstone bridge

circuit shown in Figure 4.2. Generically speaking, a transduction operator is defined as
the operator (F) that transforms the stimulus variable (T) into the response variable (V) that
is in mathematical terms

V(T) ¼ F[T] (4:1)

Noting that Vo defines the excitation voltage, R1, R2, and R3 are known resistances, R(T) is
the sensor’s resistance when exposed to the temperature T, and V(T) is the voltage

R(T)

V(T)Vo

(a)

(b)

R1

R2

R3

Cable stray
resistances

Compensation
resistance

T

R(T) T

V(T)

Vo

R1 R3

R2 R4

FIGURE 4.1
Three-wire (a) and four-wire (b) circuits used to compensate for stray impedances of lead cables.
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difference across the bridge, the transduction operator can be written in the form of the
following equation:

V(T) ¼ Vo
R(T)

R3 þ R(T)
� R2

R1 þ R2

� �
(4:2)

where the relation between the process temperature and the sensor’s resistance is usually
defined through a polynomial:

R(T) ¼ Rref 1þ a1 � Tþ a2 � T2 þ a3 � (T� 100)3

 �

(4:3)

By construction, Rref is commonly standardized at 100 or 1000 V at 08C, and the
coefficients ak (k¼ 1, 2, and 3) depend on the sensor material. For a PRT, these
coefficients are

a1 ¼ þ3:9083	 10�38C�1

a2 ¼ �5:7750	 10�78C�2

a3 ¼ 0 if T < 0

�4:1830	 10�128C�3 if 0 � T � 6308C


 (4:4)

Because the coefficients a2 and a3 are small compared with a1, the resistance of a PRT
behaves almost linearly with temperature. Linearity is a very important characteristics,
which, to be preserved at the transduction equation, requires a careful design of the
conditioning electronics. Suppose, for example, that a Rref ¼ 100 V PRT is supposed to
measure temperatures ranging from 08C to 2008C. Defining R1¼R2¼ 1 kV, R3¼ 100 V,
and Vo¼ 7.27 V, Equation 4.1 implies that the output voltage ranges from 0 to 1.00 V as
shown in the graph of Figure 4.3, together with a linear regression model. Linearity is so
important in many practical applications that the actual transduction equation is
often replaced by its regression line with associate intrinsic errors and characterization
parameters.

R(T)

Sensor

V(T)Vo

R1

R2

R3

T

FIGURE 4.2
Conditioning electronics used to generate a voltage V as response to the stimulus temperature T.
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Some of these characterization parameters are as follows:

. Offset error—the output reading obtained when the input is set to T¼ 08C (in volts
for this example)

. Linearity error—the difference between the transduction curve and its linear
regression model (in volts for this example)

. Average sensitivity—the average inclination of the transduction curve defined
through the inclination of its linear regression model (in volts=8C for this example)

If one cannot live with these errors, additional electronic conditioning circuitry must be
designed, particularly to compensate offset and linearity errors. Dedicated microcontrol-
lers are ideal for this task because they include in one single chip the input analog-to-digital
converter, the floating point processor, and the output digital-to-analog converter, in
addition to being cheap. Disregarding the necessity to convert to and from digital repre-
sentation, the whole linearization and normalization procedure can be viewed mathemat-
ically as constructing the following transformation:

v(T) ¼ a � L[V(T)]þ b (4:5)

where
a and b are normalization parameters
L is a linearization operator

Let us start by the construction of L. It is quite intuitive that according to Equation 4.1, if this
operator is constructed such that L� F�1, the relation between v andT in (4.5)will be forcibly
linear. However, this is rarely possible in a strict mathematical sense because of the succes-
sive nonlinear transformations between input and output variables. For the particular
example above, although it is possible to explicitly obtain R in terms of V in Equation 4.1,
the polynomial relation between the process temperature and the sensor’s resistance in

1.6
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FIGURE 4.3
Graph of the transduction equation (4.1) (solid) with Rref ¼ 100 V, R1¼R2¼ 1 kV, R3¼ 100 V, and Vo¼ 7.27 V
and a least squares fitted line (dashed).
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Equation 4.2 makes it impractical to explicitly obtain T in terms of R. Instead, it is possible to
identify an approximation of the transduction equation (4.1)

Vmodel(T) ¼ Fmodel[T] (4:6)

such that it is possible to explicitly obtain T from Vmodel in (4.6). This can be done by
adjusting a suitable mathematical form to (4.1), for instance, Equations 4.2 and 4.3 com-
bined in the example above. For instance, if T relates to V according to an ‘‘s-shaped’’
curve, it is usual to try to fit

Vmodel(T) ¼ V1(1� e�a�T
b

) (4:7)

where V1, a, and b are calculated to minimize an overall error such as

e(V1,a,b) ¼
ðTmax

Tmin

[V(T)� Vmodel(T)]
2dT (4:8)

Then, the linearization operator can be defined by

L[�] ¼ V�1model(�) (4:9)

which takes the following form, after assuming that V 
 Vmodel and substituting (4.9), (4.7),
and (4.6) into (4.5):

v(T) ¼ a � 1
a
ln

V1
V1 � V(T)

� �� �(1=b)
þ b (4:10)

Finally, a and b are calculated by associating the intervals*

[Tmin, Tmax] !Equation 4:5
[vmin, vmax] (4:11)

resulting in

a ¼ vmax � vmin

Tmin � Tmax
(4:12)

b ¼ Tmaxvmin � Tminvmax

Tmin � Tmax
(4:13)

Figure 4.4 illustrates how this process works and the role of Fmodel is clearly that of
allowing the inversion to restore linearity, otherwise not practical through F.

* Usually 0 to 10 V or 0 to 5 V because most of data acquisition boards work over this range.
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The whole linearization procedure can thus be summarized in the following steps:

1. Fit an invertible analytic model to the transduction equation (4.1) by minimizing
an error functional of the type given in (4.8). This can be done by some numerical
optimization procedure such as Newton’s method if derivatives of first and second
order can be calculated, or a genetic algorithm if not.

2. Express the input variable (T) in function of the output variable (Vmodel) in (4.6). The
resulting expression corresponds to the linearization operator as in Equation 4.9.

3. Substitute Vmodel for V in (4.9) and calculate coefficients a and b in (4.5) according
to a previously defined mapping range as defined by (4.11), 0 to 10 V, for instance.

This three-step procedure applied to the example above gives very good results as shown
in Figure 4.5. The linearity error is less than 0.2 V over 0 to 10 V, that is, less than 2% of the
transducer’s span.
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FIGURE 4.4
Schematic representation of the linearization procedure through an invertible model transduction equation.

FIGURE 4.5
Linearized response (dotted) and its
linear fit (solid) voltage for the
example shown in Figure 4.3.
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4.3 Propagation of Uncertainties—Error Analysis

Once one gets a reading from a transducer, two important questions arise: (1) How close is
this reading from the true value (accuracy¼degree of veracity)? (2) How repetitive is this
reading if the same stimulus is applied (precision¼degree of reproducibility)? Several
sources of uncertainties and external influences contribute to create reading errors. For
instance, the values of the electronic components of the conditioning circuit may change
due to ambient temperature fluctuations. Or the circuit’s wiring may work as an antenna
adding electromagnetic noise to the output variable. Usually all these influences are neither
predictable nor controllable, and, consequently, the transduction equation may deviate
and fluctuate.
The deviations, which are closely related to a loss of accuracy, can be estimated by first

recognizing that the response variable V, in addition to depending on the stimulus
variable T through the transduction Equation 4.1, also depends on a number of intrinsic
parameters denoted by xk, that is

V(T) ¼ F[T; x1, x2, . . . , xN] (4:14)

Thus, it is possible to estimate a small deviation DV produced by errors DT, Dx1, Dx2, . . . ,
DxN according to the following formula:

DV ffi DT
qF
qT
þ Dx1

qF
qx1
þ Dx2

qF
qx2
þ � � � þ DxN

qF
qxN

(4:15)

To illustrate the application of this formula, consider the example given by Equation 4.2
with errors DR1, DR2, DR3, and DR associated respectively to the circuit’s and to the
sensor’s resistances, this last one due to random fluctuations between �DT of the
stimulus temperature. The excitation voltage and the sensor represented by the param-
eters ak in (4.3) are supposed to be free of errors for simplicity. The corresponding
deviation is then

DV ffi DT
qV
qT
þ DR1

qV
qR1
þ DR2

qV
qR2
þ DR3

qV
qx3
þ DR

qV
qx

(4:16)

Equation 4.16 may be used to define an envelope containing all possible deviations of the
original transduction equation (4.2), generated by all possible combinations of errors
between the intervals �DR1,max, �DR2,max, �DR3,max, and �DRmax, that is,

DVmax ffi DTmax
qV
qT

���� ����þ DR1,max
qV
qR1

���� ����þ DR2,max
qV
qR2

���� ����þ DR3,max
qV
qx3

���� ����þ DRmax
qV
qx

���� ���� (4:17)

This is shown in Figure 4.6 for 1% maximum variations on all parameters.
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Let us now investigate the aspects related to the reproducibility. A very precise trans-
ducer produces very close readings when the same stimulus is applied. Considering the
more general transduction equation given by (4.14), when the same input variable T is
applied, one gets very stable output readings V, which may or may not be close to
the true output value depending on xk having experienced some deviation or not. (The
parameters xk may vary due to ambient temperature changes, for example.) But why the
readings are not exactly the same, regardless of being accurate or not? As already men-
tioned, the transducer is submitted to a number of unpredictable external influences
making its readings fluctuate, even if the stimulus is kept rigorously constant. These
random fluctuations are related to the transducer’s precision and must be characterized
according to a statistical approach.
Suppose the same stimulus temperature T is applied repeatedly to the transducer,

producing response voltages Vk that vary randomly according to a probability histogram
p(VkjT). In other words, a particular reading Vk is seen as a statistical variable or the
outcome of exposing the transducer to the temperature T. Within this idea, accuracy,
precision, and reproducibility can be quantified through parameters describing statistically
p( ); respectively, its location, dispersion, and shape.
Let then Vm(T) be the mean value of Vk, for instance, the arithmetic mean given by

Vm(T) ¼
X
k

p(VkjT)Vk (4:18)

Although the arithmetic mean is the most commonly adopted one, other types of statistical
location parameter can also be used, such as geometric and harmonic means or median or
mode averages. The location of a strongly asymmetrical distribution p( ) may be better
characterized by its median value rather than the arithmetic mean, for example.
A convenient definition for the mean value being established, and denoting Vtrue(T) the
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FIGURE 4.6
Graph of the transduction equation (4.1) (solid line) and its deviation envelopes according to (4.17) (dashed line)
with 1% errors on Rref¼ 100 V, R1¼R2¼ 1 kV, R3¼ 100 V, and constant Vo¼ 10.0 V.
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true response voltage to the stimulus temperature T, a natural definition for the accuracy
error is the following:

eaccuracy(T) ¼ Vtrue(T)� Vm(T) (4:19)

One advantage of a statistical approach to these issues is the possibility of discriminating
and characterizing subtle aspects of reproducibility, which are related to how Vk spreads
around Vm. Let then s(T), g(T), and k(T) denote, respectively, the standard deviation,
skewness, and kurtosis of p(VkjT) given by

s2(T) ¼
X
k

p(VkjT)(Vk � Vm(T))2 (4:20)

g3(T) ¼ 1
s3(T)

X
k

p(VkjT)(Vk � Vm(T))
3 (4:21)

k4(T) ¼ 1
s4(T)

X
k

p(VkjT)(Vk � Vm(T))4 (4:22)

The standard deviation is a measure of the dispersion with which the voltage readings Vk

spread around Vm at a given temperature. A low standard deviation indicates that the
readings tend to be very close to the mean, whereas high standard deviation indicates that
they spread out over a large range of values. In a situation of perfect reproducibility, all the
readings are the same, p( ) becomes an infinitely concentrated Dirac distribution, and s(T)
tends to zero. Conversely, if all possible readings Vk have the same probability of being
observed, p( ) becomes uniform (equiprobable) and s(T) grows unbounded. This is coher-
ent with the idea that between Dirac and equiprobable probability histograms, one ranges
from a situation of perfect predictability to perfect unpredictability, or from full reprodu-
cibility to full lack of reproducibility.
The fact that the standard deviation has the same physical units that the readings allow

to define a precision error, or simply precision. This error corresponds to an interval
around Vk, which can be considered as the support of p(VkjT), and whose upper and
lower bounds are defined by a previously defined interval of all possible reading. If the
probability histogram is not known a priori, the precision error eprecision must be deter-
mined by solving the equation

ðVmþeprecision

Vm�eprecision

p(VkjT) dV ¼ E% (4:23)

in which E% represents the desired confidence level. However, if p( ) is known, eprecision can
be related to the corresponding standard deviation. For instance, for the normal or Gaussian
distribution, Vm�s contains 68.2%, Vm� 2s contains 95.4%, and Vm� 3s contains 99.7% of
the readings. Although Gaussian distributions are very common, other probability histo-
grams may also be found in practice, particularly when nonlinear and hysteretic effects
influence the transduction phenomenon. This is why the dispersion alone is not sufficient to
characterize precision, and other shape parameters such as the skewness g and the kurtosis k
must be used. Actually it is possible to demonstrate that if p( ) is Gaussian, g and k and all
other higher order statistical moments are uniquely determined from Vm and s.
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Skewness, as defined in (4.21), is a measure of the asymmetry of the probability histo-
gram, which is related to the reading bias. A negative skewness indicates that readings
lower than Vm tend to be more dispersed than readings greater than Vm, which implies a
tendency to underestimate. On the contrary, a positive skewness indicates that readings
greater than Vm tend to be more dispersed than readings lower than Vm, which implies a
tendency to overestimate. This approach can fail in multimodal distributions or in distri-
butions where one tail is long but the other is heavy.
Kurtosis, as defined in (4.22), quantifies how peaked the probability histogram is and,

therefore, also measures dispersion but with a different emphasis. A high kurtosis implies
that p( ) has a sharper peak and longer, fatter tails, while a low kurtosis indicates that p( )
has a more rounded peak and shorter thinner tails. To interpret this, suppose two distinct
probability histograms, but with the same standard deviation. The one with higher kur-
tosis will produce a greater amount of readings close to the mean Vm, but a few will be
more dispersed. On the other hand, the one with lower kurtosis will produce readings
uniformly dispersed within the same precision. In other words, under equal precisions,
high kurtosis means very good reproducibility with some highly dispersed readings, while
low kurtosis implies that readings are uniformly reproducible.
These concepts are illustrated in Figure 4.7, corresponding to the example shown in

Figure 4.6, with 10% uniform random error added to the voltage readings.

4.4 Temperature Measurements under Time Varying Conditions

In the previous sections, time varying conditions were not considered, implying that a
response is obtained simultaneously with the application of the stimulus, independently of
the state of the transducer before that. This situation can be reproduced in practice
by applying the stimulus to the transducer and waiting a sufficient amount of time for
all the transients to vanish before reading the response. Thus, the general transduction
equation (4.14) actually expresses a static or steady state relation between stimulus and
response. But what happens if one must measure under time varying conditions?
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Schematic representation of the accuracy and precision associated to the example given in Figure 4.6.
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Before elaborating and elucidating this question, let us first better state the problem and
illustrate with a practical example.
Mathematically speaking, if the stimulus temperature varies in time so will the response

voltage and the general transduction equation should be rewritten as

V(t) ¼ F[T(t); x1, x2, . . . , xN] (4:24)

where the intrinsic parameters xk may or may not vary in time. Consequently, the transduc-
tion operator F will probably involve derivatives and=or integrals of the T and V, most
likely of the form

A0V(T)þA1
dV(t)
dt
þ � � � þAP

dPV(t)

dtP
¼ T(t)þ B1

dT(t)
dt
þ � � � þ BQ

dQT(t)

dtQ
(4:25)

where the coefficients Ak and Bk depend on the intrinsic parameters xk and, also, Q<P for
stability. This obviously does not represent all possible dynamic transduction equations,
but most practical applications can be cast into it with minor restrictive hypothesis. Let us
see how this is so.
Consider the problem of monitoring fluidization patterns in a gas–solid fluidized bed

reactor by measuring internal instantaneous temperature, as indicated in Figure 4.8.

Air injection

Temperature

Time

Process

Indicated

Sheathed
temperature probe

Reacting emulsion
Reacting

gases

FIGURE 4.8
Dynamic temperature measurement in a fluidized bed reactor—oscillations are due to alternate passage of cold air
bubbles through the probe. (From Oliveira, J. et al., Powder Technol., 170, 123, 2006.)
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Detecting gas bubbles with a thermal probe is based on the temperature difference between
the hotter reacting emulsion phase and the colder gas bubbles. Due to the extremely severe
measurement conditions (temperatures exceeding 6008C, material deterioration due to
friction with particulate, chemical corrosion, presence of electrostatic charges, etc.), it is
recommended to install the probe in a sheath or thermowell made of some resistant
material such as stainless steel whose stray effects can be compensated by additional
elaborate electronic conditioning.
The local instantaneous process temperature of the flow and the corresponding indicated

temperature form the pair stimulus=response and will be respectively denoted by Tproc and
Tind by convenience. Thermal accumulation is characterized by the sheath’s mass m (kg)
and by its specific heat Ch (J=kg=K), while convective and radiative heat transfers through
the area A (m2) are accounted respectively by the convection coefficient h (W=m2=K) and
by the emissivity e. Thus, neglecting the heat conduction through the sensor cable and
admitting that the radiative medium completely involves the sensor tip, the governing
equation relating Tind and Tproc can be written as follows:

mCh
dTind

dt
� hA(Tproc � Tind)� esA T4

1 � T4
ind

� � ¼ 0 (4:26)

where T1 denotes the temperature at which radiative transfers occur and is given by the
combustion temperature of the particulate in the case of a fluidized bed reactor. Equation
4.26 can be written in more appropriate terms by dividing both sides by hA and rearran-
ging the powers of T1 and Tind, which results in

t
dTind

dt
� (Tproc � Tind)� g(T1 � Tind) ¼ 0 (4:27)

where

t ¼ mCh

hA
(4:28)

g ffi 4es
h

T1 þ Tind

2

� �3
(4:29)

In these expressions, t represents the probe’s time constant, that is, the increase in tem-
perature caused by heat accumulation over heat transferred by convection, while the
radiation coefficient g quantifies the intensity of radiative heat transfer in comparison
with convective heat transfer. Equation 4.27, although embeds some restrictive hypotheses,
represents a good cast into the general dynamic transduction equation given by (4.25),
specially for practical applications.
Solving the inverse problem, that is, calculating Tproc from the measured values of Tind, is

certainly a difficult task because of its intrinsic ill-conditioned nature. In mathematical
terms, the problem being inverse and intrinsically ill posed in the sense of Hadamard
(1923), the solution may not exist or, if it exists, it may not be unique or not continuous with
respect to the input data. In practice, this means that the solution process of Tproc from Tind
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will be strongly affected by the presence of experimental errors and noise. This effect has
already been studied, and some techniques have been proposed such as Beck’s function
specification method (Beck et al., 1985) and Murio’s mollification method (Murio, 1993).
These techniques require relatively long computational codes and are not suited for online
implementation. An appropriate solution technique for the online reconstruction of Tproc

from Tind was proposed by Oliveira et al. (2006) based on a modified version of the
Savitzki–Golay filtering method (Savitzky and Golay, 1964).
The transduction equation can be discretized in time with the help of the finite difference

method. By defining an adequate time step Dt, and a backward discretization scheme with
indices n and (n� 1) indicating that the variable refers to times t ¼ nDt and t ¼ (n� 1)Dt
respectively, it is possible to obtain

tn
Dt

(Tind,n � Tind,n�1)� (Tproc,n � Tind,n)� gn(T1 � Tind,n) ¼ 0 (4:30)

Thus, the direct and inverse problems are expressed as

Tind,n ¼ 1
(tn=Dt)þ 1þ gn

Tproc,n þ gnT1 þ
t

Dt
Tind,n�1

� 	
(4:31)

Tproc,n ¼ tn
Dt

(Tind,n � Tind,n�1)þ Tind,n � gn(T1 � Tind,n) (4:32)

A numerical experiment is effective to demonstrate the discrepancies introduced by
thermal inertia, convection, and radiation, as well as the extreme sensitivities to the
presence of noise when solving the inverse problem. Consider a reacting gas–solid
bubbly flow whose temperature varies between characteristic levels around 900 and
1000 K. These temperature levels are respectively associated with the colder gas within
the bubbles and with the hotter solid particles in the emulsion phase and, for simplicity,
are assumed to vary according to a square wave. Thus, T1¼ 1000 K and additional
parameters were adopted representing typical experimental values: m¼ 4.712	 10�6 kg,
C¼ 380 J=kg=K, h¼ 550 W=m2=K, A¼ 3.142	 10�6 m2, and e¼ 0.9, which implies an
average time constant of 1.1 s adopted in Equations 4.31 and 4.32 for simplicity
(tn ¼ �t ¼ 1:1 s). The synthetic measured signal was generated by solving Equation 4.31
with additive centered uniform noise with 0.01 K amplitude. The sampling period was
set to 0.001 s and the recurrence on Tind due to gn was handled by the Newton–Raphson
method. The reconstruction of Tproc from the noisy values of Tind was accomplished
through Equation 4.32, and all these signals are shown in Figure 4.9. It can be seen that
despite an extremely low and unrealistic noise level of 0.01 K over 950 K perturbing the
input data, the error between the correct process signal and the reconstructed process
signal has an average value of 0.091 K and a standard deviation of 8.503 K, which
corresponds to a magnification of nearly 2500 times.
The online regularization technique proposed by Oliveira et al. (2006) is based on the

smoothing procedure of Savitzki and Golay (1964) applied to problematical terms in
Equation 4.27, among which the temporal derivative is surely the most important one.
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The basic idea is to fit a low-order polynomial of order N to the last Mþ 1 indicated
temperatures and to replace dTind=dt and Tind in Equation 4.27 by smoothed or regularized
values obtained from this polynomial. According to the proposed method, Equation 4.31
will be transformed to

Tproc,n ¼ �tn � a1,n þ a0,n � gn � (T1 � a0,n) (4:33)

where a0,n and a1,n are respectively the first and second coefficients of the smoothing
polynomial replacing

Tind(nDt) ffi a0,n (4:34)

dTind

dt
(nDt) ffi �a1 (4:35)
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FIGURE 4.9
Process temperature, indicated temperature, and reconstructed process temperature obtained from Equation 4.7
without prior regularization. (The error level of the indicated temperature is 0.01 K.)
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in Equation 4.26. The index n was introduced to stress the fact that a0 and a1 refer to t ¼ nDt
and must be recalculated at all time steps by solving the associated least squares problem,
that is,

PM
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k0
PM
k¼0

k1 � � � PM
k¼0

kN

PM
k¼0
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(4:36)

The main advantage of this approach is that Gram’s matrix in Equation 4.36 does not
depend on Tind and, consequently, can be previously inverted and stored. The correspond-
ing reconstructed temperature for numerical example above is also shown in Figure 4.9.

920
930
940
950
960
970
980
990

Te
m

pe
ra

tu
re

 (K
)

920
930
940
950
960
970
980
990

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Te
m

pe
ra

tu
re

 (K
)

Time (s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time (s)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Time (s)

920
930
940
950
960
970
980
990

Te
m

pe
ra

tu
re

 (K
)

FIGURE 4.10
Flame temperature of a Bunsen burner measured with a sheathed PRT (Tind), actual process temperature
measured with a micro-thermocouple (Tproc), and reconstructed process temperature with regularization given
by Equation 4.33.
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Experimental tests were performed by Oliveira (2006) in which the flame temperature of
a Bunsen burner was measured with a sheathed PRT and also with an exposed micro-
thermocouple to determine the actual process temperature. The intrinsic parameters of the
reconstruction procedure given by Equation 4.33 were optimized to better reproduce the
actual process temperature probability density function. The corresponding signals are
shown in Figure 4.10.

4.5 General Dynamic Behavior of a Temperature Probe

We have seen in the previous section that thermal accumulation, radiation, convection, and
other thermal phenomena create dynamical effects that may significantly distort and delay
the response with respect to the stimulus. This stimulus–response relation may become
even more complex if elaborate conditioning electronics have to be designed to meet with
performance requirements. This is the case when capacitive and=or inductive components
are used, usually employed in analog filters, or the conditioning electronics contains
feedback loops, which are common in constant temperature-sensing techniques. One
important advantage of RTDs is that, being resistive in nature, their conditioning electron-
ics tends to remain simple. Anyway, the general transduction equation (4.25) is useful for
describing the majority of the transducers found in practice, including both sensor and its
conditioning electronics. Consequently, it is of interest to characterize its behavior to
generic dynamic stimuli.
This can be done very straightforwardly by using the Fourier transform which, defined

for a generic signal s(t), takes the following form

ŝ(v) ¼
Fourier

ðþ1
�1

s(t) � e�ivtdt (4:37)

The Fourier transform ŝ(v) is an alternative representation to s(t), meaning that the features
of the original signal are rearranged without loss of information. If one recognizes that
(4.37) can be seen as scalar products with the analyzing harmonic signal exp(þivt),* which
is an orthogonal basis of the finite energy signal space (Hilbert space), ŝ(v) can be inter-
preted as the frequency content or components with respect to the analyzing frequency v.
Thus, the inversion formula corresponding to (4.37), that is,

s(t) ¼
Fourier�1 1

2p

ðþ1
�1

ŝ(v) � eþivtdv (4:38)

has a very simple interpretation: s(t) is recreated from its frequency components by adding
up harmonic signals exp(þivt) weighted by ŝ(v). Let us see an example of this: suppose s(t)

* The scalar product can be defined as hx(t), y(t)i ¼ Ðþ1�1 x(t) � y*(t) dt:
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is generated by adding three sinuses of different frequencies and multiplying the result by
a Gaussian window function

s(t) ¼ [ sin (v1t)þ sin (v2t)þ sin (v2t)] � exp (�at2) (4:39)

The graph of s(t) and of its Fourier transform is shown in Figure 4.11. It is clear that the
amplitudes of ŝ(v) are peaked under v ¼ v1, v ¼ v2, and v ¼ v3 and that these peaks are
sharper as the essential duration of the Gaussian window increases because more oscilla-
tions are included in the analysis.
One very interesting mathematical property of the Fourier transform is transforming

derivatives into polynomials in (iv). It can be demonstrated that

ðþ1
�1

ds(t)
dt

e�ivtdt ¼ iv �
ðþ1
�1

s(t)e�ivtdt ¼ iv � ŝ(v) (4:40)

which implies that

ðþ1
�1

dns(t)
dtn

e�ivtdt ¼ (iv)n � ŝ(v) (4:41)
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Graphs of the original signal given by Equation 4.40 for v1¼ 20 rad=s, v2¼ 50 rad=s, v3¼ 80 rad=s, and a¼ 0.5 s�2.
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This is very convenient for the analysis of differential equations, particularly of the general
transduction equation. Suppose, for simplicity, that Ak and Bk are constant in (4.25).
Calculating its Fourier transform and considering (4.41) result in

A0V̂(v)þA1(iv)V̂(v)þ �� �þAP(iv)PV̂(v)¼ T̂(v)þB1(iv)T̂(v)þ � � �þBQ(iv)QT̂(v) (4:42)

or, alternatively

V̂(v) �
XP
k¼0

Ak(iv)
k

" #
¼ T̂(v) � 1þ

XQ
k¼0

Bk(iv)
k

" #
(4:43)

Equation 4.43 gives us a way of expressing the intrinsic concept in (4.24) that the trans-
duction process is a transformation of a stimulus signal into a response signal through a
physical phenomenon. In other words, transducing the stimulus temperature T(t) into the
response voltage V(t), which corresponds to solving (4.25), in the corresponding Fourier
representations becomes a simple algebraic multiplication of the form

V̂(v) ¼ Ĥ(v) � T̂(v) (4:44)

where

Ĥ(v) ¼ 1þPQ
k¼0 Bk(iv)

kPP
k¼0 Ak(iv)

k (4:45)

The special function H characterizes the transduction equation, including both physics and
conditioning electronics, since it depends exclusively on the parameters Ak and Bk, inde-
pendently of the stimulus and the corresponding response. It is also called the ‘‘transfer
function’’ associated to the linear time-invariant transduction system given by (4.25) and
plays the role of a ‘‘dynamic calibration curve’’ from which any response can be deter-
mined by algebraic multiplication with the corresponding stimulus. This is more evident if
Equation 4.44 is rewritten in terms of amplitude and phase

V̂(v) ¼ rV(v) � eiwV(v) ¼ rH(v) � eiwH(v)

 � � rT(v) � eiwT(v)


 � ¼ Ĥ(v) � T̂(v) (4:46)

from where it follows that

rV(v) ¼ rH(v) � rT(v) (4:47)

fV(v) ¼ fH(v)þ fT(v) (4:48)

Thus, in the Fourier representation, the response is determined by multiplying the ampli-
tudes of the transfer function and of the stimulus, and by adding the corresponding phases.
Let us test this with the example of the previous section, defined by Equation 4.27, with

g¼ 0 for simplicity

Ĥ(v) ¼ 1
1þ ivt

¼ rH(v) � exp [iwH(v)] (4:49)
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and the amplitude rH(v) and phase fH(v) given by

rH(v) ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ (vt)2
q (4:50)

fH(v) ¼ �vt (4:51)

Now, assuming that the stimulus temperature is a square pulse of the form

T(t) ¼ 1 if 0 � t � Dt
0 elsewhere



(4:52)

whose Fourier transform is given by

T̂(v) ¼ 1
v
[ sin (Dtv)þ i � ( cos (Dtv)� 1)] (4:53)

Calculating the amplitude of T̂(v) in (4.53) results in

rT(v) ¼
2 � [1� cos (Dtv)]

v
(4:54)

and the amplitude of the response can determined accordindg to (4.47), that is,

rV(v) ¼
2 � [1� cos (Dtv)]

v �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ (vt)2

q (4:55)

shown in both time and frequency representation in Figure 4.12.
As already mentioned, H can be used as dynamic calibration curve from which the

response to any possible stimulus temperatures can be calculated according to (4.46). Thus,
it must be previously determined before using the associated transducer to measure the
temperature of a dynamic process. But how can this be done? At first glance, Equation 4.44
suggests that any pair of stimulus=response would be enough for determining the transfer
function by simply dividing the Fourier transform of the last by the Fourier transform of
the first. Indeed, this can only work if the stimulus is capable of exciting all modes of the
transfer function, which constitutes an important practical problem, and several techniques
have been developed to solve it.
A very interesting one is based on a very obvious but insightful observation:

if T̂(v) � 1) V̂(v) ¼ Ĥ(v) (4:56)

According to the interpretation of the Fourier transform given above that it reveals the
frequency content of the analyzed signal, a unitary T̂(v) means that T(t) contains all
possible frequencies in equal amounts, and, consequently, all possible modes of the
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transfer function are equally excited. The temporal representation of such unitary stimulus
is determined by calculating its inverse Fourier transform, as defined by Equation 4.39,
resulting in the well-known Dirac distribution

T(t) ¼
ðþ1
�1

[T̂(v) ¼ 1] � exp (�ivt) dv ¼ d(t) (4:57)

In practice, a Dirac stimulus can only be approximated by trying to reproduce its limiting
function sequences, such as submitting the transducer to a very brief and intense tempera-
ture by plunging the thermal sensor into a hot bath for a short period of time. Other
possibilities are to apply a random or chirp-like temperature signal, a sinusoid with slowly
varying frequency, but generating these stimuli is a difficult task for temperature and heat
flow. Let us see an example of how this works.
Suppose that a PRT is to be used to measure temperature fluctuations in a reacting

turbulent flow and that, for some reason, only the components around a specific frequency
are of interest. As already mentioned, the possibility of dealing with a thermal resistive
sensor as a resistor element opens a wide range of solutions in terms of designing cheap
and robust electronic conditioning circuits. Consider using the transduction circuit shown
in Figure 4.1 to which a simple RLC filter and a follower amplifier are connected in order to
read the bridge voltage, as shown in Figure 4.13.

Stimulus

Stimulus

150

125

100

75

50A
m

pl
itu

de
 (°

C
)

A
m

pl
itu

de
 (°

C 
 s)

25

0
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

Time (s)
2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 3.8 4

0 2 4 6 8 10 12 14 16 18 20 22 24
Frequency (rad/s)

26 28 30 32 34 36 38 40 42 44 46 48 50

150

125

100

75

50

25

0

Response

Response

FIGURE 4.12
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Applying Kirchhoff’s mesh law, that is, the sum of the electric potential differences
around any closed loop must be zero, we get the following equation:

Vbridge(T) ¼ L
R

dV
dt
þ Vþ 1

RC

ðt
�1

V(t) dt (4:58)

where
Vbridge(T) is the normalized voltage generated across the bridge by the PRT
R, L, and C are respectively the resistance, inductance, and capacitance of the RLC filter
V is the response voltage

By applying the Fourier transform to (4.58) we get

V̂bridge ¼ 1þ L
R
ivþ 1

RCiv

� �
� V̂ (4:59)

or, in terms of the transfer function as defined in (4.45)

Ĥ(v) ¼ 1

1þ L
R
ivþ 1

RCiv

(4:60)

which can be rewritten more conveniently as

Ĥ(v) ¼ 1

1þ iQf
v

v0
� v0

v

� � (4:61)
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FIGURE 4.13
RCL band-pass filter used to measure temperature oscillations around a specific frequency of interest.
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or, in polar representation

Ĥ(v) ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þQ2

f
v

v0
� v0

v

� �2
s � exp �iQf

v

v0
� v0

v

� �� �
(4:62)

where Qf stands for the filter’s quality factor and v0 is its central frequency given by

Qf ¼
ffiffiffiffiffiffiffiffiffi
L

R2C

r
(4:63)

v0 ¼ 1ffiffiffiffiffiffiffi
LC
p (4:64)

The filter is designed by defining R, L, and C so that the central frequency matches the
frequency of interest and, also, to optimize the tradeoff between bandwidth and distortion
caused by nonuniform delay. Arbitrating the quality factor to Qf¼ 5.0 rad=s and the central
frequency to v0¼ 315.16 rad=s (50 Hz) and fixing R¼ 100 V, by enforcing Equations 4.63
and 4.64 implies that L¼ 1.59 H and C¼ 6.37 mF. We will now see how this transduction
system, modeled by Equation 4.58 or 4.59, responds to two different temperature signals,
starting by a Dirac stimulus.
As pointed out above, in practice, a Dirac stimulus can be represented by the limit of a

sequence of unitary rectangular pulses, which is done by setting its amplitude equal to the
reciprocal of its duration. In mathematical terms, this can be put into the following form:

Vbridge(t) ¼
1
e

if 0 � t � e

0 elsewhere

8<: (4:65)

A finite difference discretization of Equation 4.58, as previously done in Equation 4.30,
produces the following recurrence formula in which causality is already enforced:

Vn ¼ Vbridge,n þ L
RDt

Vn�1 � Dt
RC

Xn�1
k¼0

Vk

" #
� 1þ L

RDt
þ Dt
RC

� ��1
(4:66)

As it can be seen in Figure 4.14, as the duration e in (4.66) tends to zero, the Fourier
transform of the stimulus V̂bridge(v)! 1, indicating that all frequencies become equally
present in the signal and, consequently, the Fourier transform of the response
V̂(v)! Ĥ(v).
The band-pass filter’s work can be illustrated by applying a stimulus temperature of the

type defined in Equation 4.39 with v1¼ 100 rad=s, v2¼ 315.16 rad=s, v3¼ 750 rad=s, and
a¼ 5, with �5% additive uniform noise to better mimic an actual experimental measure-
ment condition, shown in Figure 4.14. It is clear that although there are three equal
amplitude frequencies in the stimulus signal, the response signal is predominantly com-
posed of the central frequency v2¼ 315.16 rad=s (50 Hz), v1 and v3 being attenuated by a
factor of 0.01 approximately. Finally, another interesting effect is the improvement of
the signal-to-noise ratio in the response signal. This is so because the frequency content
of the added noise is uniform (white noise) and, consequently, the most part of it was
attenuated by the filter (Figure 4.15).
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FIGURE 4.14
Identification of the transfer function of the RLC band-pass filter given by Equation 4.62 through application of
rectangular pulses progressively approximating a Dirac stimulus (e¼ 0.02, 0.005, and 0.0001 s).
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4.6 Conclusions

RTDs, or simply resistance thermometers, are accurate, robust, and cheap, which make
them very attractive for problems involving severe experimental conditions involving
temperature ranges between 08C and 6008C, particularly in industrial applications.
Another important advantage is their excellent interchangeability, a direct consequence
of inherent long-term stability, and available well-accepted standards. Out of that range,
thermocouples are preferable in applications involving very high (>10008C) or very low
temperatures (<�208C), despite the necessity of more complicated conditioning electron-
ics, particularly for cold temperature junction compensation and amplification. In general,
designing an electronic circuit for an RTD is simpler because it can be treated as a resistor
to which many robust electronic measurement techniques have been developed and tested
in a great number of successful applications.
As any other transducer, an RTD can be used to measure under static or steady state

conditions or to measure dynamic temperatures. Either way it is necessary to use the
transduction equation to determine the stimulus variable from the measured variable. In
static measurements, this procedure can be generally reduced to solving an algebraic
equation through a calibration curve, and several characterization parameters can be
defined, in particular those dealing with errors. For instance, accuracy, precision, and
reproducibility are defined as statistical parameters, characterizing different aspects of
the error histogram. Measuring under time varying conditions involves solving a more
complex transduction equation, usually an integro-differential equation with related issues
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FIGURE 4.15
Response of the measurement system sketched in Figure 4.12 (v0¼ 50 Hz) to a stimulus temperature containing
three frequencies, one of which matches the filters resonance frequency.
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of existence, uniqueness, stability, etc. Under some circumstances (constant intrinsic
parameters), the Fourier transform can be used to transform derivatives and integrals of
the transduction equation into polynomials on a conjugate variable (frequency), which also
reduces the solution process to solving an algebraic equation in the transformed domain.
The quotient of the associated characteristic polynomials, also known as transfer function,
works as a dynamic calibration curve: the response is obtained simply by multiplying the
stimulus by the transfer function in the transformed representation.
Wrapping things up, the most important concept that we tried to tackle here is that all

measurement problem is intrinsically an inverse problem, in the mathematical sense of the
term. In other words, measurements being actually the response to stimuli imposed by the
process, recovering the process variable from the indicated variable implies solving an ill-
posed problem that, among other intrinsic difficulties, is extremely sensitive to perturba-
tions in the input data such as experimental errors, electromagnetic noise, etc. This was
clearly illustrated by the example in Figure 4.9, where uniform additive noise is 2500 times
magnified by the non-regularized reconstruction algorithm. This justifies the importance of
developing and applying adequate solution procedures, in addition to a good understand-
ing of the physics involved in transduction together with the use of elaborate electronic
conditioning circuitry.

Nomenclature

a, b normalization parameters
ak polynomial coefficients
ak,n coefficients of the smoothing polynomial
A area
Ak, Bk ordinary differential equation model coefficients
Ch specific heat
e( ) error functional
eaccuracy accuracy error
E% confidence level
F[ ] transduction operator
h convection coefficient
H transfer function
L[ ] linearization operator
m mass of thermocouple sheath
M number of indicated temperatures
n integer time counter
N order of smoothing polynomial
p( ) probability histogram
P, Q order of differential operators
Qf filter quality factor
R, L, C resistance, inductance, and capacitance, respectively
Rk circuit resistance
Rref reference resistance
R(T) sensor resistance
s(t) generic temporal signal
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t time
T stimulus temperature
Tind indicated temperature
Tproc local instantaneous process temperature
T1 reference radiative temperature
v normalized voltage
V response voltage
Vk random response voltages to T
Vo excitation voltage
Vtrue true response voltage to the stimulus temperature T
Vm mean value of Vk

V1, a, b model parameters
xk intrinsic parameters in F[ ]

Greek Variables

d(t) Dirac delta generalized function
D deviation, error, difference
Dt time step
e emissivity
g relative radiation coefficient
v frequency
v0 filter central frequency
f phase
r amplitude
s, g, k standard deviation, skewness, and kurtosis, respectively
t time constant
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5.1 Introduction

Despite advances in electronics and microelectronics (and even nanotechnology), thermo-
couples are still widely used in industry and in scientific applications. The reason for this is
the flexibility of this type of sensor. It can be in the form of wire or film of any thickness,
resistant to high temperatures, acid, or alkaline media; it adapts to the shape of the
measurement and can still be easily repaired. The inconvenient aspect is the low intensity
signal, requiring high-quality measurement systems. The analysis of one-dimensional
problems involving heat transfer needs two linearly independent boundary conditions.
The heat flux boundary condition is present, but normally not used in experimental studies
due to measurement difficulties. This chapter presents different types of heat fluxmeters,
especially the ‘‘tangential gradient’’ type, and discusses methods of calibration and the
error involved.

171



5.2 Thermocouples

In metals and semiconductors, the transport processes of charge (electric current) and
energy are closely related and are due to the displacement of free electrons (conduction
electrons). When the electrons of the electrosphere are weakly linked to their core and
absorb sufficient energy from external sources, they can become free from their core (Kinzie
1973). At constant temperature, energy densities of free electrons in different materials are
not necessarily the same. So when two different materials in thermal equilibrium are in
contact, there is a tendency to occur diffusion of electrons through the interface. If the two
materials are forming a closed circuit and the two junctions are at the same temperature,
the resulting electric fields are opposite and there will be no flow of electrons. However, if
the junctions are at different temperatures, there will be an electric current, as shown in
Figure 5.1. If the circuit is broken at any point, a potential difference (V) can be measured,
function of temperature difference of the two junctions and the type of material of the
wires:

V ¼ aAB(T1 � T2) (5:1)

This voltage is called ‘‘Seebeck voltage or emf,’’ a tribute to Thomas Seebeck who dis-
covered this phenomenon in 1821 (Rowe 1995). The measurement of the Seebeck emf is
made at zero current. Thus, the voltmeter must have low impedance (high internal
resistance) to ensure this condition.
The law of intermediate metals says that the sum of the thermoelectric forces in a circuit

composed of any number of different materials is zero if the entire circuit is at a uniform
temperature. Thus, a homogeneous material can be added in a circuit and will not affect
the emf as long as their ends are the same temperature (Figure 5.2). The thermocouple
formed by materials A and B will not be affected by materials C or D, where T3¼T4

and T5¼T6.

FIGURE 5.1
Diffusion of electrons in the material A�B where T1>T2.
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FIGURE 5.2
Circuit with intermediate metals.
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The thermocouple does not measure temperature directly, but a temperature difference
between two bodies. It is necessary to know one of the temperatures, called the reference
junction (or cold-junction). One of the reference junctions most commonly used is the ice-
melting bath. It is preferable to use distilled water and a bath with finely crushed ice. For
more precise work, the reference junction must be the triple point of water. It is recom-
mended to immerse the connections in an oil or mercury bath. A simpler solution is to coat
the wires with a layer of synthetic varnish or place them inside a synthetic glove. The law
of intermediate metals allows the connection of a thermocouple in a configuration shown
in Figure 5.3, called junction open reference. This situation is widely used because it
preserves the thermocouple. Another widely used configuration, especially when there
are several thermocouples, is to keep the reference junction at the same temperature as the
environment, measuring the temperature reference with a bulb thermometer or a resist-
ance thermometer. The connections can be at a liquid bath, or a metal block with large
thermal inertia, and the thermocouples placed in holes filled with conductive material
(mercury, mineral oil, or ‘‘thermal grease’’). In electronic dataloggers, the reference junc-
tion is the connection terminals. However, these terminals are usually made from plastic
(low thermal conductivity), and there is a risk of temperature gradient occurring, causing
measurement error. Manufacturers usually recommend that the equipment be switched on
in advance (around 1 h) to establish a uniform internal temperature, thus reducing meas-
urement error. The reference temperature is measured by a thermistor, or a specific
integrated circuit, named ‘‘electronic cold-junction.’’
The thermocouples are in fact nonlinear temperature transducers: the thermoelectric

power varies with the temperature of the junctions. The thermocouple formed by copper=
constantan has a thermoelectric power (a) of around 40 mV K�1 at temperatures near the
environment, and a¼ 53 mV K�1 at 2008C. Table 5.1 presents simplified equations for
thermocouple type T (copper=constantan) and type K (chromel=alumel) with reference
junction at 08C. If a reference temperature different from 08C is used, the emf of the
reference junction temperature must first be added.

TABLE 5.1

Equations for Thermocouples Type T and Type K with Reference Junction at 08C

Type
Temperature

Range emf (mV) Temperature (8C)

T (copper=const) �108C to 1008C V¼ 39.011Tþ 0.0374T2 T¼�0.0259V� 7.11663	 10�7 V2

þ 2.85872	 10�11 V3

K (chromel=alumel) �108C to 2008C V¼ 40.938T� 0.0008T2 T¼ 0.0244Vþ 1.123	 10�8 V2

FIGURE 5.3
Thermocouple in open circuit config-
uration.

Thermistor or
platinum sensor

Connection wires
(copper)

V

Isothermal block

Thermocouple wires
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The extension cables are wires with lower purity than those defined by standards for the
manufacturing of thermocouples. They are inserted between the measuring point and the
reference junction, with the goal of reducing the cost. The presence of these wires can
introduce uncertainties up to 28C, but this can be greatly reduced if the system is calibrated
with them, and the same temperature calibration is retained during use.
A simple electrical contact between the two wires is enough to build a thermocouple,

because the flowing electrical current is very small. However, the oxidation may impede
the passage of electrons. At low temperature, brazing with tin is sufficient. At higher
temperatures, it becomes necessary to use acetylene or arc welding. However, the method
of manufacturing a thermocouple differs depending on the need of use. When the meas-
urement of fast transient phenomena is required, the thermocouple must be fine, and the
junction should be as small as possible. Even when it is desired to measure an average
temperature, this integration can be accomplished using a junction of large size, bearing in
mind a possible influence of exchange by radiation. The measuring point of temperature of
a thermocouple is the last region of contact between the two materials (Figure 5.4). A short
circuit before the junction is a source of error.

5.2.1 Plated Thermocouple

The need to simplify the fabrication of thermoelectric circuits (eliminating the welding) led
to the use of bimetallic circuits, made by electrolytic (or chemical) deposition of a high-
conductivity metal layer (material 2, Figure 5.5) on a metal support with lower conduct-
ivity and different thermoelectric power (material 1, Figure 5.5). The thermoelectric power
was defined by Hannay in 1959 as follows: ‘‘the power of a thermoelectric material is a
measure of the tendency of free electrons to move from warm to cold regions. This shift
results is a Seebeck difference of potential with an amplitude sufficient to offset the
electrical current created by the displacement of loads in the circuit.’’ To calculate the
thermoelectric power at any point of a nonhomogeneous circuit, it is necessary to establish
the relationship between the electric current at this point and the gradients of potential and
temperature, and deduct the relationship to cancel the electric current.

5.2.1.1 Metal Homogeneous Region

In the section of the non-coated circuit in the presence of a thermal gradient, local Ohm’s
law is generalized in the form:

j ¼ sE� saT (5:2)

FIGURE 5.5
Bimetallic circuit. Material 1

Material 2

FIGURE 5.4
Measurement error by short circuit in
thermocouple. Last contact point

Junction

Tref

V

Temperature
measurement point
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To cancel the local current density, the gradient of electric potential must be proportional to
the temperature gradient. The electrical current will be canceled if

a ¼ E
rT (5:3)

which corresponds to the usual definition of the thermoelectric power.

5.2.1.2 Regions Coated by Metallic Deposit

The same method can be used to determine the thermoelectric power in the regions
covered by the metallic deposit. If the temperature is constant in the transverse direction
of the circuit, the electrical current flowing in the axial direction must be zero (Figure 5.6).
The expressions of the currents I1 and I2 through the horizontal surfaces are as follows:

I1 ¼
ðð
S1

j1dS1, I2 ¼
ðð
S2

j2dS2 (5:4)

When the thickness of the deposit and substrate are constant and the streamlines are fully
developed, the equations above reduce to

I1 ¼ S1j1, I2 ¼ S2j2 (5:5)

By definition, the current across the cross section of the bimetallic layer along the direction
O-x must be nil, that is,

I ¼ (s1S1 þ s2S2)Ex � (a1s1S1 þ a2s2S2)DTx ¼ 0 (5:6)

This relation can be identified as generalized Ohm’s law applied to conductors showing an
equivalent electrical conductivity (seq).

I ¼ seq(S1 þ S2)Ex � seqaeq(S1 þ S2)DTx ¼ 0 (5:7)

Comparing Equations 5.6 and 5.7, the linear conductivity can be expressed by

seq(S1 þ S2) ¼ s1S1 þ s2S2 (5:8)

seq ¼ s1S1 þ s2S2
S1 þ S2

(5:9)

FIGURE 5.6
Definition of area integration areas of current
densities.
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which leads to an equivalent thermoelectric power (aeq) given by

aeq ¼ a1s1S1 þ a2s2S2
s1S1 þ s2S2

(5:10)

The thermoelectric equivalent power (aeq) depends not only on the thermoelectric power of
the materials involved but also on the electrical conductivities and cross section areas.

5.2.1.3 Seebeck Effect in Bimetallic Circuits

A thermocouple made by partial metallization of a wire or film generates an emf caused by
the Seebeck effect, proportional to the temperature difference between the ends of the
deposited electrodes (thermoelectric junctions). The potential difference between points A
and B of the circuit (Figure 5.7) is obtained by integration of the gradient of electrical
potential between these two points:

E ¼ aDT or
qV
qx
¼ a

qT
qx

(5:11)

Integration from A to B leads to

VB � VA ¼
ðB
A

a1dT (5:12)

Following the same method, the potential difference measured by the Seebeck effect (V) is
obtained by integrating the potential gradient on the path AD:

V ¼
ðB
A

a1dT þ
ðC
B

aeqdT þ
ðD
C

a1dT (5:13)

and assuming that the temperatures at the ends of the circuit are the same (TA¼TD), then

V ¼ (a1 � aeq) (TB � TC) (5:14)

FIGURE 5.7
Plated thermocouple: equivalent circuit.
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Thus, the Seebeck emf is proportional to the difference in thermoelectric power between
the substrate and the region with the metallic deposit. Figure 5.8 shows the difference in
thermoelectric power of some pairs of materials as a function of cross section area ratio
(S2=S1). It is possible to see that Bismuth deposited on a base of Antimony gives a high
thermoelectric power difference, but it requires a thick deposit. The cause is a small
difference in electrical conductivity of both materials. The fabrication of small thermopiles
can be harmful because the high thermal conductivity leads to a ‘‘thermal short circuit’’
between the joints, decreasing the sensitivity of the device. The same phenomenon occurs
in the iron=constantan pair. The copper=constantan pairs and gold=constantan pairs
(constantan being the substrate), despite showing a regular difference of thermoelectric
power, do not require a very thick deposit. The reason for this is the high contrast in
electrical conductivity of materials. The use of the chromel=alumel pair is not practical
because the deposit of this alloy is difficult (Delatorre et al. 2003).

5.3 Heat Fluxmeters

There are basically two types of heat fluxmeters: transient and stationary type. The
transient type, also called calorimetric, correlates the increase in temperature of a body
with mass (m) and specific heat (c) to the heat flux absorbed (Q):

Q ¼ mc
qT
qt

(5:15)

The second type, which is more widely used, is based on Fourier law, relating the heat flux
(q) that crosses a body (called auxiliary wall) with the temperature difference (DT) between
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Equivalent thermoelectric power (aeq) as a function of cross section area ratio (S2=S1).
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the faces, as shown in Figure 5.9. It is possible to distinguish two types of transducers by
considering the way they measure the difference in temperature:

1. Transverse gradient fluxmeters

2. Tangential gradient fluxmeters

5.3.1 Transverse Gradient Fluxmeters

The temperaturedifference ismeasured in adirection transverse to the surfacewhere theheat
transfer rate is evaluated. Themost common forms of measurement are presented below.

5.3.1.1 Welded Thermopile Sensor

In this configuration, the temperature difference is measured by a welded thermopile, and
the resin is the auxiliary wall, as shown in Figure 5.10. The difficulty in this configuration
consists in welding the thermocouples, requiring a large wall thickness (around 5 mm)
(Philip 1961). The device has a high thermal resistance and significantly disturbs the
measurement.

5.3.1.2 Plated Thermopile Sensor

The construction of the thermoelectric circuit can be simplified by using the electrolytic
deposition of copper on a constantan wire (principle described in Section 5.3.3) to eliminate
the production of a large number of thermoelectric welded joints (Figure 5.11). But the

FIGURE 5.10
Welded thermopile sensor. V

Weld

Heat flux
Insulation

ΔT

FIGURE 5.9
Measurement principle of stationary heat fluxmeter. Auxiliary wall

Heat flux

ΔT

FIGURE 5.11
Plated thermopile sensor.

Heat flux
Constantan wire

Auxiliary wallCopper plated over
constantan wire
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transducer thickness is large (about 3 mm) which is a source of measurement error (Beasley
and Figliola 1988).

5.3.1.3 Hole-Plated Sensor

In this configuration, the thermocouples are constructed by a photoetching technique and
deposited in vacuum on a thin substrate (100 mm) (Figure 5.12). However, the high cost
and difficulty of building sensors with large areas of measurement limit their use.

5.3.2 Tangential Gradient Fluxmeter

Here, the key is to modify the lines of heat flux to generate a temperature difference in a
plane tangential to the plane of measurement (Güths 1994). The deviation of the flux
lines is caused by a copper pin shown in Figure 5.13. The temperature differences are
measured by the deposited thermocouples connected in series. Each thermocouple

FIGURE 5.12
Hole-plated sensor.
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FIGURE 5.13
Tangential gradient heat fluxmeter: (a) cross section view and (b) open view.
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converts a temperature difference in Seebeck emf. The emf produced is directly
proportional to the number of thermoelements distributed on the surface of the sensor.
This technique allows the manufacturing of thermocouples without welds, which facili-
tates the fabrication of transducers with large area of measurement, high sensitivity,
and reduced thickness.

5.3.3 Calibration Methods

The accuracy of the calibration process defines the performance of transducers. The most
common way to calibrate remains the use of a heater, which is considered as a standard
procedure. This section shows two configurations for calibration: (a) the simultaneous
method and (b) the ‘‘auxiliary transducer’’ method.

5.3.3.1 Simultaneous Method

One of the most standard and direct methods to calibrate using a heater is a simultaneous
calibration of two transducers. Initially, the transducers are placed according to the config-
uration shown in Figure 5.14a. The same heat flux flows through the two transducers:

qA ¼ qB (5:16)

The insulation has the function of minimizing heat losses from the top surface of the heater.
It does not play any active role in the process. The plate must be maintained at constant
temperature. Afterwards, the heater is placed between the two transducers as shown in

Insulation

VA qA

qB
VB

Skin heater

Heat fluxmeter A

Heat fluxmeter B

Isothermal plate(a)

Isothermal plate

Isothermal plate

Heat fluxmeter A

Heater
Heat fluxmeter B

P

(b)

VA
qA

qBVB *

**

*

FIGURE 5.14
Simultaneous calibration: (a) first configuration and (b) second configuration.
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Figure 5.14b. Assuming that the entire heat flux dissipated by the heater (P) crosses the
surfaces (A) of the two transducers,

P
A
¼ qA*þ qB* (5:17)

assuming a linear relationship between heat flux and the emf (V):

q ¼ cV (5:18)

Equations 5.16 and 5.17 are then written as

P
A
¼ cAVA*þ cBVB* (5:19)

cAVA ¼ cBVB (5:20)

arriving at the following relations:

cA ¼ P=A

VA*þ (VA=VB)VB*
and cB ¼ P=A

VB*þ (VB=VA)VA*
(5:21)

5.3.3.2 ‘‘Auxiliary Transducer’’ Method

The heat flux lost through insulation is measured by a transducer previously calibrated
and subtracted from the value dissipated by the heater (Figure 5.15). This method is
particularly interesting for ‘‘in situ’’ calibration.
The accuracy of calibration is directly dependent on the accuracy of the heat flux

dissipated by the heater. It should be as thin as possible to minimize heat losses from the
sides and have the same size, that is, the same area, as the fluxmeter. The heater-dissipated
power should not also depend on its own temperature level. This can be obtained by the
use of heaters in constantan, which have an electrical resistance that does not vary with
temperature. To minimize uncertainties arising from the wires, it is recommended to
measure the electrical resistance in the four-wire configuration and use the current meas-
urement to calculate the power dissipation (De Ponte and Maccato 1980).

FIGURE 5.15
‘‘Auxiliary transducer’’ calibration method.Isothermal plate

Insulation

Auxiliary heat
fluxmeter

Heater

Heat fluxmeter
to calibrate

P

Heat Flux Sensors 181

  



5.4 Conclusion

Plated thermocouples facilitate the construction of thermopiles, eliminating the need of
soldering. The thermopiles are the basic element of most heat fluxmeters, and the use of the
technique of plating permits the development of new types of sensors, especially of ‘‘the
tangential gradient’’ type, which combines small thickness and high sensitivity. The
accuracy of the calibration process defines the performance of transducers, and the method
of the ‘‘auxiliary transducer’’ has been shown to be more simple and with low uncertainty.

Nomenclature

a thermal diffusivity (m2 s�1)
A surface area (m2)
c calibration constant of heat fluxmeters (W V�1)
E electric potential gradient vector (V m�1)
I electrical current (A)
j current density vector (A m�1)
k thermal conductivity (W m�1 K�1)
m mass (kg)
P electrical power (W)
q heat transfer rate (W m�2)
Q heat flow rate (W)
S cross section area (m2)
T temperature (K)
V emf (V)
rT temperature gradient vector (K m�1)
a thermoelectric power (V K�1)
s electrical conductivity (S m�1)

Superscripts

* related to second configuration of calibration

Subscripts

A sensor A
B sensor B
AB differential properties of two elements
eq equivalent circuit
1 deposit material
2 substrate material
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6.1 Introduction

6.1.1 Basic Relations for Sensed Radiance in Radiative Temperature Measurement

Matter spontaneously emits electromagnetic radiation in a very broad spectrum enclosing
ultraviolet (UV), visible light, infrared (IR), and microwaves. The emitted radiance from a
surface in a given direction depends on wavelength, temperature, and the considered
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matter and direction. For a solid material, it also depends on the surface state: presence of
corrosion and roughness. The maximum emitted radiance is given by Planck’s law. It only
depends on wavelength and temperature (Siegel and Howell 1972):

B(l,T) ¼ C1

l5
1

exp (C2=lT)� 1
(6:1)

B(l,T) is expressed in W=m3=sr, wavelength l in m, and temperature T in K, with
C1¼ 1.191	 10�16 W m2 and C2¼ 1.439	 10�2 m K (see Figure 6.1).
B(l,T) is also called the blackbody radiance. A blackbody surface absorbs all incoming

radiation, and no other surface, at the same temperature, emits more thermal radiation
than it does. The blackbody is essentially a thermodynamic concept and it is difficult to
find a material presenting such properties over the entire electromagnetic spectrum.
The blackbody radiance is described in Figure 6.1 for different temperature levels. The

maximum emission is observed at a wavelength lmax such that lmax T¼ 2898 mm K, which
is Wien’s displacement law. The peak emissive intensity shifts to a shorter wavelength at a
higher temperature in inverse proportion to T.
A common approximation to Plank’s law is Wien’s law, which is also plotted in

Figure 6.1:

BW(l,T) ¼ C1

l5
exp � C2

lT

� �
(6:2)

The approximation error increases with the wavelength. One can, however, consider that
Wien’s approximation is valid in the rising part of the radiance curve. As a matter of fact,
the error is less than 1% provided lT< 3124 mm K.
It is obvious that by measuring the thermal radiation emitted by the blackbody surface at

a given wavelength and with reference to Planck’s law, one can infer its temperature. This
idea is at the origin of pyrometry, thermography, microwave radiometry, and more

FIGURE 6.1
Blackbody radiance vs. wavelength for
T¼ 300, 500, 700, 900, and 1100 K (from
bottom to top). Planck’s law in continu-
ous line and Wien’s law in dashed line.
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generally all electromagnetic-based approaches that rely on the thermal radiation intensity
measurement for temperature characterization.
The sensitivity of blackbody radiance to temperature, according to Planck’s law, is

plotted in Figures 6.2 and 6.3. Figure 6.2 refers to absolute sensitivity qB=qT whereas
Figure 6.3 refers to relative sensitivity B�1qB=qT. The absolute sensitivity presents a
maximum at a wavelength such that lT¼ 2410 mm K. For a blackbody at 300 K, maximum
radiance is observed at l¼ 9.65 mm; however, the maximum sensitivity to temperature
variations is observed at a shorter wavelength, namely, l¼ 8.03 mm. On the other hand, the
relative sensitivity is continuously decreasing (see Figure 6.3). The trend is like 1=l at short
wavelengths. The decreasing nature of relative sensitivity would favor short wavelengths
for temperature measurement. Actually, one should consider all three aspects: radiance
level, absolute sensitivity, and relative sensitivity, together with the spectral detectivity

FIGURE 6.3
Relative sensitivity of blackbody radi-
ance to temperature for T¼ 300, 500,
700, 900, and 1100 K (from top to
bottom).
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FIGURE 6.2
Absolute sensitivity of blackbody radi-
ance to temperature for T¼ 300, 500,
700, 900, and 1100 K (from bottom to top).
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and thus the signal-to-noise ratio of the potential sensors, when selecting a wavelength or a
spectral band for temperature measurement.
The ratio between L(l,T, u,w), the radiance effectively emitted by a surface in the

direction (u,w), and the blackbody radiance at same wavelength and same temperature is
called the emissivity:

e(l,T, u,w) ¼ L(l,T, u,w)
B(l,T)

� 1 (6:3)

The emissivity generally depends on the surface temperature but, just for convenience, we
will drop the T dependency.
Second Kirchhoff’s law states that the emissivity in a given direction is equal to the

absorptance in the same direction:

e(l, u,w) ¼ a(l, u,w) (6:4)

The energy conservation law for an opaque material (i.e., the energy that is not absorbed by
the surface is reflected in all directions) leads to the following relation between absorptance
and directional hemispherical reflectance:

a(l, u,w)þ r0\(l, u,w) ¼ 1 (6:5)

The radiation that leaves the surface L(l,T, u,w) is the sum of the radiation emitted by the
surface and the reflection by the surface of the radiation coming from the environment in
all directions (ui,wi) of the upper hemisphere:

L(l,T, u,w) ¼ e(l, u,w)B(l,T)þ
ð
2p

r00(l, u,w, ui,wi)L
#(l, ui,wi) cos uidVi (6:6)

where r00(l, u,w, ui,wi) is the bidirectional reflectance.
Let us now consider temperature measurement with an optical sensor. Depending on the

application, the sensor is at a distance ranging from a fraction of a meter, in common
industrial processes, to several kilometers in the case of airborne remote sensing and up to
hundreds or even thousands of kilometers in the case of satellite remote sensing. Apart
from the cases based on vacuum operation, the sensed thermal radiation is thus transmit-
ted through an air layer ranging from a few centimeters to the whole atmosphere thickness
(air layer thickness can be higher in the case of near-horizontal line of sight). Along this
optical path, only a fraction of the radiation is transmitted (the corresponding fraction is
defined by the transmission coefficient t(l, u,w)). The self-emitted radiation of the air layer
between the surface and the sensor, L"(l, u,w), finally adds to the transmitted fraction to
give the at-sensor radiance Ls(l,T, u,w):

Ls(l,T, u,w) ¼ t(l, u,w)L(l,T, u,w)þ L"(l, u,w) (6:7)

A common approximation is to consider that the surface is Lambertian, i.e., its optical
properties are direction independent. Equation 6.6 is then simplified as follows:

L(l,T) ¼ e(l)B(l,T)þ (1� e(l))
E#(l,T)

p
(6:8)
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where the surface irradiance is given by

E#(l,T) ¼
ð
2p

Lenv(l, ui,wi) cos uidVi (6:9)

By introducing L#(l,T)¼E#(l,T)=p, the equivalent isotropic environment radiance,
one gets

L(l,T) ¼ e(l)B(l,T)þ (1� e(l))L#(l) (6:10)

The influence of the air layer between the surface and the sensor was expressed through its
transmission and its self-emission. The same approach can be applied to model the
influence of the collecting optics of the sensor. Combining all together, a global transmis-
sion and a global self-emission can be defined therefrom.
This development has shown that, even for Lambertian surfaces, the sensed radiation

depends on a series of additional variables: the surface emissivity, the irradiance from the
environment, the path transmission, and the path self-emission. Therefore, in order to get
the target temperature from the measured radiance, one also has to estimate these vari-
ables. Depending on the application, the difficulties they introduce are very different:

1. Pyrometry of High-Temperature Surfaces
Generally the sensor is at a close range (the air path is on the order of 0.1–10 m).
Therefore, by carefully selecting the wavelength(s), the air transmission can be
very high. At the same time, the air self-emission can be negligible. In any case, a
calibration can be performed for correcting the optical path transmission and its
self-emission by aiming a blackbody which is put at the same distance from the
sensor. This calibration is satisfactory as long as both air path contributions do not
change. Regarding the reflection of the environment irradiance, the surrounding
surfaces are usually much colder than the sensed surface; in that case, the reflection
contribution is also negligible. For all these reasons, after a proper calibration of the
optic instrument at each wavelength, one thus has access to the emitted radiance
itself:

L(l,T) ¼ e(l)B(l,T) (6:11)

2. Airborne=Satellite Remote Sensing
Transmission and air layer self-emission cannot be discarded anymore. Further-
more, the aimed surface is most often in the same temperature range as the
environment whose emitted radiation is reflected on the surface (the ‘‘environ-
ment’’ consists of the atmosphere layer itself and nearby solid surfaces in the case
of ‘‘rough’’ scenes like urban scenes). The complete equation involving Equations
6.7 and 6.6 has thus to be considered. Generally, however, the terrestrial surfaces
are considered as Lambertian surfaces. After proper calibration, one has access to
the spectral at-sensor radiance:

Ls(l,T, u,w) ¼ t(l, u,w)[e(l)B(l,T)þ (1� e(l))L#(l)]þ L"(l, u,w) (6:12)
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In both cases, we face the so-called emissivity–temperature separation (ETS) problem. In the
second one, the atmosphere contributions are so important that a supplementary task of
atmospheric compensation needs to be accomplished.

6.1.2 Relations and Databases for Spectral Emissivity

One could think that emissivity is a material-only related property and that it would be
sufficient to refer to an emissivity database to solve the ETS problem. Some laws were
indeed found for spectral emissivity but only for ‘‘ideal’’ materials. As an example, for
pure metals, the Hagen–Rubens emissivity relation leads to

e(T,l) 
 0:0221
r273T
l

� �0:5
(6:13)

where
r273 is the resistivity at 273 K in V �m
T is the temperature in K
l is the wavelength in m (the constant 0.0221 is in (V �K)�1=2)

It was experimentally shown that this law is satisfactory only for l> 2 mm. Furthermore, it
is not valid for corroded or rough surfaces. As stated by Siegel and Howell (1972), ‘‘these
types of rules can be misleading because of the large property variations that can occur as a
result of surface roughness, contamination, oxide coating, grain structure, and so forth. The
presently available analytical procedures cannot account for all these factors so that it is not
possible to directly predict radiative property values except for surfaces that approach
ideal conditions of composition and finish.’’
For this reason, the emissivity of the considered material has to be evaluated in virtue of

its surface specific state. An indirect approach consists in measuring the directional hemi-
spherical reflectance using Equations 6.4 and 6.5 to infer directional emissivity. This
requires the use of an additional radiation source and bringing close to the characterized
surface an integrating hemisphere to collect all the reflected radiation. This approach was
used to build several databases (see for example Touloukian and DeWitt 1970, Salisbury
and d’Aria 1992, Baldridge et al. 2009), which give some hints on the emissivity range and
spectral variations for a specific material (in Figures 6.4 and 6.5 some examples of emis-
sivity spectra are reported in the 3–14 mm range).

6.1.3 Needs for Emissivity–Temperature Separation Methods

The indirect reflectance approach will not be dealt with in this chapter. We will rather
review the approaches consisting in evaluating simultaneously temperature and emissivity,
or which manage to get rid of emissivity in the temperature measurement procedure.
In the field of pyrometry, different methods were devised depending on the number of

wavelengths or wavebands used for the measurement: monochromatic, bispectral to multi-
wavelength pyrometry (MWP). They will be described in Sections 6.2 and 6.3.
In the field of remote sensing, the temperature range of common scenes (sea surface,

rural and urban landscapes) is a few tens of degrees around 300 K. The atmospheric
window corresponding to maximum radiance is the [8–14 mm] window. Fortunately in
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this spectral range, natural surfaces have a high emissivity (see Figure 6.5). This property,
together with the fact that several pixels in the IR image share the same atmospheric
parameters (transmission, self-emission) allowed developing a series of efficient methods
for ETS in the presence of participating atmosphere. A presentation of a few of these
methods will be given in Section 6.4.
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FIGURE 6.4
Spectral emissivity of a series of metals in the range of 3–14 mm (from top to bottom: oxidized galvanized steel,
galvanized steel, brass, copper). (Data from reflectance spectra in ASTER spectral library, http:==speclib.jpl.nasa.
gov=. Copyright: Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA; see also Balridge,
A.M. et al., Remote Sens. Environ., 113, 711, 2009.)
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FIGURE 6.5
Spectral emissivity of a variety of natural and manmade materials in the range of 3–14 mm. (Data from reflectance
spectra in ASTER spectral library, http:==speclib.jpl.nasa.gov=. Copyright: Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, CA; see also Balridge, A.M. et al., Remote Sens. Environ., 113, 711, 2009.)
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6.2 Single-Color and Two-Color Pyrometry

6.2.1 Single-Color Pyrometry

In single-color pyrometry one measures, in a given direction (u,w), the following radiance:

L(l, u,w,T) ¼ e(l, u,w)B(l,T) (6:14a)

However, from now on, we will not recall the angular dependency. Thus

L(l,T) ¼ e(l)B(l,T) (6:14b)

The raw signal also includes a multiplicative coefficient and an additive coefficient (assum-
ing linearity between radiance and recorded signal). Nevertheless, by calibrating the sensor
with a blackbody at two different temperatures, one can get rid of both coefficients. Such
calibration is from now on assumed to have been applied.
Obviously, at this stage, it is necessary to know the spectral emissivity of the sensed

surface e(l) to infer the blackbody radiance and then the surface temperature. One has to
refer to previous knowledge of the material optical properties, which, referring to the
difficulties presented in Section 6.1.2 for establishing reliable emissivity databases, is
prone to lead to substantial errors.
By differentiating Equation 6.14, one can evaluate the sensitivity of temperature to an

error on emissivity:

dT
T
¼ � T

B
dB
dT

� ��1 de
e

(6:15)

The amplification factor
T
B
dB
dT

� ��1
can be deduced from the relative sensitivity

1
B
dB
dT

in

Figure 6.3.
Also, with Wien’s approximation, Equation 6.15 reduces to

dT
T
¼ � lT

C2

de
e

(6:16)

The amplification factor is about 0.08 at 1 mm for a temperature of 1100 K. It reaches about
0.2 at 10 mm for a temperature of 300 K. A 10% underestimation of emissivity will lead to a
0.8% overestimation of temperature in the first case (i.e., 8 K) and 2% in the second case
(i.e., 6 K). The advantage of working at short wavelength is evident from this perspective;
as a matter of fact, the error amplification is proportional to l. For this reason some authors
promoted the use of visible pyrometry and even UV pyrometry (see for example Corwin
and Rodenburgh 1994, Hervé and Sadou 2008, Pierre et al. 2008). However, although a
given emissivity relative error has a lower impact on temperature evaluation at short
wavelength, it should not occult the fact that a reasonable estimation of emissivity has
nevertheless to be made. The retrieved temperature is unavoidably affected by this emis-
sivity estimation (Duvaut et al. 1996). Apart from this, at short wavelength, both the signal
and its absolute sensitivity to temperature decrease. The choice of the spectral range for
pyrometry is thus always a compromise.
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6.2.2 Two-Color Pyrometry

By performing a measurement at another wavelength, one adds new information, but
unfortunately one also adds a new unknown, namely, the spectral emissivity at this
supplementary wavelength:

L(l1,T) ¼ e(l1)B(l1,T)
L(l2,T) ¼ e(l2)B(l2,T)



(6:17)

The most popular method consists in calculating the ratio of the spectral radiances:

R12 ¼ L(l1,T)
L(l2,T)

¼ e(l1)
e(l2)

B(l1,T)
B(l2,T)

¼ e(l1)
e(l2)

l2
l1

� �5 exp (C2=l2T)� 1
exp (C2=l1T)� 1

(6:18)

which gives, with Wien’s approximation,

R12 
 e(l1)
e(l2)

l2
l1

� �5
exp

�C2

l12T

� �
¼ e(l1)

e(l2)
l2
l1

l12

� �5 1
C1

BW(l12,T) (6:19)

where the equivalent wavelength of the two-color sensor is defined by

l12 ¼ l1l2
l2 � l1

(6:20)

Ratio-two-color pyrometry thus requires knowing the emissivity ratio e(l1)=e(l2) in order
to infer temperature from the radiance ratio R12 according to Equation 6.18 or to its
approximation, Equation 6.19. One common assumption is that e(l1)¼ e(l2) (for this
purpose, the gray body assumption is often invoked; however, stating that e(l1)¼ e(l2) is
less restrictive than the gray body assumption that concerns the entire spectrum).
As for one-color pyrometry, it is easy to relate the temperature estimation error to the

emissivity estimation error:

dT
T
¼ � l12T

C2

de1
e1
� de2

e2

� �
(6:21)

Considering the examples (l1¼ 1mm, l2¼ 1.5mm) and T¼ 1100K for the first one and
(l1¼ 10 mm, l2¼ 12 mm) and T¼ 300 K for the second one, the amplification factor reaches,
respectively, 0.22 and 1.2; these values are respectively three and six times higher than with
single-color pyrometry as illustrated in Section 6.2.1.
The error on temperature can be lowered by reducing the equivalent wavelength, i.e., by

increasing the higher wavelength l2 or decreasing the shorter one l1. The amplification
factor will anyway be larger than with single-color pyrometry performed at the shortest
wavelength. Reducing the equivalent wavelength also gives the opportunity to increase
R12 sensitivity to temperature variations when approaching the l12T¼ 2410mmK optimum
product.
Anyway, a prior knowledge about the emissivity spectrum, more precisely the ratio

e(l1)=e(l2), is required to expect some success with ratio pyrometry. The advantage,
however, as compared to one-color pyrometry is that, thanks to the ratioing, the method
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is insensitive to problems like a partial occultation of the line of sight, or an optical path
transmission variation (provided that this transmission variation is the same in both
spectral channels).
Bicolor pyrometry has been a matter of research for a long time and integrated instru-

ments are now on the market. Some modifications to the basic approach were suggested in
order to improve its performances. As an example the photothermal approach solves the
problem of reflected fluxes (Loarer et al. 1990). Indeed when the sensed surface is not much
hotter than the surrounding, the reflected radiance happens to be disturbing. The photo-
thermal approach is an active method which, with the use of a modulated laser beam,
allows the emitted flux to be rigorously separated from the reflected fluxes. The slight
temperature modulation induced by the laser absorption gives rise to a modulated com-
ponent in the signal whereas the reflected flux only contributes to the DC signal. A lock-in
detection allows to separate them. Finally, by performing the measurement at two wave-

lengths, the ratio of the modulated signals is proportional to
e(l1)qB=qT(l1,T)
e(l2)qB=qT(l2,T)

which is

then used to infer the surface temperature (compare with Equation 6.18). A pulse laser can
also be used, where the transient signal at both wavelengths leads to the same ratio as
before (Loarer and Greffet 1992).
In some circumstances, it is possible to bring close to the characterized object a highly

reflecting surface. By properly choosing its shape, one gets two benefits: the reflection
fluxes from the environment are diminished and the apparent emissivity of the sensed
surface is increased thanks to the multiple reflections of the emitted radiation between the
surface and the mirror (Krapez et al. 1990). As a consequence, the temperature estimation
error due to estimation errors on _e (l1)=_e(l2) is diminished, where _e is the apparent,
actually amplified, emissivity.

6.3 Multiwavelength Pyrometry

With single-color pyrometry, we have at hand one radiance measurement and two
unknowns: the monochromatic emissivity and the temperature. By performing a measure-
ment at another wavelength we get an additional radiance value but at the same time we
introduce an additional unknown: the emissivity at this newwavelength. The process can be
repeated up to N wavelengths. Basically the problem of MWP is thus underdetermined:
there are N values for the observable and Nþ 1 unknown parameters. Furthermore, if the
surface irradiance is significant and if the background radiation can be approximated by a
blackbody radiation at temperature Tb, the number of unknowns reaches Nþ 2 (the alter-
native is to evaluate independently this unknown background equivalent temperature).
MWP has been a subject of controversy for several decades (Gardner 1980, Coates, 1981,

Hunter et al. 1985, 1986, Hiernault et al. 1986, Nordine 1986, DeWitt and Rondeau 1989,
Tank and Dietl 1990, Gathers 1991, Khan et al. 1991a,b, Lindermeir et al. 1992, Duvaut et al.
1995, 1996, Chrzanowski and Szulim 1998a,b, 1999, Scharf et al. 2001, Cassady and
Choueiri 2003, Mazikowski and Chrzanowski 2003, Sade and Katzir 2004, Wen and
Mudawar 2004a,b, Uman and Katzir 2006, Duvaut 2008): some authors presented experi-
mental results with various successes, sometimes with small temperature errors and at
other times with unacceptably high errors, depending on the material, on its surface
state, and on the chosen function for approximating the emissivity spectrum. Even the
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theoretical works do not agree on the advantage of using a large number of wavelengths
(Gardner 1980, Coates 1981, Nordine 1986, Tank and Dietl 1990, Gathers 1991, Khan et al.
1991b, Lindermeir et al. 1992, Wen and Mudawar 2004a,b, Duvaut 2008).

6.3.1 Interpolation-Based Methods

In order to solve the underdetermined problem, a potential solution is to reduce by 1 the
degree of freedom of the emissivity spectrum. A first approach consists in approximating
e(l) or ln[e(l)] by a polynomial of degree N� 2. However, it was shown by Coates (1981),
based on Wien’s approximation and a polynomial approximation of ln[e(l)], that this
method can rapidly lead to unrealistic temperature values as N increases.
As a matter of fact, by taking the logarithm of Equation 6.14 with Wien’s approximation

for blackbody radiance, one gets

ln
L(li,T)l5i

C1

� �
¼ ln (ei)� C2

liT
, i ¼ 1,N (6:22)

With a polynomial approximation of degree N� 2 for ln[e(l)], a temperature T0 is retrieved
(it is actually extracted from the constant parameter of the polynomial of degree N� 1
which interpolates the N values li ln L(li,T)l5i =C1


 �
):

ln
L(li,T)l5i

C1

� �
¼
XN�2
j¼0

ajl
j
i �

C2

liT0
, i ¼ 1,N (6:23)

It is then easy to see, by multiplying both equations by li and subtracting them, that the
temperature error expressed through C2(1=T� 1=T0) (it is also called ‘‘temperature correc-
tion’’) corresponds to the constant parameter of the polynomial of degree N� 1 passing
through the N values li ln[e(li)]. Temperature corrections for N¼ 1, 2, 3 are (Coates 1981,
Khan et al. 1991a):

N ¼ 1 C2
1
T
� 1
T0

� �
¼ l1 ln (e1)

N ¼ 2 C2
1
T
� 1
T0

� �
¼ l1l2

l1 � l2
ln

e2
e1

� �
N ¼ 3 C2

1
T
� 1
T0

� �
¼ l1l2l3

(l2 � l1)(l3 � l1)(l3 � l2)

	 l1 ln
e2
e3

� ��
þ l2 ln

e3
e1

� �
þ l3 ln

e1
e2

� ��
(6:24)

With equidistant wavelengths, the temperature correction involves the ratio e1e3=e22
for three wavelengths and the ratio e1e23=e

2
2e4 for four wavelengths (Khan et al. 1991a).

Of course, one should estimate this ratio beforehand. Assigning arbitrarily a value of 1 to
this ratio for different metals had the consequence that the temperature estimation error
increased very rapidly with the number of wavelengths (Khan et al. 1991a).
It can be shown that the temperature correction limit for wavelength intervals decreasing

to 0 is equal to (�1)N�1lN=(N � 1)!dN�1 ln [e(l)]=dlN�1 (Nordine 1986). One can also
recognize in the temperature correction the extrapolation error at l¼ 0 of the li ln[e(li)]
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polynomial interpolation. This finding can now be developed a little more. If, by chance,
a polynomial of degree N� 2 could be found passing exactly through the N values ln[e(li)],
the polynomial of degree N� 1 passing through the N values li ln[e(li)] would have a 0
constant parameter—i.e., no extrapolation error—and the retrieved temperature would be
the real one. Such an event is highly improbable and the result is tightly dependent on
polynomial extrapolation properties. Unfortunately it is well known that an extrapolation
based on polynomial interpolation leads to increasingly high errors as the polynomial
degree rises. Furthermore, things get progressively worse as the extrapolation is performed
far from the interpolation domain. This last point would actually advocate expanding the
spectral range to the shortest possible wavelength, but it is a desperate remedy.
The potentially catastrophic errors described just before are systematic errors, i.e., method

errors. They are obtained evenwhen assuming errorless signal. To analyze themeasurement
error’s influence, one can state, for simplicity, that the measurement error in channel i is
described by a corresponding uncertainty of the apparent emissivity in the same channel,
de(li). The interpolation of the li ln[e(li)þ de(li)] values leads afterwards to the same
extrapolation problem as described before and adds to it. The calculated temperature is
thus increasingly sensitive to measurement errors as the number of channels increases.
The interpolation-based method error originates from overfitting of the experimental

data. It was finally recognized that the interpolation-based method could be retained
only for the simpler pyrometers, i.e., with two to three wavelengths at most (Coates 1981).

6.3.2 Regularization by Using a Low-Order Emissivity Model

6.3.2.1 Description of Emissivity Models

The overfitting shortcomings previously described can be alleviated by reducing the
number of unknowns that are used for describing the emissivity spectrum. Different
models were tested:

e(li) ¼
Xm
j¼0

ajl
j
i, i ¼ 1, . . . ,N, m < N � 2 (generally m ¼ 1 or 2) (6:25)

ln[e(li)] ¼
Xm
j¼0

ajl
j
i, i ¼ 1, . . . ,N, m < N � 2 (generally m ¼ 1 or 2) (6:26)

e(li) ¼ 1
1þ a0l2i
� � , i ¼ 1, . . . ,N (6:27)

Polynomials of l1=2 or l�1=2 for ln[e(l)] and functions involving the brightness temperature
were also considered by Wen and Mudawar (2004a,b), a sinusoidal function of l by
Gardner (1980), and other more ‘‘physical’’ models like Maxwell, Hagen–Rubens, and
Edwards models by Duvaut et al. (1995, 1996) and Duvaut (2008).
The gray-band model consists in separating the spectrum in a small number Nb of

regions and assigning the same emissivity value to all channels of a given region (Tank
and Dietl 1990). The bands can be narrowed down to three or even two channels as
suggested by Lindermeir et al. (1992). In this way, the number of unknowns is reduced
from Nþ 1 to N=3þ 1 or N=2þ 1. One can even go further by squeezing some bands
to one channel. The extreme limit consists in N� 1 single-channel bands plus one
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dual-channel band. In that case, we face a problem with Nmeasurements andN unknowns
which is thus, in principle, invertible. We will see that it is actually very badly conditioned.
The concept of gray bands can be generalized by allowing that the channels chosen to

share a common emissivity value are not necessarily close together: an iterative process
was described by Barducci and Pippi (1996) where these wavelengths are each time
reshuffled according to the pseudo-continuous emissivity spectrum, i.e., the one defined
over the N wavelengths according to

ê(li, T̂) ¼ L(li,T)

B(li, T̂)
, i ¼ 1, . . . ,N (6:28)

where
T̂ is the last estimation of temperature
ê(li, T̂) is sorted from lower to higher value
the Nb groups of equal emissivity wavelengths are defined by cutting this vector into

Nb parts

The unknown parameters of the emissivity function, together with temperature, are finally
evaluated through least-squares minimization. By introducing Wien’s approximation for
radiance, a polynomial approximation for ln[e(l)], and by considering the observable
ln [L(li,T)l5i =C1], Equation 6.22 shows that the problem reduces to a linear least-squares
problem (Gardner 1980, Hiernault et al. 1986, Cassady and Choueiri 2003, Mazikowski and
Chrzanowski 2003). Otherwise, when considering the observable L(li, T) one faces a non-
linear least-squares problem (Gardner et al. 1981, Hunter et al. 1985, 1986, DeWitt and
Rondeau 1989, Tank and Dietl 1990, Gathers 1991, Khan et al. 1991b, Lindermeir et al.
1992, Duvaut et al. 1995, Chrzanowski and Szulim 1998a,b, Scharf et al. 2001, Cassady and
Choueiri 2003, Sade and Katzir 2004, Wen and Mudawar 2004a,b, Uman and Katzir 2006,
Duvaut 2008). Let us add that by rearranging the i equations as described in Equation 6.22
one could get rid of one parameter, either a constant parameter or the temperature
(Gardner 1980, Hiernault et al. 1986, Cassady and Choueiri 2003). However, it is believed
that no advantage in accuracy is obtained by manipulating the data to present the same
information in a different form (Gardner 1980). As a matter of fact, in the case of linear
fitting such a manipulation even increases the uncertainty of the identified parameters.

6.3.2.2 Least-Squares Solution of the Linearized ETS Problem

Let us take the logarithm of the measured radiance and adopt Wien’s approximation. The
chosen observable is

Yi ¼ ln
Lil5i
C1

� �
þ ei, i ¼ 1,N (6:29)

where ei is the measurement error (noise) in channel i. We will assume that the ei, i¼ 1,N
are uncorrelated random variables following a Gaussian distribution of uniform variance.
Actually a noise of uniform variance is usually assumed for Li, but, for ease, we will
consider that this applies to its logarithm. This approximation is valid if the spectral
range is not too wide with respect to the variations of B(l,T) and if the emissivity does
not change too much.
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According to Equation 6.22 where ln[e(l)] is approximated by a polynomial of degree m,
the least-squares solution is

P̂ ¼ â0 � � � âm T̂

 �T¼ arg min

aj ,T

XN
i¼1

Yi �
Xm
j¼0

ajl
j
i �

C2

liT

0@ 1A0@ 1A2

(6:30)

For numerical purposes, it is preferable to replace the wavelength in the polynomial
expression by its reduced and centered value so that li* 2 [�1, 1]:

li* ¼ 2
li � lmin

lmax � lmin
� 1 (6:31)

For the same reason, one can normalize T by Tref so that C2=liTref is on the order of 1. The
associated unknown parameter is then PT*¼Tref=T. The parameter vector is

P* ¼ a*0 � � � a*m P*T

h iT
(6:32)

where the parameters aj* are the coefficients of the polynomial in li*. The corresponding
sensitivity matrix is

X ¼
1 l*1 l1*

2 � � � �C2

l1Tref� � � � � � � � � � � � . . .

1 l*N lN*
2 � � � �C2

lNTref

26664
37775
N,mþ2

(6:33)

where the columns correspond to the sensitivity to successive parameters in vector P* (i.e.,
the first derivative of the model functions relatively to each parameter).
The sensitivity to the parameters aj* and PT* is plotted vs. the reduced wavelength

l0i ¼ li=lmin in Figure 6.6 up to j¼ 2 for the particular case of lmax=lmin¼ 1.75. The

FIGURE 6.6
Sensitivity to the first three coefficients of
the emissivity polynomial function (con-
tinuous, dashed, and dotted line) and to
PT, the inverse of normalized tempera-
ture (dashed–dotted line). Reduced
wavelength is l0 ¼ l=lmin.
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sensitivity to the temperature inverse is very smooth and close to linear. We thus expect a
strong correlation between the parameters (near collinear sensitivity vectors).
An estimation of the parameter vector P* in the least-squares sense is obtained by solving

the linear system:

(XTX)P̂* ¼ XTY (6:34)

The near-dependent sensitivities lead to an XTX matrix that is near singular. Indeed by
computing the condition number of the matrix XTX one gets very high values, even for a
low degree polynomial approximation (see Figure 6.7).
The condition number describes the rate at which the identified parameters will change

with respect to a change in the observable. Thus, if the condition number is large, even a
small error in the observable may cause a large error in the parameters (the condition
number, however, only provides an upper bound). The condition number also reflects how
a small change in the matrix XT X itself will affect the identified parameters. Such a change
may be due to the measurement error of the equivalent wavelength corresponding to each
spectral channel. From Figure 6.7, a first statement is that the regularization with a
polynomial model of degree 2 and higher will not be efficient (the case of a polynomial
of degree 1 would not be very stable either).
In the field of polymer regression, using orthogonal polynomials like Legendre polyno-

mials instead of the monomial basis functions greatly helps for reducing the condition
number. However, in present case, due to the smooth sensitivity of the temperature
parameter, this does not help much.
A means of reducing the condition number would be to extend the spectral range. From

the radiance curves in Figure 6.1 we notice that radiance is higher than 10% of its
maximum over nearly one decade bandwidth. Assuming that the measurement is per-
formed in different channels of such a large bandwidth, the condition number would
decrease as shown in Figure 6.8. Unfortunately, due to technical reasons such as availabil-
ity of sensors, spurious reflections from external sources (sun, ambient light, etc.), and

FIGURE 6.7
Condition number of the XT X matrix (s:
N¼mþ 2, u: N¼ 7, e: N¼ 30, �:
N¼ 100). Considered spectrum is such
that lmax=lmin¼ 1.75.
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presence of atmospheric absorption bands such a broadband temperature measurement
remains hypothetical.
Instead of modeling ln[e(l)] by a polynomial function, one could use a staircase function

(gray-band model). The sensitivity related to the emissivity assigned to a given band is a
top-hat function. The condition number of the matrix XTX is represented in Figure 6.9. It
slightly depends on the number of channels, but it rapidly rises with the number of bands
Nb: the trend is roughly like N3

b . This indicates that the ill-conditioned character of the
identification problem becomes very critical if one looks at describing the emissivity profile
with a high-resolution staircase function. It is expected that only rough approximations of
the profile (surely with less than five to six bands) are likely to provide a safe character-
ization, i.e., with reasonably low parameter uncertainties.
The condition number is not all. It also depends on the choice of the reference tempera-

ture Tref. Sometimes it could even be misleading because it only gives an upper bound of

FIGURE 6.8
Same as in Figure 6.7 with lmax=lmin¼ 10.
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FIGURE 6.9
Condition number of XT X matrix in the
case of a staircase emissivity model
(gray-band model). Number of wave-
lengths is N¼ 7 (continuous line),
N¼ 30 (dashed line), N¼ 100 (dotted
line). Considered spectrum is such that
lmax=lmin¼ 1.75.
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the error propagation. It is better to analyze the diagonal values of the covariance matrix
(XTX)�1. They actually provide the variance amplification factor for each identified par-
ameter P*:

s2
P*

h i
¼ diag (XTX)�1

� �
s2 (6:35)

where s2 is the variance of the observable, i.e., (sLi
=Li)

2, which is here assumed independ-
ent of the spectral channel i (if one assumed instead that the radiance variance (sLi

)2 is

uniform, the result would be s2
P*

h i
¼ diag (XTC�1X)�1

� �
where C is the inferred covar-

iance matrix of the observable).
One should be aware that s2

P* merely describes the error around the mean estimator
value due to radiance error propagation to the parameters. If the mean estimator is biased,
as is the case when the true emissivity profile is not well represented by the chosen model,
one should add the square systematic error to get the root mean square (RMS) error which
better represents the misfit to the true parameter value, either temperature or local emis-
sivity (this will be described later through a Monte Carlo analysis of the inversion).
With the polynomial model, the mean standard relative error for emissivity, which is

defined by

se

e
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

s2
ei

e2i

vuut (6:36)

is related to the standard error of the retrieved polynomial coefficients through

se

e
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1

X2
ij

h iT
s2
aj*

h i
j¼1,m

vuut (6:37)

As such, it can be related to the uncertainty of the observable, which will be written as
sL=L, through an error amplification factor Ke:

se

e
¼ Ke

sL

L
(6:38)

With the gray-band model, the mean standard error and the amplification factor are
defined according to

se

e
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XNb

i¼1

sei

ei

� �2
vuut ¼ Ke

sL

L
(6:39)

From Wien’s expression for radiance, it is clear that the standard relative error for tem-
perature is proportional to temperature, to sL=L, and to a wavelength scale representative
of the spectral window ~l (one can choose the geometric mean of the window limits:
~l � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

lminlmax
p

). The error amplification factor for temperature, KT, is thus defined
according to

sT

T
¼ KT~lT

sL

L
(6:40)
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The error amplification factors KT and Ke are plotted in Figures 6.10 and 6.11 for the
polynomial model and in Figures 6.12 and 6.13 for the gray-band model, assuming for
both cases a relative bandwidth lmax=lmin of 1.75 (this could correspond to the [8–14 mm]
spectral interval, for example).
A first comment for the polynomial model is that the standard errors increase exponen-

tially with the polynomial degree m, roughly like exp(2m). This increase can be slowed
down by widening the spectral window. With the gray-band model, the standard errors
increase nearly in proportion to the number of bands. In both cases, they decrease with the
total number of channels, roughly like N�1=2. Empirical relations can be found for the
factors KT and Ke. They lead to the following error predictions for the particular case lmax=
lmin¼ 1.75:

FIGURE 6.10
Error amplification factor of emissivity
versus the polynomial degree m chosen
for modeling ln[e(l)]. Symbols corres-
pond to different values for the total
number of spectral channels: s: N¼
mþ 2, u: N¼ 7, e: N¼ 30, �: N¼ 100.
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FIGURE 6.11
Same as in Figure 6.10 for the error amp-
lification factor of temperature.
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For the polynomial model:

sT

T
ffi 420

exp (1:94m)ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 4
p ~lT

sL

L

se

e
ffi 6:4

exp (1:93m)ffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 4
p sL

L

8>>><>>>: (6:41)

For the gray-band model:

sT

T
ffi 410

Nbffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 4
p ~lT

sL

L

se

e
ffi 5

Nbffiffiffiffiffiffiffiffiffiffiffiffiffi
N þ 4
p sL

L

8>>><>>>: (6:42)

FIGURE 6.13
Same as in Figure 6.12 for the error amp-
lification factor of temperature.
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FIGURE 6.12
Error amplification factor of emissivity
when using the gray-band model. The
number of spectral channels is from top
to bottom: N¼ 7, 30, 100. In each case,
the number of gray bands ranges from
1 to N� 1.
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Regarding the bandwidth influence, we notice that the relative error of temperature
depends both on lmin and lmax whereas the mean relative error of emissivity only depends
on the ratio lmax=lmin.
Assuming a target at 320 K, and 1% radiance noise, a pyrometer with seven wavelengths

between 8 and 14 mmwill provide temperature and emissivity values with standard errors
as reported in Table 6.1, depending on the polynomial degree chosen for ln[e(l)].
The errors are rather high with a linear model for ln[e(l)] and they reach unacceptably

high values when using a degree 2 polynomial. These results seem to preclude using the
least squares linear regression approach together with a polynomial of degree 2 and more.
They were obtained with Wien’s approximation. However, Planck’s law is close to Wien’s
approximation over a large spectrum; therefore, we expect that the general least squares
nonlinear regression will also face serious problems when using a polynomial model for
regularization.
Applying the gray-band model to the previous example leads to the standard errors

shown in Table 6.2 (the number of bands can be increased up to N� 1¼ 6 for avoiding
underdetermination).
The errors increase with the number of bands, starting from the values corresponding to

a degree 0 polynomial and ending at values that are lower than those obtained with a

TABLE 6.2

Root-Mean-Square Error for the
Estimated Temperature and Emissivity
Depending on the Number of Bands When
Assuming a Gray-Band Model for Emissivity
and Seven Spectral Measurements

Number of Bands sT (K) s«

1 1.5 0.020

2 2.6 0.035

3 3.7 0.049
4 5.7 0.076

5 6.7 0.090

6 7.2 0.094

Target temperature is 320 K and radiance noise
is 1%.

TABLE 6.1

Root-Mean-Square Error for the Estimated
Temperature and Emissivity Depending
on the Degree of the Polynomial Model
for Emissivity

Polynomial Degree sT (K) s«

0 1.5 0.02
1 9.4 0.13

2 64 0.83

Target temperature is 320 K and radiance noise
is 1%.
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degree 1 polynomial. This is interesting in the sense that even with six bands, i.e., six
degrees of freedom for emissivity, the errors do not ‘‘explode’’ as it was observed earlier by
increasing the polynomial degree. The gray-band model, although not being smooth, could
thus capture more easily rapid variations in the emissivity profile like peaks.
However, as previously stated, the standard errors that are here presented only reflect

what happens when noise corrupts the radiance emitted by a surface which otherwise
perfectly follows the staircase model. As an example, with the six-bands case, the emissivity
should be equal in the two channels that were chosen to form the largest band.

6.3.2.3 A Look at the Solutions of the ETS Problem

Another way of presenting the ill posedness of the ETS problem and the difficulties in
finding an appropriate regularization consists, like in Coates (1981), in exposing the
multiple solutions to this underdetermined problem. For this purpose, we took two
examples for the ‘‘true’’ emissivity profile: a linear profile and a polynomial of degree 6.
These profiles are represented with bold lines in Figures 6.14 and 6.15 (let us mention that
with reference to the measured spectra in Figures 6.4 and 6.5, the degree 6 polynomial
spectrum in Figure 6.15 cannot be considered unreasonable in any way).
The emitted radiance was then calculated according to Planck’s law assuming a 320 K

temperature in both cases (for simplicity we discarded at this stage the eventual reflections;
experimental noise was also discarded, but it will be added later). Then, from different
temperature estimated values T̂, one can infer the emissivity profile ê(l, T̂), which exactly
leads to the observed radiance. It is given by

ê(l, T̂) ¼ L(l,T)

B(l, T̂)
¼ e(l)

B(l,T)

B(l, T̂)
(6:43)
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FIGURE 6.14
Emissivity profiles inferred by assuming a temperature T̂ higher or lower than the ‘‘real’’ T temperature which is
here 320 K. T̂ values are indicated on the right. The ‘‘true’’ profile is in bold line (here assumed linear).
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Some profiles ê(l, T̂) are reported in Figures 6.14 and 6.15 together with the corresponding
estimated temperature T̂. We must stress the point that these emissivity profiles are all
perfect solutions to the problem, at least from the mathematical perspective. Of course one
has to discard those presenting higher values than 1. With this constraint in mind, the
admissible temperatures are from about 304 K up. Similarly, profiles that reach values less
than, say, 0.02–0.03 can also be discarded if one has some prior information that the surface
is not a very clean polished metal surface (refer to the examples in Figures 6.4 and 6.5).
The traditional way consists in looking for a solution of e(l) in the form of a polynomial.

Let us consider the case of a polynomial of degree 1. The problem can then be reformulated
as follows: which profile in Figure 6.14, respectively in Figure 6.15, does fit a straight line at
best, taking into account the weighting with the blackbody radiance? Of course, in Figure
6.14, the profile corresponding to T̂¼ 320 K is the only one to be linear (the curvature of the
profile changes on each side of T̂¼ 320 K). Nevertheless, one has to admit that the profiles
corresponding to an estimated temperature in the range 304 K< T̂< 350 K are not far from
a straight line. If one added some experimental noise, it is clear that the squared residuals
after the linear fit would be in the same range for all profiles ê(l, T̂) corresponding to this
temperature range.
The case in Figure 6.15 is even worse: it is evident that, among all possible solutions, the

‘‘true’’ profile is not the straightest line. Evidently, in this example, the answer for optimal
T̂ will be a temperature much higher than the ‘‘true’’ value (lower profiles in the figure are
indeed smoother than higher profiles). The final solution will thus present a bias. A bias
would also be obtained for the case drawn in Figure 6.15 if the chosen emissivity model
was a degree 0 polynomial instead of a degree 1 polynomial.
As often stated, when using LSMWP, it is necessary to choose an emissivity model that

exactly corresponds to the true profile. The difficulty is that most often the profile shape is
unknown. A misleading thought is that LSMWP performs a fit of the true profile with the
chosen model (polynomial, exponential, etc.). Actually, as seen above, performing LSMWP
comes to choosing among the different possible profile solutions ê(l, T̂), the one that fits at
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FIGURE 6.15
Same as in Figure 6.14 when the ‘‘true’’ profile is a degree 6 polynomial function (bold line).
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best the model, in the least squares sense by weighting with the blackbody radiance (the fit
deals with e(l) if the observable is radiance and with ln(e(l)) if it is its logarithm). This can
lead to an emissivity profile of much higher or much lower mean value than the real one,
together with an important temperature error. Actually, the problem with the present
LSMWP is that it sticks to the emissivity shape rather than to its magnitude.

6.3.2.4 Least-Squares Solution of the Nonlinearized ETS Problem

When using Planck’s law instead of Wien’s approximation, LSMWP cannot be linearized
anymore. The nonlinear least-squares problem can be tackled with the Levenberg–
Marquardt method as provided, for example, by the lsqnonlin function from MATLAB1

library. When choosing a linear model for emissivity and when the ‘‘true’’ emissivity
profile is indeed linear this naturally leads to the right temperature and right emissivity
profile (there is no systematic error when the simulated emissivity spectrum corresponds
to the chosen model). On the contrary, when the ‘‘true’’ emissivity profile is not linear, the
identification presents a bias. For a ‘‘true’’ emissivity profile corresponding to the bold line
curve in Figure 6.15, the result is reported in Figures 6.16 and 6.17. For this example we
assumed seven equidistant spectral measurements between 8 and 14 mm. The dots in
Figure 6.16 correspond to the simulated measured radiance (no noise at this stage) and
the line corresponds to the radiance calculated from L̂(l,T) ¼ êd1(l)B(l, T̂) where êd1(l) is
the degree 1 polynomial solution of the LSMWP inversion. A perfect match for radiance is
of course impossible: the low-order model chosen for emissivity (degree 1 polynomial)
cannot explain the observed radiance variations. The least-squares procedure reveals that
the ê(l, T̂) profile in Figure 6.15 that fits at best a straight line, by taking into account the
weighting with the blackbody radiance, is the one corresponding to 335.3 K. The seven
dots in Figure 6.17 correspond to ê(l, 335:3) and the dashed line is the best linear estimate
for emissivity êd1(l). The systematic error is thusþ15 K for temperature and between�0.06
and �0.2 for emissivity.

FIGURE 6.16
Inversion result for the degree 6 polyno-
mial emissivity profile from Figure 6.15
when using a linear model. Dots repre-
sent the ‘‘true’’ noiseless radiance, and
the dashed line is the emitted radiance
according to the solution.
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If the fitting happens to be too far from the ê(l, T̂) profile, one should change the model.
For this particular example, however, changing to a quadratic model leads to a complete
failure: the profile in Figure 6.15 that is closest to a degree 2 polynomial is the one
corresponding to 230 K and the retrieved (hypothetical) emissivity spectrum ranges
between 2 and 6! Obviously, by imposing the constraint ê(l, T̂) < 1, the acceptable solution
would be the profile associated to T¼ 304 K, which means a 16 K underestimation.
Let us now analyze the influence of the measurement noise on the ETS performance. This

can be easily performed by simulating experiments where the theoretical radiance is
corrupted with artificial noise. The radiance is altered by adding values that are randomly
generated with a predetermined probability density function. We assumed a Gaussian
distribution with a spectrally uniform standard deviation. We fixed it to a value ranging
from 0.2% to 6% of the maximum radiance (additive noise). The least-squares minimization
was performed without constraint (i.e., without imposing ei< 1) in order to highlight the
mathematical (poor) stability of the inversion procedure. A series of 200 radiance spectra
were treated for each noise level and for both nominal emissivity profiles described in
Figures 6.14 and 6.15 (polynomial functions of degree 1 or 6). As before, we assumed that
the spectral measurements are performed at seven equidistant wavelengths between 8 and
14 mm. We chose a linear emissivity model for LSMWP inversion. The results for the
maximum in the seven channels of the RMS emissivity error are plotted in Figure 6.18.
Those for the RMS error of temperature are plotted in Figure 6.19. One can notice the
following:

1. When the ‘‘true’’ profile is linear, the RMS error increase for temperature and for
emissivity is roughly proportional to the radiance noise level (the temperature
RMS error becomes somewhat erratic when noise is higher than about 3%). In
particular, the RMS errors are 0.1 for emissivity and 8 K for temperature in the case
of a 1% measurement noise.
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Inversion result for the degree 6 polynomial emissivity profile from Figure 6.15 (T¼ 320 K) when using a linear
model. The ‘‘true’’ emissivity profile is labeled 320 K. The linear solution êd1(l) that is associated with a
temperature of 335.3 K is in dashed line. The profile ê(l, 335:3) is represented with dots.
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2. When the ‘‘true’’ profile is a degree 6 polynomial, the RMS errors are first dom-
inated by a systematic error, which corresponds to the model implementation
error (the chosen model—degree 1 polynomial—is too crude for representing the
‘‘true’’ profile); statistic errors due to the measurement noise dominate only when
noise is higher than 2%–3%.

Let us also add that the inversion leads to a systematic error as soon as the ‘‘true’’ profile
departs from a straight line. The previous analysis allows us to evaluate the magnitude of
this error when the deviation is small. Statistically, by considering several ‘‘true’’ profiles
close to the nominal straight line in Figure 6.14, the RMS of the systematic errors would be
equal to the RMS of the statistic errors obtained by adding the same amount of measure-
ment noise. For this reason, a ‘‘true’’ profile departing by as little as 1% from a straight line
leads to an emissivity bias whose RMS value is about 0.1. The temperature quadratic mean
error is in this case about 8 K, which is far from negligible. This result highlights the

FIGURE 6.18
Statistic analysis (Monte Carlo sampling
with 200 simulated experiments) of the
measurement noise influence on the
identified emissivity when using a linear
emissivity model. The ‘‘true’’ emissivity
was considered linear (crosses) or a
degree 6 polynomial (circles). Seven
channels between 8 and 14 mm.
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FIGURE 6.19
Same as in Figure 6.18 for the identified
temperature.
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considerable importance of choosing the right emissivity model. This impact can be
reduced by increasing the number of spectral channels (the trend is like N�1=2 as seen
later), on the condition that the departure from the profile model is randomly distributed.
The same analysis was performed by assuming that both the ‘‘true’’ profile and the

model are quadratic. The RMS errors (not presented here) are roughly proportional to the
radiance noise level as when both profiles are linear, however, at a much higher level: in
the case of a 1% measurement noise, the RMS errors reach 0.33 for emissivity and 49 K for
temperature.
It is well known that statistic errors can be reduced by increasing the number of

measurements, here by increasing the number of channels. This is confirmed in Figures
6.20 and 6.21 where this number was increased from 7 to 120, keeping the channels
uniformly distributed between 8 and 14 mm. For this illustration the radiance measurement
noise was fixed at 1%. One can notice that the RMS errors indeed decrease in the case of the
linear ‘‘true’’ profile with a power-law trend, close to the N�1=2 classical reduction. In the

FIGURE 6.21
Same as in Figure 6.20 for the identified
temperature.
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FIGURE 6.20
Same as in Figure 6.18 when assuming a
1% Gaussian noise on radiance, and
increasing the number of channels from
7 to 120 (uniformly distributed between
8 and 14 mm).
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case of the more complicated degree 6 polynomial ‘‘true’’ profile, there is no such reduc-
tion. As a matter of fact, systematic errors always dominate. There is even a progressive
increase of the RMS errors with the number of wavelengths. The RMS errors of 0.2 for
emissivity and 17 K for temperature that are observed with seven channels cannot be
reduced by adding more channels.
As a conclusion we can state the following:

1. Even by reducing the number of unknowns, as was done here by modeling
spectral emissivity with a polynomial of low degree, the problem remains badly
conditioned; with a polynomial model (either for e(l) or for ln e(l)), reasonable
inversion results are expected only up to degree 1.

2. Important systematic errors appear as soon as the real emissivity departs from the
considered model: 1% departure from a straight line already leads to 8 K RMS
error. More complicated spectral shapes lead to unpredictably high systematic
errors (15 K for the considered example of a degree 6 polynomial).

3. Even if the real emissivity values at the sampled wavelengths ei i¼ 1,N perfectly
fitted to a straight line, the demand on radiance measurement precision is very
high: as a matter of fact, no more than 0.12% noise is allowed to get a 1 K RMS
error near room temperature for a seven-band pyrometer between 8 and 14 mm.

The same analysis was performed by considering the gray-band model. From the degree
6 polynomial emissivity spectrum in Figure 6.15 (it will be called the ‘‘raw’’ profile), two
‘‘true’’ emissivity spectra were drawn. The first one was simply obtained by sampling the
raw profile at the N wavelengths of the pyrometer. The second one was deduced from the
latter one to be compliant with the gray-band model: the N emissivity values were
averaged separately in each of the Nb gray bands. The second ‘‘true’’ profile thus perfectly
fits to the gray-band model whereas the first one is more realistic.
A Monte Carlo approach was applied by adding Gaussian noise to the theoretical

spectral radiance and performing the inversion on 300 such synthetic data. The results
for emissivity and temperature RMS errors due to 1% RMS radiance noise are presented in
Figures 6.22 and 6.23 when assuming that the measurement is made in N¼ 7 channels
between 8 and 14 mm and in Figures 6.24 and 6.25 when assumingN¼ 30 channels. In each
case, the number of bands was varied between 1 and N� 1. The curves obtained with the
model-compliant emissivity profile (crosses) are rising with the number of bands and are in
agreement with those obtained with the covariance matrix (see Figure 6.12 for emissivity
and Figure 6.13 for temperature). More interesting are the curves obtained with the model-
not-compliant emissivity profile (circles): they are noticeably erratic and the RMS errors are
more important, actually higher than 0.07 for emissivity and higher than 8 K for tempera-
ture. They are particularly important when the number of bands is either low or high with
respect to the number of channels. In the first case, the number of bands is insufficient to
describe correctly the true emissivity profile. In the second case, we again face a problem of
overfitting. It thus appears to be better to choose intermediate values for the number of
bands. One can notice that for some particular number of bands, the results are signifi-
cantly better than with the linear emissivity model (compare with Figure 6.20 for the
emissivity error and with Figure 6.21 for the temperature error). However, the results
may vary by a factor of 2 by just changing the number of bands by one. This unpredictable
behavior seems to preclude the gray-band model from leading to a safer and more efficient
inversion than the linear emissivity model allows.
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Finally, LSMWP does not perform well for simultaneous evaluation of temperature and
emissivity when using the emitted spectral radiance only. Reasonable RMS values can be
obtained only when the emissivity spectrum perfectly matches with the implemented
emissivity model (gray band or linear). Otherwise, important systematic errors are encoun-
tered. The problem is that, apart from a few exceptions, one does not know beforehand
whether the emissivity of a tested material complies with such or another model.
As a conclusion, there is no valuable reason for implementing MWP instead of the

simpler one-color or bispectral pyrometry. All methods need a priori information about
emissivity. However, the requirements with one-color pyrometry (the knowledge of an
emissivity level) or with bispectral pyrometry (the knowledge of the ratio of emissivity at
two wavelengths) are less difficult to satisfy than the requirement with MWP, which is
a requirement of a strict shape conformity of the emissivity profile with a given parametric
function which, practically, is impossible to satisfy.

FIGURE 6.22
Statistic analysis (Monte Carlo sampling
with 300 simulated experiments) of the
measurement noise influence on the
identified emissivity when using the
gray-band model. Measurement is per-
formed in seven spectral channels
between 8 and 14 mm. Circles: emissivity
spectrum is a degree 6 polynomial.
Crosses: the previous profile is averaged
in each band before inversion.
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FIGURE 6.23
Same as in Figure 6.22 for the identified
temperature.
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6.4 Emissivity–Temperature Separation Methods in the Field
of Remote Sensing

Optical remote sensing by airborne or satellite sensors presents the following characteristics:

1. The measurements are highly conditioned by the radiative properties of the
atmosphere (transmission, upward emission along the optical path, downward
emission and reflection on the earth surface, scattering, etc.). These properties
depend on altitude, direction of sight, profiles of air humidity and temperature,
aerosol type and size, etc. The wavelength selection for the optic sensor, be it
broadband, multiwavelength, or hyperspectral, is of course dependent on the
typical atmospheric conditions it will face during its mission.

FIGURE 6.24
Same as in Figure 6.22 when the meas-
urements are performed over spectral 30
channels (1 up to 29 gray bands are con-
sidered).
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FIGURE 6.25
Same as in Figure 6.24 for the identified
temperature.
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2. The footprint is generally large: on the order of 10 cm for low-altitude airborne
sensors to about 2 km for sensors aboard geostationary satellites. It may thus
happen that different materials, possibly at different temperature levels, are pre-
sent in the instantaneous field of view (i.e., the footprint corresponding to one pixel
of the considered camera). Aggregation laws in the IR are generally complicated,
especially if the surface is not flat and if there are reflections between different soil
elements. A general approximation is to assimilate the integrated radiance to the
one originating from a pure isothermal surface. The objective is then to evaluate
the equivalent isothermal temperature. The disaggregation problem which con-
sists in separating the different contributions will not be considered here.

3. Natural surfaces (soil, vegetation, water) have high emissivity values, especially in
the longwave range, as for example in the [8–14 mm] atmospheric window, where
they generally exceed 0.9 (see Figure 6.5). They are then close to blackbodies. Most
often they are considered as Lambertian surfaces.

4. Since the 1970s, the radiometric and spectral performances of the optic sensors
onboard satellites have continuously improved: once presenting a few bands in the
[3–5 mm] and [8–14 mm] range, the sensors are now multispectral (some tens of
bands) and even hyperspectral (about 100 bands). The spectral analysis is per-
formed by dispersion or by Fourier transform interferometry.

The measured radiance at the sensor level can be written from Equations 6.7 and 6.8 as

Ls(l,T, u,w) ¼ t(l, u,w) e(l)B(l,T)þ (1� e(l))
E#(l)
p

� �
þ L"(l, u,w) (6:44)

where
t(l, u,w) is the path transmission
E#(l) is the down-welling sky irradiance (L#(l)¼E#(l)=p is the corresponding isotropic

equivalent radiance)
L"(l, u,w) is the up-welling path radiance emitted by the atmospheric constituents (the

angle dependency (u,w) will not be recalled from now on)

To solve Equation 6.44 for emissivity and temperature we need to know the transmission
and the upwelling and downwelling atmospheric radiances. Atmospheric radiative trans-
fer models like MODTRAN (Berk et al. 1989) and MATISSE (Simoneau et al. 2009) can be
used to compute the needed radiative parameters.
Figure 6.26 illustrates the relative importance of the various contributions to the at-sensor

radiance in the longwave IR range. To achieve this, MODTRAN simulations were per-
formed assuming a sensor flying at 1900 m altitude and aiming the ground at nadir. A mid-
latitude summer atmospheric model was considered. For this illustration, we assumed that
the ground is gray with 0.9 emissivity and 313 K temperature. A first observation is that
the atmospheric influence is far from negligible even in the so-called atmospheric window
8–12 mm. Furthermore, the IR spectra of present gases (H2O, CO2, CH4, O3, etc.) print their
characteristic features to all radiative contributions. Last, due to the low reflectance of
the surface, the contribution from the downwelling atmospheric emission is very small and
it is sometimes neglected (however, for a precise ETS, taking into account L#(l) in the
inversion process is of prime importance, especially with the SpSm approach; see
Section 6.4.3.3).
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For computing the atmospheric transmission and emission with a radiation transfer
simulation software, standard atmospheric models can be considered at first. They are
defined by temperature and humidity profiles vs. altitude, depending on local climate and
season, and they assume different aerosol types. However, for a higher fidelity of the
radiation transfer calculation results, it is better to rely on radiosonde observation results
obtained at the time and place of the remote sensing measurement. This solution is
nevertheless expensive and radiosonde deployment is not always possible. Other means,
either direct or indirect, were thus devised for the atmospheric compensation.

6.4.1 Combined Atmospheric Compensation and Emissivity–Temperature Separation

A series of methods, the dual channel and the split-window methods, were developed for
evaluating sea surface temperature at the time the sensors had only a few spectral data in
the IR (Nimbus, advanced very high resolution radiometer [AVHRR], etc.) (Barton 1983).
They actually performed atmospheric compensation and, based on the fact that water
emissivity is known and very high, they also performed the remaining ETS. The dual
channel method is based on the differential absorption in adjacent IR bands. Regression
laws of the following form were established between the true surface temperature T and
the at-sensor brightness temperatures measured in two particular channels, one in the
midwave range TR1 and the other in the longwave range TR2:

T 
 a1TR1 þ a2(TR2 � TR1)þ a0 (6:45)

The coefficients ai were obtained from regression over simulated databases covering a large
range of atmospheric conditions.
The split-window terminology is used when the two channels are in the same 8–13 mm

band, more specifically between 10 and 12 mm (AVHRR has actually two channels, at
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FIGURE 6.26
Remote sensing of a gray surface (e¼ 0.9) at T¼ 313 K by a sensor at 1900 m altitude (MODTRAN simulations).
From top to bottom: nominal blackbody radiance, total at-sensor radiance, soil contribution (after attenuation),
atmospheric upwelling emission, down-welling sky radiance (after reflection and attenuation).
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10.3–11.3 and 11.5–12.5 mm, thereby ‘‘splitting’’ the thermal infrared (TIR) spectral window).
Reported typical errors (model errors) are less than 0.5 K.
A similar regression law was established when considering that the brightness temper-

atures are obtained in the same channel but when the sea is viewed from two different
angles (Barton 1983).
The advantage of these differential approaches is that radiosonde atmospheric profiles

are not required.
After the success of the split-window technique over sea surfaces, people extended it to

land surfaces. The purpose was to apply it to geostationary satellites (SEVIRI on Meteosat-
SG), to sun-synchronous satellites (MODIS and ASTER on TERRA), and to airborne remote
sensing (DAIS imaging spectrometer, TIMS multispectral scanner, AHS hyperspectral
scanner). However, over land, the unknown emissivities are a greater source of inaccuracy
than atmospheric effects. Inaccuracy of only 0.01 in e causes errors in T sometimes
exceeding those due to imperfect atmospheric correction.
On land surfaces, the relationship between real temperature and at-sensor brightness

temperatures is more complicated than the one expressed in Equation 6.43. Therefore more
intricate regression laws were proposed which take into account a series of ancillary data.
As a matter of fact, the emissivity at the two channels has to be estimated independently as
shown below. The most recent relations are of the following type (Coll et al. 2003, Atitar
and Sobrino 2009):

T 
 TR1 þ a1(TR2 � TR1)þ a2(TR2 � TR1)2 þ a3(1� e)

þ a4W(1� e)þ a5Deþ a6WDeþ a0 (6:46)

where
e is the mean emissivity (e1þ e2)=2
De is the emissivity difference (e1� e2)
W is the columnar water vapor (CWV) in the direction of observation

The emissivity is approximated from vegetation and soil emissivities (evi and esi),
according to

ei ¼ evifv þ esi(1� fv)þ 4hdeiifv(1� fv) (6:47)

where
fv is the vegetation cover fraction
hdeii is a term accounting for the cavity effect which depends on the surface geometry

Average values for vegetation and soil emissivity evi, esi were computed from the spectral
library built by Salisbury and d’Aria (1992). The vegetation cover fraction can be estimated
from a vegetation index such as normalized difference vegetation index (NDVI). This index
is equal to the normalized difference of the reflectance values measured on each side of the
chlorophyll absorption band (i.e., at about 0.67 and 0.82 mm). Remote sensing in the visible
range and in near IR is thus necessary to get the NDVI and therefrom an estimation of the
vegetation cover fraction.
The CWV W itself can be obtained from the normalized difference of the IR signals at

10.8 and 12.0 mm (Sobrino and Romaguera 2008).
The ai coefficients in Equation 6.46 are derived froma regression over a simulateddatabase

comprising global-scale atmospheric conditions (from MODTRAN simulations performed

216 Thermal Measurements and Inverse Techniques

  



on thermodynamic initial guess retrieval (TIGR) database—Chevallier et al. (2006)) and a
wide range of surface emissivities (Salisbury and d’Aria 1992). From the simulations, it is
shown that land surface temperature can be obtained with an error of about 1.3 K.

6.4.2 Separate Evaluation of the Atmospheric Parameters

The in-scene atmospheric compensation (ISAC) method was developed to get the spectra
of t(l) and L"(l) from a hyperspectral datacube (i.e., the matrix obtained by piling the
images obtained at all wavelengths) (Young et al. 2002). It simultaneously exploits
the spectral and the spatial dimension of the IR images. The fundamental hypothesis is
that the atmospheric parameters are constant over the whole scene. The method first
consists in finding the (i, j) pixels corresponding to near-blackbodies in the scene. If the
temperature of these pixels spans over a sufficiently broad range, a linear fit between their
at-sensor radiance L(i, j,l) and their blackbody radiance B(l,Ti,j) will provide the requested
atmospheric parameters:

Ls(i, j, l) ¼ t(l)B(l,Ti, j)þ L"(l) (i, j) ¼ blackbody (6:48)

By performing this fit at each wavelength one gets an estimation of transmittance and
upwelling atmospheric radiance: t̂(l) and L̂"(l).
The blackbody pixels are found from the Ls(i, j, l) vs. B(l,Ti,j) scatterplot for the whole

scene: the blackbody pixels are indeed those that stick to the upper part of the plot.
Beforehand, the temperature Ti,j has to be estimated at each pixel; this is done by selecting
the wavelength l0 with the highest transmission (t(l0) 
 1, L"(l) 
 0), by assigning a
common emissivity value (i.e., em¼ 0.95) to all pixels, and by inverting Planck’s law:

Ti, j ¼ B�1
l0, Ls(i, j,l0)

em

� �
(6:49)

Other techniques for correcting the acquired data from atmospheric effects are based on
sounding techniques and neural networks. The sounding techniques use the opacity
variations of the atmosphere in absorption bands to estimate atmospheric composition
and temperature profiles. In the 4–12 mm spectral range the main molecules responsible for
absorption and emission are H2O around 6.7 mm and between 4.8 and 5.5 mm, and CO2

around 4.3 mm. In the vicinity of these absorption bands the IR signal depends on a
weighting function which is sensitive to both concentration profiles and temperature
profiles. CO2 concentration is relatively constant spatially and temporally; therefore sound-
ing near 4.3 mm allows evaluating the temperature profile. From this knowledge, one can
then analyze the IR signal in the vicinity of a water absorption band to retrieve the water
vapor profile.
Estimating the mean temperature of the atmospheric layer and the CWV under the

sensor is sufficient when the purpose in only to evaluate the ground-leaving radiance
(Achard et al. 2007). Two artificial neural networks were trained to retrieve these param-
eters from radiances measured near the 4.3 mmCO2 absorption band and in the 4.8–5.5 mm
range (Achard et al. 2007). Training was performed on slightly noised radiance spectra
obtained with MODTRAN simulations based on a 2000 atmospheric vertical profiles
database representing polar to tropical climate. Without signal noise, the mean atmos-
pheric temperature can be retrieved with about 0.3 K RMS error and the water vapor
content with 0.12 g=cm2 RMS error. These integrated values are then used to scale the
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mean vertical profiles in order to get the same mean temperature and CWV. Based on these
scaled atmospheric profiles and a new MODTRAN simulation the atmospheric terms
appearing in Equation 6.44 can finally be evaluated.

6.4.3 Emissivity–Temperature Separation Methods

We assume at this point that the atmospheric effects along the path from the ground to the
sensor were properly estimated. One can thus estimate the ground-leaving radiance:

L(l,T) ¼ Ls(l,T)� L"(l)
t(l)

¼ e(l)B(l,T)þ (1� e(l))L#(l) (6:50)

The separation methods that we will present are based on a priori information about the
emissivity spectrum. One exception is the multi-temperature (or multitemporal) method
which is based on recording the radiance field after the ground has reached different
temperature levels.
A particular situation is when L(l,T)¼ L#(l). In this case, the emissivity cannot be

determined and the temperature is obtained from

T(l) ¼ B�1bL#(l)c (6:51)

6.4.3.1 Normalized Emissivity Method

The maximum emissivity emax is assumed to be known, but at an unspecified wavelength.
The problem can be tackled in two ways. The first approach is iterative: one selects a rather
high temperature value T̂ and one computes the emissivity-satisfying Equation 6.50 at each
wavelength to get the estimated spectrum:

ê(l) ¼ L(l,T)� L#(l)

B(l, T̂)� L#(l)
(6:52)

The temperature estimate is then progressively decreased until the maximum of the
spectrum ê(l) reaches the target value emax. This process is easily understood by referring
to Figure 6.15.
In the case where L(l,T)< L#(l), the first estimation T̂ should be low and then progres-

sively increased.
The second method is initiated by computing a brightness temperature assuming the

surface to be a gray body with e(l)¼ emax:

TR(l) ¼ B�1
L(l,T)� L#(l)

emax
þ L#(l)

� �
(6:53)

The temperature estimation is then simply T̂¼max[TR(l)] where L(l,T)> L#(l) and
T̂¼min[TR(l)] where L(l,T)< L#(l). The emissivity spectrum is finally deduced from the
application of Equation 6.52.
The emissivity to be assigned is often close to 0.96, which represents a reasonable

average of maximum values in the thermal IR for exposed geologic surfaces. In the case
of bare soils with rocks, this method is thus rather precise (0.02 emissivity uncertainty). The
underlying hypothesis is, however, hard to satisfy when the sensed surface is totally
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unknown, even when it is composed of natural materials. Inaccuracies finally tend to be
rather high (�3 K). The temperature–emissivity separation (TES) method was therefore
proposed as an improvement of the normalized emissivity method for a broad application.

6.4.3.2 Temperature–Emissivity Separation (TES) Method

The TES method (Gillespie et al. 1998) was developed for land-surface temperature evalu-
ation by the Advanced Space-borne Thermal Emission and Reflection Radiometer (ASTER)
on board TERRA satellite, which includes a five-channel multispectral thermal-IR scanner.
TES is based on the observation that the relative spectrum defined by b(l) ¼ ê(l)=�̂e,

where ê(l) is obtained from Equation 6.52 with an estimation of T̂, is rather insensitive to
the temperature estimation error. The problem is then how to extract the absolute spectrum
e(l) from the relative spectrum b(l)?
Gillespie et al. found out a correlation between emin and the minimum–maximum

emissivity difference defined by MMD¼bmax�bmin (Gillespie et al. 1998):

emin 
 0:994� 0:687MMD0:737 (6:54)

The regression was based on 86 laboratory reflectance spectra from the ASTER spectral
library (Salisbury and d’Aria 1992) for rocks, soils, vegetation, snow, and water between
10 and 14 mm. Ninety-five percent of the samples fall within 0.02 emissivity units of the
regression line (see Figure 6.27). Nevertheless, this empirical relation is not ‘‘universal’’: data
related to ‘‘artificial’’materials like metals fall far below the regression line (see Figure 6.27).
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FIGURE 6.27
Correlation between emin and MMD. The line corresponds to the original regression law of Gillespie et al. (1998).
Complementary data with low maximum emissivity (diamonds), surfaces with high contrast (circles) and metals
(crosses). (From Payan, V. and Royer, A., Int. J. Remote Sens., 25(1), 15, 2004. With permission.)
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After evaluating emin from the regression law, one retrieves a new estimate of the
emissivity spectrum through

ê(l) ¼ b(l)
emin

bmin
(6:55)

A new temperature estimation is finally obtained by extracting the maximum emissivity
value from the ê(l) spectrum and inverting Planck’s law at the corresponding wavelength:

T̂ ¼ B�1
L(lm,T)� L#(lm)

êmax
þ L#(lm)

� �
, lm ¼ argmax(ê(l)) (6:56)

One or two iterations are sufficient for the convergence of the procedure.
To be effective, TES requires at least three or four bands of data; numerical simulations

showed that uncertainties become larger as the number of bands is reduced further (for
two bands, the products are only half as precise) (Gillespie et al. 1998).
TES would introduce a bias to emissivity in the case of near-gray materials (as a matter of

fact, for all gray materials emin and thus ê(l) would stick to 0.994). Instead of scaling the
b(l) spectrum with emin for gray materials (those for which MMD< 0.006), it was decided
to assign the emissivity of water to them.
The data dispersion in Figure 6.17 cannot be discarded. It can induce an error of 0.02 on

emin. It is thus possible to have landscapes or terrains in which the TES regression will lead
to systematic errors of that magnitude.
TES algorithm is presently used to calculate surface temperature and emissivity standard

products for ASTER, which are predicted to be within þ1.5 K and þ0.015 of correct values,
respectively. Validations performed on different sites demonstrated that TES generally
performs within these limits (Sabol et al. 2009).

6.4.3.3 Spectral Smoothness Method (SpSm)

This relatively new method is specifically aimed at hyperspectral instruments (typically
more than 100 channels are needed in the midwave or longwave IR bands) (Borel 1998,
2008, Knuteson et al. 2004, Kanani et al. 2004, Achard et al. 2007, Cheng et al. 2008). Its
success is based on the statement that the emissivity spectra of natural surfaces are much
smoother than the spectra of the atmospheric contributions (gas absorption bands print
characteristic features in L#(l), L"(l), and t(l) spectra). If the estimated temperature T̂ in
Equation 6.52 is not equal to the real surface temperature, the retrieved emissivity spec-
trum ê(l) will retain a part of the very detailed spectral features present in L(l,T) and in
L#(l), provided of course that the sensor has a high enough spectral resolution. When T̂
comes closer to the real temperature, the apparent emissivity spectrum becomes progres-
sively smoother. The solution is found when the computed spectrum is the smoothest,
devoid of narrow atmospheric emission spectral lines. The ill-posed ETS problem is thus
solved thanks to the fact that the detailed spectral features of the downwelling atmospheric
radiance are ‘‘printed’’ in the leaving radiance.
Figure 6.28 illustrates this approach for the case of a concrete surface at T¼ 313 K and a

typical atmospheric radiance (concrete spectrum was taken from ASTER spectral library—
Baldridge et al. [2009]; see Figure 6.5, and the atmospheric radiance and transmittance
were computed with MODTRAN code for the same conditions as for Figure 6.26). The
estimated surface temperature was scanned from T� 5 to Tþ 5 K by 1 K steps. The
smoothest apparent emissivity spectrum is indeed the one corresponding to a 313 K
surface temperature.
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Suggested methods for optimizing the smoothness of the emissivity profile are minim-
izing the standard deviation of the difference between the computed emissivity ê(l) and
the corresponding three-point boxcar averaged emissivity profile (Borel 1998), minimizing
the mean square derivative of ê(l) (Knuteson et al. 2004), the integral of the absolute
derivative (Kanani et al. 2004), or the correlation product between L#(l) and ê(l) (Cheng
et al. 2008).
Borel (2008) noticed that there are potentially many atmospheres giving a smooth but

physically incorrect emissivity. To be efficient in retrieving the true emissivity curve, the
SpSm method requires the atmospheric compensation to be very precise. When applying
the ISAC method, the initial hypotheses may bias the transmission spectrum to a detri-
mental level. A refinement for finding the best candidate atmosphere was presented by
Borel (2008), and it consists in

1. Performing a large number of radiation transfer calculations assuming a well-
populated distribution of atmospheric conditions in order to build a look-up
table (LUT) of transmission profiles tLUT(l)

2. Calculating the cosine of the spectral angle between t̂(l) and all tLUT(l) from LUT
and selecting some candidate atmospheres presenting a small spectral angle

3. Minimizing the smoothness criteria with the candidate atmospheres at a limited
number of pixels and keeping the one leading to the best general minimization

4. Minimizing the smoothness criteria with the best candidate atmosphere on the
whole image
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FIGURE 6.28
Illustration of the SpSm method. Case of a concrete surface at T¼ 313 K observed with an IR sensor at 1900 m
altitude. Retrieved emissivity spectra for different estimated temperature values between T� 5 and Tþ 5 K with
1 K steps (from top to bottom). The smoothest profile corresponds to the true temperature value.
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Another requirement of the method is that the sensor should have a high spectral reso-
lution in order to capture sufficient details of the atmospheric spectral features: it needs to
have a resolution of 10 cm�1 or better to distinguish atmospheric spectral features from
emissivity features. A direct consequence is that spectral calibration errors have a high
impact on the output. Spectral shift and change of the width of the channels of as little as
1=20th of a wave center spacing, for the 128-channel SEBASS sensor in the 7.5–13.5 mm
range, produce radiance artifacts that lead to incorrect choice of atmosphere, causing an
offset in surface temperature of 1 K and emissivity of 0.04 to occur.
Assuming a measured radiance error of 0.5%, and combining neural network for evalu-

ation of the atmospheric contribution and the SpSm method, leads to about 1.6 K RMS and
0.8 K bias for temperature and 0.023 RMS and 0.027 bias for emissivity in thermal IR
(Achard et al. 2007). The emissivity errors in the 3–4.2 mm range are just slightly higher.

6.4.3.4 Multi-Temperature Method

We have seen that with one temperature measurement, the ETS problem is underdeter-
mined because there are Nþ 1 unknowns and only N equations. In principle, by perform-
ing a measurement at another temperature level, the problem should be solved as one
would then have Nþ 2 unknowns (one additional temperature unknown) and 2N equa-
tions. Of course, the surface emissivity and the environment contributions should not have
changed in between. Actually two measurements at two wavelengths should suffice to
evaluate the two temperature levels and then the emissivity. Things are, however, not as
evident due to persistent correlations as it will be shown later.
The multi-temperature (or multitemporal) method is not very common in remote sensing,

first because it seems to magnify greatly the measurement noise (unresolved ill posedness)
and also because it requires a high-quality registration between the successive images.
In order to highlight the difficulties inherent to the multi-temperature method let us first

consider the case of pyrometry where the environment radiation reflection on the sensed
surface can be neglected. Let us also assume that the measured radiance is errorless. For
this illustration, we assume that the spectral measurements are performed at two different
temperatures.
The emissivity profile ê(l, T̂1) is obtained from the first set of N measurements and from

a temperature estimation T̂1:

ê(l, T̂1) ¼ L(l,T1)

B(l, T̂1)
¼ e(l)

B(l,T1)

B(l, T̂1)
(6:57)

We obtain similarly the emissivity profile ê(l, T̂2) from the second set of N measurements
and an estimation T̂2 for the second temperature. The problem thus reduces to find T̂1 and
T̂2 such that ê(l, T̂1) ¼ ê(l, T̂2) at each wavelength. It follows that

B(l,T1)

B(l, T̂1)
¼ B(l,T2)

B(l, T̂2)
8l (6:58)

If we adopt Wien’s approximation, this reduces to

exp (C2=lT̂1)
exp (C2=lT1)

¼ exp (C2=lT̂2)
exp (C2=lT2)

8l (6:59)
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It is easy to see that the problem is then degenerate and there is an infinity of solutions,
defined by

1

T̂2
� 1

T̂1
¼ 1

T2
� 1
T1

(6:60)

The degeneracy can also be detected by analyzing the sensitivity matrix relatively to the N
emissivity values and to the two temperatures T1 and T2. This matrix is used when solving
the linear least-squares problem where the chosen observable is the logarithm of the
emitted radiance:

X ¼

�C2

l1Tref
0

IN . . . . . .

�C2

lNTref
0

0
�C2

l1Tref

IN . . . . . .

0
�C2

lNTref

26666666666666664

37777777777777775
2N,Nþ2

(6:61)

The determinant of XT X is 0 whatever the number of wavelengths. The sensitivities are
thus correlated.
As a conclusion from this preliminary analysis, performing additional measurements at

different temperature levels does not help for the ETS in pyrometry, at least in the spectral
region where Wien’s approximation is valid (the approximation is better than 1% when
lT< 3124 mm K). No new information is brought with these additional measurements.
When considering Planck’s law instead of Wien’s approximation, the identification

problem becomes nonlinear, but it is reasonable to suspect that the ill posedness will
be severe.
Let us now consider the nonlinear least-squares approach for identifying the N emissiv-

ities and the two temperatures. We here introduce a reflected flux from the environment:

[ei,T1,T2]T ¼ argmin
ei ,T1,T2

XN
i¼1

L(li,T1)� eiB(li,T1)þ (1� ei)L#(li)
� �� �2

þ L(li,T2)� eiB(li,T2)þ (1� ei)L#(li)
� �� �2

(6:62)

For the illustration, we will consider three cases:

1. A near-blackbody in a cold environment, i.e., without reflections from the envir-
onment (Figures 6.29 and 6.30).

2. A gray body (ei¼ 0.9) with reflections from a blackbody environment at 300 K
(Figures 6.31 and 6.32).

3. Same as before but the radiation from the environment is weighted by a random
spectral function with uniform probability distribution. The purpose is to simulate
a spectrally rich environment radiance (Figures 6.33 and 6.34).
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For all three cases we assume the surface to be at T1¼ 320 K for the first measurement,
the second measurement is performed at a temperature of 1, 5, 10, or 30 K higher. IR
detection is performed on a variable number of channels in the 8–14 mm bandwidth.
The objective is merely to present the expected standard errors on emissivity and

temperature as obtained from the covariance matrix expressed at the solution. The sensi-
tivity matrix is obtained by differentiating (eiB(li,T1)þ (1� ei)L

#(li)) and (eiB(li,T2)þ
(1� ei)L

#(li)) according to each emissivity ei, and according to T1 and T2. We plotted in
Figures 6.29 through 6.34 the standard errors for emissivity and temperature assuming a
1% measurement error).
A general comment is that the errors diminish when increasing the number of channels.

Above some 10 channels, the decrease is roughly N�1=2. An improvement is also obtained
by increasing the temperature difference between the two experiments.

FIGURE 6.29
Multi-temperature pyrometry. Error on
emissivity for a 1% error on radiance
depending on the number of spectral
channels between 8 and 14 mm. The tem-
perature difference between the two
experiments is from top to bottom: 1, 5,
10, 30 K. Case of a near-blackbody sur-
face in a cold environment.
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FIGURE 6.30
Same as in Figure 6.29 for temperature.
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In the case of a near-blackbody surface without significant reflections, the standard
errors are huge, although the assumed radiance noise is as little as 1%. This merely reflects
that we are close to the ill-posed case expressed earlier with Wien’s approximation. The
inversion performance can be improved only when a reflected flux is present. This fact was
already noticed by Kanani et al. (2004). It is also shown here that a definite advantage is
obtained thanks to the high-frequency spectral features of the downwelling atmospheric
radiation. When assuming a smooth environment radiation (Figures 6.31 and 6.32), the
benefit is indeed not as important as when radiation contains detailed spectral features
(Figures 6.33 and 6.34). As an example, by performing a measurement in 100 channels with
a 1% radiance error and a 5 K temperature difference between the two experiments, the
temperature standard error drops from 30 to 3 K when the environment radiation changes
from smooth to spectrally rich. At the same time, the emissivity error drops from values
higher than 1 to about 0.07. However, these errors are only estimates: they were extracted

FIGURE 6.32
Same as in Figure 6.31 for temperature.
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FIGURE 6.31
Same as in Figure 6.29 in the case of a
gray body with e¼ 0.9 and a blackbody
environment radiation at Tenv¼ 300 K.
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from the covariance matrix which is based on a local linearization of the nonlinear
problem. For better estimates, one should simulate a large number of experiments through
a Monte Carlo procedure.

6.5 Conclusion

Noncontact temperature measurement by radiative methods presents distinct advantages
over contact methods but it always exposes the underdetermined problem of ETS. We
describe some methods to solve this problem in the field of high-temperature MWP and in
the field of airborne and satellite remote sensing. Different proposals were made in the past

FIGURE 6.34
Same as in Figure 6.33 for temperature.
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FIGURE 6.33
Same as in Figure 6.31 after introducing
detailed spectral features to the down-
welling environment radiation.
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for ETS with various successes, sometimes by sticking to the myth that N equations
should suffice to retrieve N unknowns! The work presented here aims to show that
with a sensitivity analysis and by implementing simple linear and nonlinear tools, it is
often possible to rapidly verify the advertised performances of the methods and avoid
some traps.
Regarding MWP, one must finally admit that without knowledge about the emissivity

magnitude, the temperature measurement cannot be very precise. Some vague intuition
about the shape of the emissivity spectrum is not sufficient and adding more wavelengths
does not help much. The blackbody spectrum is too regular, and therefore, introducing an
emissivity polynomial model of a higher degree than 1 introduces high correlations and
generally leads to poor results.
ETS in remote sensing is an active field of research as it is mingled with other problems

like atmospheric compensation. However, the detailed spectral features of the downwel-
ling atmospheric radiation offer an invaluable opportunity for succeeding in ETS as shown
by the SpSm approach and the multi-temperature approach.
In remote sensing, when developing new methods, one always faces the difficulty of

validating them on large, heterogeneous, and rough surfaces. The disaggregation problem
which consists in evaluating the individual temperatures of a mixture pixel is also part of
the inversion problems related to remote temperature measurement.

Nomenclature

B blackbody spectral radiance (W=m3=sr)
ei noise in spectral channel i
E spectral irradiance (W=m3)
L spectral radiance (W=m3=sr)
L" spectral radiance emitted by the atmosphere along the path from surface to

sensor (W=m3=sr)
L# spectral radiance emitted by the environment down to the surface (W=m3=sr)
N number of spectral channels
Nb number of gray bands
P scalar parameter
T temperature (K)
Y experimental observed data

Greek Variables

a absorptance
e emissivity
u zenithal angle (rad)
l wavelength (m)
r00, r0\ bidirectional reflectance and directional-hemispherical reflectance
s standard deviation
t transmission coefficient
w azimuthal angle (rad)
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Superscripts
^ estimated value
* reduced and centered value (see Equation 6.31)
0 reduced value
T transpose of a matrix or a vector

Subscripts

s at-sensor (radiance)
W Wien’s approximation of Planck’s law

Abbreviations

ETS emissivity–temperature separation
IR infrared
LSMWP least-squares multiwavelength pyrometry
MWP multiwavelength pyrometry
SCP single-color pyrometry
SpSm spectral smoothness method
TCP two-color pyrometry
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7.1 Introduction

The experimental data collected from some measurement devices are often used according
to a representative model in order to determine indirectly some properties of the system
under study, characterize the environment of a sensor, change the output value of the
sensor into another magnitude of interest, or even determine the calibration data of some
instrument. Moreover, in many situations, the quantities that we wish to determine are
different from the ones that we are able to measure directly, as could be seen in the first
part of this book.
If our purpose is to determine the coefficients of some model, evaluate some physical

properties, such as thermal conductivity or viscosity, or make the indirect measurement of
some quantity (for instance, deducing some local heat flux density or convective heat
transfer coefficient from the temperature measured by some sensor), it will be at the end
necessary to make the comparison between some record of data points and a direct model
conveniently chosen. The structure and consistency of the model to be used has been
already discussed in depth in Chapter 1.
The errors attached to these measurement operations make unavailable the true value of

the quantities in consideration. How to characterize and evaluate which effect will have
these measurement errors on the magnitudes of interest will be a key point for the experi-
mentalist approach for data processing. The definition and type of measurement errors
are specified in the document, Definition and implementation International Vocabulary of
Metrology (VIM), and the method for its evaluation in the so-called Guide to the Expression
of Uncertainty (JCGM 200:2008) in Measurement (GUM) (JCGM 100:2008). As suggested in
the VIM, the measurement errors may be split into two different types of errors:

1. The systematic measurement error is a ‘‘component of measurement error that in
replicate measurements remains constant or varies in a predictable manner.’’ The
reference for this type of errors is a true quantity value, such as a standard of
negligible measurement uncertainty.

2. The random measurement error is the ‘‘component of measurement error that in
replicate measurements varies in an unpredictable manner.’’ Random measurement
errors of a set of replicate measurements form a distribution that can be summarized
by its expectation, which is generally assumed to be zero, and its variance.

According to the VIM, the randommeasurement error equals the measurement error minus
the systematic measurement error. The measurement bias is the estimate of a systematic
measurement error. The systematic errors are often present in parametric estimation based
on experimental measurements, due either to some constant error in the measuring process
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or to some error in the direct model, which may not be a perfect representation of the
experiment—see Chapter 1 for instance. However, this kind of errors is considered to be out
of the scope of this chapter, since for the sake of clarity, the models will be assumed to be
errorless, in order to focus mainly on the effect of the measurement errors on the parameter
estimation process. Moreover, systematic errors often simply appear as some additional
parameters to be estimated. Hence, the measurement bias is not considered herein, but only
the random measurement errors with expectation assumed to be zero. Thus, the measure-
ment errors are considered as perturbations conveniently described by some random
variables, which probability density function may be unknown (Lira 2002, Willink 2008).
The main goal of this chapter is to propose some methods to determine and quantify

which would be the ‘‘best’’ way of estimating the parameters by processing the collected
data. Hence, not only the resulting value of the retrieved parameters is of interest, but also
the quantification of how the measurement errors propagate through the estimation
procedure and may disturb the convenient interpretation of the experimental data. More-
over, in some cases, the estimation problem may be very sensitive to the errors and turn to
be ‘‘ill-posed’’ (this term will be conveniently defined in Section 7.5). Inverse methods are
devoted to solve such ill-posed problems. However, the techniques used to solve ill-posed
problems are not within the scope of the present chapter, and will be discussed in the
subsequent chapters of Part II.
As shown in Figure 7.1, the estimation problem yields the requirement for minimizing

some ‘‘distance’’ (to be defined hereafter) between the collected data and the direct model.
The model depends on some input variables, parameters, and independent variables.
Generally, the structure of the model and the relationship between the input variables,
parameters, and independent variables (such as time, or space variables) may be complex.
Moreover, both the data and model outputs may be functions of continuous or discrete
variables. However, since only a finite number of data values is generally recorded, and the
occurrence of the outputs is computed in correspondence with these values, most of the
problems can fall in finite-dimensional problems. Thus, only discrete variables are con-
sidered herein.
The topic of the present chapter is relative to linear estimation within a discrete frame-

work. After a ‘‘Getting Started’’ section devoted to point out the main concepts and
challenges of parameter estimation, the general ordinary least squares (OLS) method is
derived and discussed. In Section 7.4, the more general case where some basic statistical
assumptions regarding the errors are not satisfied (constant variance and uncorrelated),
and various estimators are proposed. Section 7.5 is an introduction to ill-posed problems,
envisioned through basic examples such as those currently faced when processing some
experimental data. The anatomy of such linear transforms is analyzed through the
singular value decomposition (SVD) tools and the corresponding spectral approach.

System

Collected data
(measurements)

Model M(p)
ymo(t, p)

y(t)

q(t)

Input

e(t)

Output error

+
–

FIGURE 7.1
Fitting a model with collected data: the output error method.
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Finally, Section 7.6 introduces the predictive model error which is obtained by building
directly the model with the collected data and then turn a nonlinear estimation problem
into a linear estimation problem.

7.2 Getting Started

In this section, the main characteristics of a parameter estimation problem are envisioned
through some very simple examples. These basic cases are analyzed in order to make clear
the main concepts and challenges of the OLS parameter estimation, and define the frame of
an estimation model which is linear with respect to the parameters.

7.2.1 One Parameter, One Measurement

The most basic case that we can study is to estimate one parameter with a single meas-
urement! For instance, let us track a target moving with a constant velocity on a one-
dimensional trajectory (such as a free-falling body once constant velocity is achieved). You
should like to deduce its velocity from a single position measurement y1 triggered at a
chosen time t1. Then the corresponding model, for any position y and time t, is

ymo(t) ¼ vt (7:1)

It is assumed here that the initial position is perfectly known and chosen as the origin for y.
With a single measurement, if t1 is conveniently chosen to be not zero, the velocity can be
estimated by matching exactly the measurement with the model given in Equation 7.1,
which yields

v̂ ¼ y1
t1

(7:2)

The measured position y1 is here a dependent variable whose value is found by observa-
tion. The time is an independent variable. As suggested in Section 7.1, let us assume that
the measurement of the position made by the camera is perturbed by a random measure-
ment error (due to thermal noise, defect of focalization, or spatial resolution of the camera).
Assuming that the error is additive, we may write:

y1 ¼ y1*þ e1 (7:3)

where the superscript ‘‘*’’ yields for the true (but unknown) value.
We assume that the expected value of the error is zero (themeasurement of the position y is

unbiased) and has a standard deviation (std) sy. We also assume that the independent
variable t1 is knownwithout error. Themeaning of Equation 7.3 is that themeasurement y1 is
an outcome of a random variable Y1. Equation 7.3 can now be substituted into Equation 7.2:

v̂ ¼ y1*
t1
þ e1

t1
¼ v*þ e1

t1
(7:4)

The first very important result shown in Equation 7.4 is that the estimate of the velocity is
also a random variable, since it depends directly on the random variable e1. Moreover,
since the expected value of e1 is zero, the estimate of the velocity given by Equation 7.2 is

236 Thermal Measurements and Inverse Techniques

  



unbiased, because its expected value, which can be deduced directly from Equation 7.4, is
the true—but unknown—value v*. Finally, the variance of the estimate can also be deduced
directly from Equation 7.4 such as

s2
v ¼

s2
y

t21
(7:5)

More generally, it is apparent in Equation 7.4 that the probability distribution of the
estimate can be deduced from the probability distribution of the measurement error.
The last very significant result given by Equation 7.5 is that the variance of the estimate

can grow drastically if the instant of measurement t1 tends to zero, as well as it can be
reduced when t1 is increased.
Thus, a specific role of the independent variable t1 appears through this discussion. In

fact, the time variable has here another very important characteristic, which we may point
out if we calculate Xv, the first derivative of the model with respect to velocity, computed
at time t as

Xv(t) ¼ qymo(t)
qv

¼ t (7:6)

Xv is called the sensitivity coefficient of the model—that computes the position—with
respect to the velocity—the parameter herein. In Equation 7.6, it is apparent that Xv is
independent of the parameter: the model defined in Equation 7.1 makes the problem linear
with respect to the parameter because the sensitivity coefficient is independent of the
parameter.
A first-order expansion of the model is then written as

ymo(t, vþ Dv) ¼ ymo(t, v)þ Xv(t)Dvþ q(Dv2) (7:7)

Note that in the specific case considered herein where the model is given by Equation 7.1,
q(Dv2) ¼ 0.
A low value of the sensitivity coefficient will not let discriminate low variations of the

velocity. At the opposite, if the sensitivity coefficient has a high value, we may hope to
discriminate very small variations of the velocity. Thus, the sensitivity coefficient plays an
important role in the estimation as well as on the amplification of noise.
The std of the estimate as given in Equation 7.5 suggests that it is possible to get an

estimation of the velocity as good as possible if the measurement is made at a sufficiently
long time. Unfortunately, this is not easy to realize in practice, since the maximum time
available for the experiment may not be long enough. Moreover, in some cases the
measurement error may increase with the distance, the trajectory may turn to become
nonlinear, etc. This is the reason why it is convenient to check how adding some meas-
urement points to this problem may turn out the estimation to be much more efficient.

7.2.2 One Parameter, Two or More Data Points

Gathering m outcomes of the measurements yi for the random variables Yi corresponding
to the independent measurements at times ti (for i ¼ 1, 2, . . .m), and assuming that the zero
value has not been chosen for any time, yields m independent equations such as

ymo(ti) ¼ vti, i ¼ 1, 2, . . . ,m (7:8)
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An exact matching solution would intend to solve simultaneously the m equations

yi ¼ vti, i ¼ 1, 2, . . . ,m (7:9)

and a solution would be possible only if the outcomes yi fit perfectly on a line, that is,

v̂ ¼ y1
t1
¼? y2

t2
¼ � � � ¼? ym

tm
(7:10)

Equation 7.10 would mean that the model ‘‘hits’’ the data points. Due to the errors ei, this is
generally not realistic, and Equation 7.9 yields an overdetermined linear system which has
no solution, as shown in Figure 7.2, where the line computed with the model for the exact
value of velocity v* is drawn as a reference line. It is apparent how the two measurement
points cannot fit together in the same line. Since there is no solution, we instead prefer to
solve an alternative problem. The least squares approach consists in solving this problem
by trying to make as small as possible the sum of squares of ‘‘differences’’ between the data
points and the line generated by the model, that is, to find the minimum of the function,

S(v) ¼ ( y1 � vt1)2 þ ( y2 � vt2)2 þ � � � þ ( ym � vtm)2 ¼ e21(v)þ e22(v)þ � � � þ e2m(v) ¼ eT(v)e(v)

(7:11)

where the vector of differences is defined by e ¼ [e1 e2 � � � em]T.
The elements of e(v) are the differences between the model hits and the data points, and

are not equal to the errors. However, e(v) is a random variable vector due to the presence of
the errors in the y values. Hence, the objective function S also is a random variable. For the
exact value of the velocity, such as v¼ v*, then the distances e(v) are equal to the errors
e¼ [e1 e2 . . . em], defined by yi ¼ yi*þ ei, as shown in Figure 7.2 for two data points.
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FIGURE 7.2
One parameter and two or more data points.
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The minimization of S can be achieved by calculating the first derivative of Swith respect
to v, and then searching the estimate v̂ as the value which cancels this derivative:

qS
qv
¼ 2t1(vt1 � y1)þ 2t2(vt2 � y2)þ � � � þ 2tm(vtm � ym) and

qS
qv

(v̂) ¼ 0 (7:12)

yields

v̂ ¼ t1y1 þ t2y2 þ � � � þ tmym
t21 þ t22 þ � � � þ t2m

¼ xTvy
k xv k2 (7:13)

where the following vectorial notations are used:

xv ¼ t1 t2 � � � tm½ �T; y ¼ y1 y2 � � � ym½ �T and k � � � k is the L2 norm

Since the data are collected with an error such as yi ¼ yi*þ ei, the estimate is also a random
variable. Let us also assume that the errors ei are independent with zero mean, have a
constant variance (that is, s2

Y ¼ s2
1 ¼ s2

2 ¼ � � � ¼ s2
m) and are identically distributed with the

same probability distribution function. According to Equation 7.13, we find a result similar
to Equation 7.4 such as

v̂ ¼ v*þ xTv«
k xv k2 where « ¼ e1 e2 � � � em½ �T (7:14)

This result is of great interest. The estimation of velocity was obtained by the minimization
of the distance e between the model and the experimental data, but Equation 7.14 yields
the estimation error, which is the distance between the solution (the estimated velocity)
and its true (but unknown) value, involving the effect of the measurement error « on the
result.
Since the expected value of the errors is assumed to be zero, the estimator of the velocity

is unbiased. Then, with these assumptions with respect to the errors, the variance of the
estimate can also be deduced directly from Equation 7.14 such as

s2
v ¼

s2
Y

k xv k2 (7:15)

Equation 7.14 means that the estimated variable is unbiased. Equation 7.15 gives a result
about the ‘‘quality’’ of the estimation. It is apparent in Equation 7.15 that the variance of
the estimated parameter will be lower if we design the experiment in order to increase the
norm of the sensitivity vector. In that case, it is of interest to schedule the times where the
measurements are recorded as long as possible, and also to increase the number of data
points in consideration.
Some results of estimation of the velocity (in fact, the slope of a line) are shown in Figure

7.3. The trajectory y is computed, in order to give the ‘‘reference line.’’ Then this vector is
corrupted by an additive normal uncorrelated noise, in order to simulate some measure-
ment points with errors corresponding to the previous assumptions. The simulated data yi
are used in order to estimate the parameter with Equation 7.13 for two different cases:
estimation with all the data points and also estimation with only the first 18 data points.
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For this example, a very large noise level has been chosen, with sy ¼ 1 s. Then the
retrieved lines generated with the corresponding estimated parameters are plotted in
Figure 7.3.
The results of estimation obtained with Equations 7.13 and 7.15 are presented in Table

7.1. As expected, the estimation with the very first points yields a low norm of the
sensitivity vector and is worse than the estimation made with the same number of data
points but chosen at the end of the ‘‘experiment.’’Moreover, considering, on the same total
range, a number of data points much higher (the last line of Table 7.1 simulates an
experiment for which 1000 points would be collected) yields an almost perfect estimation
of the velocity.

Estimation with
all the data points

0 0.2 0.4 0.6 0.8 1
Time

Data points

7

y
6

5

4

3

2

1

0

–2

–1

1.2 1.4

Estimation with
the first 18 points

Reference line

FIGURE 7.3
Estimation of the slope and retrieved lines with sy ¼ 1 s.

TABLE 7.1

Estimation Results for One Parameter and m Data Points (m¼ 50)

Velocity,
m=s

Standard
Deviation, m=s

Reference value 5 —

Estimated with all the 50 points 5.38 0.24

Estimated with 18 points at the beginning 3.23 1.01

Estimated with 18 points at the end 5.38 0.27

Estimated when adding 150 points (on the same range) 4.97 0.11

Estimated with 1000 points (on the same range) 5.005 0.05
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7.2.3 Statistical Assumptions Regarding the Errors

In the previous sections, there was no need to make any assumption regarding the random
measurement errors to compute the estimated value of velocity with Equation 7.2 or
Equation 7.13. However, if we are interested in evaluating the ‘‘quality’’ of the estimation,
we must intend to predict which effect will have the measurement errors with its own
probability distribution on the behavior of the estimates.
In Table 7.2, the main definitions related to the expectations, and used hereafter in the

text, are written. For a discrete random variable, the expected value is the sum of the
products of the possible values and their probability. The functional E(�) has the property
of linearity. V(X) is the variance, and the nonnegative root of V(X) is called the standard
deviation.
In Table 7.3 are listed the main statistical assumptions regarding the measurement errors

which will be used hereafter in the text. The number of these assumptions will be used in
our notation in order to validate some specific assumption. For instance ‘‘1237’’means that
only the assumptions no. 1-2-3 and 7 are considered to be satisfied. The term, ‘‘the standard
assumptions’’ will be used for the case when all these nine assumptions are satisfied
together, that is, the case ‘‘123456789.’’
Assuming that the standard assumptions are valid for the measurement errors corre-

sponding to the cases of the previous examples given in the ‘‘Getting Started’’ section, we
deduce that the estimators defined by Equations 7.4 and 7.14 are unbiased, since their
expected value is the true value, and have a normal probability distribution. Moreover, the

TABLE 7.2

Some Definitions and Properties Related to the Expectations

Expected value E(X) ¼ Ð1�1 xfX(x)dx ¼ mX for continuous random variables
E(X) ¼P

x
xP(X ¼ x) ¼ mX for discrete random variables

Expected value of a function g(X) E( g(X)) ¼P
x
g(x)P(X ¼ x)

E(�) is a linear functional E(aX þ bY) ¼ aE(X)þ bE(Y)
If X and Y are independent E(XY) ¼ E(X)E(Y)

Variance V(X) ¼ E([X � E(X)]2) ¼ E(X2)� [E(X)]2 ¼ s2
X

The variance is not a linear functional V(aX) ¼ a2V(X) ¼ a2s2
X

V(aX þ bY) ¼ a2V(X)þ b2V(Y)þ 2ab cov(X,Y)

Covariance cov(X,Y) ¼ E([X � mX][Y� mY]) ¼ E(X)E(Y)� mXmY

Correlation coefficient rX,Y ¼
cov(X,Y)
sXsY

, rX,Y ¼ �1 or þ1 only if Y ¼ aX þ b

Expected value of a vector E(x) ¼ E(X1) E(X2) . . . E(Xn)½ �T
Covariance matrix of a vector cov(y) ¼ E([y� E(y)][y� E(y)]T)

cov(y) ¼

var( y1) cov( y1, y2) � � � cov( y1, ym)

var( y2) . .
.

cov( y2, ym)
. .
. ..

.

symmetric var( ym)

266664
377775

Covariance of a linear combination
of random variables

z ¼ Gy where G is a not random matrix
cov(z) ¼ G cov(y)GT
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variance of these estimators, such as calculated with Equations 7.5 and 7.15, respectively,
yields important information about the quality of the retrieved estimated parameters. If the
measurement points are equally spaced, with a time step Dt and a number of points N, then
the variance computed with Equation 7.15 can easily be bounded by

s2
v <

1
mDt2

s2
Y (7:16a)

which means that an increase in the number of points results in a decreasing variance.
The bias b(�) of a random variable is defined as the difference between the expected value

and the true value. An unbiased estimator—such as the one given by Equation 7.14—is an
estimator with a bias equal to zero. The root mean square error of an estimator (rms) is

rms( p̂) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E(( p̂� p*)2)

q
(7:16b)

and it can be shown that

rms( p̂)2 ¼ b( p̂)2 þ V( p̂) (7:16c)

One of the major goals in the estimation process will be to look out for an optimal
estimator. The quality of an estimator can be specified by the values of its bias, variance,
and root mean square error. Obviously, when possible, it is preferred to search an unbiased
estimator and then minimize the variance. This optimal estimator can be searched only
when some information regarding the statistic assumptions is available.
When the estimation is linear, and if the standard assumptions are fulfilled, except

constant variance, uncorrelated errors, and normal probability distribution—‘‘123789,’’
the existence of a minimum variance unbiased (MVU) estimator can be proved (Serra
and Besson 1999, Rao et al. 1999). The existence of the MVU estimator is a key point, since it
yields the best estimator you can use. Of course, when nothing is known regarding the
statistical assumptions, it is still possible to use some robust estimator such as the OLS
estimator, assuming that some potentially better estimators are possibly discarded
(Wolberg 2005, Kariya and Kurata 2004).

TABLE 7.3

Statistical Assumptions Regarding the Measurement Errors

Number Assumption Explicitation

1 Additive errors yi ¼ yi*þ ei
2 Unbiased model E(yjP) ¼ ymo(P)) ymo(ti,P*) ¼ yi*

3 Zero mean errors E(ei) ¼ 0

4 Constant variance var (ei) ¼ s2
y

5 Uncorrelated errors 8i, j and i 6¼ j: cov(ei, ej) ¼ 0

6 Normal probability distribution

7 Known statistical parameters

8 No error in the Xij X is not a random matrix

9 No prior information regarding
the parameters
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7.3 Ordinary Least Squares Estimation

In this section, the general case of OLS estimation is presented more deeply, since the main
trends of OLS were envisioned previously. Only discrete variables are in consideration,
thus all the variables involved may be written in a vector form. The vector of the m
collected data is already defined in Equation 7.13. The model ymo depends both on n
parameters Pj to be estimated, and independent variables, that is, reduced to one variable t
for the sake of clarity, but with no loss of consistency.

ymo ¼ ymo(t1) ymo(t2) � � � ymo(tm)½ �T and P ¼ P1 P2 � � � Pn½ �T (7:17a)

The general structure of the model may then be written as

ymo ¼M(t,P) (7:17b)

7.3.1 Sensitivity Coefficients and Sensitivity Matrix

7.3.1.1 Sensitivity Coefficients

The very important role played by the sensitivity coefficients has already been suggested in
Section 7.1. The definition given in the particular case presented for one single parameter is
easily extended for each of the n parameters:

Xj(t,P) ¼ qymo

qPj
, j ¼ 1, 2, . . . ,n (7:18a)

Xj is the sensitivity coefficient of the model with respect to the parameter Pj computed at
time t. If the model is not easily derived with respect to the parameters, a simple method to
get an approximate value of the sensitivity coefficients is to compute the model twice with
a small variation of the parameter of interest, and compute the derivative with the central
finite difference approximation, such as

Xj(t,P) 

ymo(t,P1,P2, . . . ,Pj þ DPj, . . . ,Pn)� ymo(t,P1,P2, . . . ,Pj � DPj, . . . ,Pn)

2DPj
(7:18b)

7.3.1.2 Definition of Linear Estimation

In this text, we are only dealing with linear estimation. The basic cases analyzed in the
‘‘Getting started’’ section were linear in that sense. The model is linear with respect to the
parameters if the following property is achieved:

ymo(t, a1P1 þ a2P2) ¼ a1ymo(t,P1)þ a2ymo(t,P2) for any real value of a1 and a2 (7:18c)

A very important property shown is that if the model is linear with respect to the
parameters, the sensitivity coefficients do not depend on the parameters. Then the model
can be written as

ymo(t,P) ¼
Xn
j¼1

Xj(t)Pj (7:18d)
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Example 7.1

The property of some model to be linear with respect to the parameters does not imply that the
sensitivity coefficients should be linear with respect to the independent variables (such as time in
the previous examples). For instance, if we consider the three following examples:

Case 1 ymo ¼ at þ b) Xa ¼ t and Xb ¼ 1

Case 2 ymo ¼ at exp( sin(t))þ b
ffiffi
t
p ) Xa ¼ t exp( sin(t)) and Xb ¼

ffiffi
t
p

These models are linear with respect to the parameters a and b. The latter is not linear with respect
to time.

Case 3 ymo ¼ a exp � t
b

� �� �
) Xa ¼ exp � t

b

� �� �
and Xb ¼ a

b2t
exp � t

b

� �� �
The model given in case 3 is not linear with respect to the parameters a and b, since the sensitivity
coefficients do depend on the parameters.

7.3.1.3 Sensitivity Matrix

Since only discrete variables are in consideration herein, the sensitivity coefficients can be
written for the discrete values of the independent variable t, that is, for the occurrences
corresponding to the data points, which means that we compute the model only for the
‘‘observable’’ vector, represented by the data points vector y. The sensitivity vector with
respect to the jth parameter is

xj ¼ Xj(t1) Xj(t2) � � � Xj(tm)

 �T (7:19a)

The n sensitivity vectors have a length m and can be gathered in order to build the
sensitivity matrix X, which has m rows and n columns, such as

X ¼ x1 x2 . . . xn½ � ¼
X11 X12 . . . X1n
X21 X22 . . . X2n
. . . . . . . . . . . .
Xm1 Xm2 . . . Xmn

2664
3775 (7:19b)

With these notations, if the model is assumed to be linear with respect to the parameters
the discrete model involving both the model vector and the parameters vector, as defined
in Equation 7.16, is then written as

ymo ¼ XP (7:19c)

Equation 7.19c yields a system of m equations with n parameters.

7.3.2 The Normal Equations and the OLS Estimator

7.3.2.1 Deriving the Normal Equations

With the linear model of Equation 7.19c, the relationship involving the experimental data
points, the errors, and the model can be expressed as

y ¼ y*þ « ¼ ymo(P*)þ « ¼ XP*þ « (7:20a)

where P* is the exact-but-unknown value of the parameters vector.
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It is apparent in Equation 7.20a that we assume the model to be exact and to describe
correctly the experiment with no error of modeling: when we write Equation 7.20a, we
make the implicit assumption that the model ymo(�) is able to match the exact value y*.
Due to the errors in the collected data, Equation 7.20a cannot be solved in order to find

P*, and the system y ¼ XP has generally no solution, since it is overdetermined. Similarly
to the example given in Section 7.2.2, the OLS objective function is chosen as the norm to be
minimized, that is, the norm of the output error (as shown in Figure 7.1):

SOLS(P) ¼ (y� ymo)
T(y� ymo) ¼ (y� XP)T(y� XP) ¼ eT(P) e(P) (7:20b)

It is noteworthy that the output error (the vector of differences between the data and the
model) to be minimized does not involve directly the true value y*. However, with
« ¼ y� y* and e ¼ y� ymo, it is straightforward to deduce the difference between the
model and the true value as «� e ¼ ymo � y*, which can be observed in Figure 7.2.
Again, the minimization is achieved by computing the derivatives of the objective

function with respect to the parameters. We obtain n equations such as

qSOLS

qPj
¼ �2

Xm
i¼1

Xij yi �
Xn
k¼1

XikPk

 !
¼ �2

Xm
i¼1

Xij(yi � liP) ¼ �2xTj (y� liP) (7:20c)

where li is the ith line of X, as shown in Figure 7.4.
Equaling to zero, these derivatives yield a system of j ¼ 1, 2, . . . ,n equations, applied to

the optimum vector P̂OLS, which can be written in a more compact matrix form such as

XT(y� XP̂OLS) ¼ 0) (XTX)P̂OLS ¼ XTy (7:20d)

Equations 7.20d are called ‘‘the normal equations’’ (the reason for this name is envisioned
hereafter in Section 7.3.4). It is noteworthy that the matrix XTX is a square (n, n) matrix. It is
important to note that the size of this matrix can be relatively small, according to the
number n of parameters to be estimated.

7.3.2.2 The OLS Estimator

Solving the normal equations such as given in Equation 7.20d yields the estimated vector of
parameters. If the matrix is XTX nonsingular, the formal solution of Equation 7.20d is
straightforward, and can be obtained by direct inversion of the square matrix XTX, such as

P̂OLS ¼ (XTX)�1XTy (7:21)

FIGURE 7.4
Structure of the sensitivity matrix.

X11

X21

Xm1

X =
X22

Xm2 Xmn
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X2n
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Equation 7.21 yields the solution of the OLS minimization problem given by Equation
7.20b. The matrix (XTX)�1XT is the so-called Moore–Penrose matrix, also named as the
pseudo-inverse of X (Campbell and Meyer 1991, Penrose 1955). Obviously, a necessary
condition for XTX to be nonsingular is that the sensitivity coefficients are independent, and
have a nonzero norm. This condition also requires that the number of measurements m be
equal or greater than the number of parameters n to be estimated. Equation 7.21 yields a
direct expression of the OLS estimator, which does not need any iterative procedure to be
solved. Moreover, when the number of parameters to be estimated is small, a full analytical
solution of Equation 7.21 is available. This option is quite suitable in image processing,
such as thermal properties mapping from infrared (IR) images (Batsale et al. 2004).
Unfortunately, in some cases, it is not efficient to solve directly Equation 7.20d by direct

inversion of the Moore–Penrose matrix, as suggested by Equation 7.21, due to the fact that
either the number of parameters is huge or the pseudo-inverse of the sensitivity matrix is
highly sensitive to the errors in the measurements. For instance, for geophysic applications
such as gravity field computation (Baboulin 2006), ‘‘the computational task is quite chal-
lenging because of the huge quantity of daily accumulated data (about 90,000 parameters
and several million observations) and because of the coupling of the parameters resulting
in completely dense matrices.’’ In other cases, the sensitivity matrix is ill-conditioned,
resulting in an erratic inversion, which yields a hazardous amplification of the measure-
ment errors toward very high values of the variance of the estimated parameters. Some
examples of the latter will be proposed hereafter in Section 7.5 devoted to ill-posed
problems, such as the case of thermal diffusivity mapping from IR images processing
(Batsale et al. 2004).
Many methods are available for solving the normal equations which are detailed in

Björck (1996), but giving a survey of these methods and of their numerical stability
(Higham 2002) is out of the scope of this book. If the rank of X is n, then the matrix XTX
is symmetric positive definite and can be decomposed using a Cholesky decomposition.
A more reliable way of solving linear least squares problems consists in using orthogonal
transformations. The commonly used QR factorization can be performed by using orthog-
onal transformations called Householders reflections (Golub and Van Loan 1996). QR
factorization is less sensitive to ill-conditioned cases and is more numerically stable than
the direct inversion of the normal equations. However, the floating-point operations
involved in the Householder QR factorization have an order of magnitude equal to
2mn2, while it is mn2 for the direct inversion of the normal equations (Golub and Van
Loan 1996). An alternative decomposition of the sensitivity matrix is the SVD and the
corresponding spectral analysis (Shenfelt et al. 2002). SVD is expensive in terms of com-
putation time, but may be quite helpful for solving ill-conditioned systems (Bamford et al.
2008), and to analyze the structure of the linear transform, as seen hereafter in Section 7.5.
The OLS estimator can also be calculated in a recursive form, by computing the pseudo-
inverse with few measurements available, and then adding measurements sequentially
(Borne et al. 1997, Ljung 1987).

7.3.2.3 Some Statistical Properties of the OLS Estimator

In this section, it is first assumed that the statistical assumptions ‘‘12389’’ are satisfied,
according to Table 7.3, which means that the standard assumptions are fulfilled except
normal, known statistical parameters, constant variance, and uncorrelated errors. Then
some important statistical properties of the OLS estimator defined by Equation 7.21 can be
evaluated.
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First, since the error is additive, Equation 7.20a can be incorporated into the OLS
estimator, Equation 7.21, such as to get

P̂OLS ¼ (XTX)�1XTy ¼ Hy ¼ H(y*þ «) ¼ H(XP*þ «) ¼ P*þH« (7:22a)

where the matrix H ¼ (XTX)�1XT has been introduced in order to facilitate the notations,
and by using the fact that HX ¼ In.
Then, the expected value of P̂OLS can be calculated by

E(P̂OLS) ¼ E(P*þH«) ¼ P*þHE(«) ¼ P* (7:22b)

since the expected value is a linear operator and the error is assumed to have a zero mean.
Hence Equation 7.22b yields the very important result that the OLS estimator is

unbiased.
The covariance matrix of the parameter vector can also be calculated, by making use of

Equation 7.22a, and the definition of the covariance matrix of a vector of random variables
such as given in Table 7.2.

cov(P̂OLS) ¼ E P̂OLS � P*

 �

P̂OLS � P*

 �T� 	

¼ E(H«[H«]T) ¼ HE(««T)HT ¼ H cov(y)HT

(7:22c)

With the additional assumptions that the errors have a constant variance and are
uncorrelated—‘‘1234589,’’ this equation is turned into

cov(P̂OLS) ¼ (XTX)�1s2
y (7:22d)

This equation gives the very important result that the OLS estimator is the MVU estimator
within the frame of assumptions ‘‘1234589,’’ and has the ‘‘minimum’’ covariance matrix. It
is said that the OLS estimator is efficient (Beck and Arnold 1977).
When the sensitivity vector tend to be correlated, the determinant of the matrix XTX

tends to zero, resulting in the amplification of the variance of some specific parameters,
as suggested by the form of Equation 7.22d, which means that the uncertainty of
some parameters may turn to increase drastically. This important topic is discussed in
Section 7.5.
Another important conclusion implied by Equation 7.22d is also that the parameters may

be correlated, even if the observations are not, through the non-diagonal terms of the
matrix (XTX)�1. An illustration of this is given hereafter in Section 7.3.3, with an example
relative to the estimation of two parameters.
Obviously, once the parameters have been estimated, it is also possible to find the

regression model, obtained by substituting Equation 7.21 into Equation 7.19c, and also
using Equation 7.22a, which yields

ŷOLS ¼ XP̂OLS ¼ X(XTX)�1XTy ¼ y*þ X(XTX)�1XT« (7:23a)

It is apparent in Equation 7.23a that the error on the regression model is evaluated by the
projection matrix applied to the measurement error. It is also of great interest to define
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the vector of residuals, as the difference between the predicted values, computed with the
estimated vector of parameters, and the original data, such as

r ¼ ê ¼ y� ŷOLS ¼ y� XP̂OLS ¼ (Im � XH)y (7:23b)

An important property of the vector of residuals can be deduced from Equation 7.23b. It is
apparent, since the errors in y have been assumed to have a null expected value, that the
vector of residuals also has a zero mean value, since we assume here that the matrices in
Equation 7.23b are not random. Hence, it is of great interest to verify that the vector of
residuals is close to have a zero mean value, in order to discard some bias in the model or
some correlation effect. Also the expected value of the sum of squares of the residuals
SOLS(P̂OLS) ¼ rTr can be computed, and yields the following result:

E(SOLS(P̂OLS)) ¼ (m� n)s2
y (7:23c)

Equation 7.23c can be used in order to evaluate a posteriori the variance of the noise
associated to the signal y.
If the assumption number 6 in Table 7.3, which states that the errors have a normal

probability distribution, is assumed to be satisfied, it can be shown that SOLS(P̂OLS)=s2
Y

has a x2(m� n) distribution and P̂OLS � P* has a normal distribution N 0,s2
Y(X

tX)�1
� �

.
The covariance matrix of the vector of residuals can also be computed from Equation

7.23b, by using the fact that the matrices Im, X, andH are not randommatrices, and making
use of the covariance of a linear combination of vector random variables, such as shown in
the last line of Table 7.2. Then the following result is obtained:

cov(r) ¼ (Im � XH)cov(y)(Im � XH)T (7:23d)

Moreover, with the ‘‘1234589’’ assumptions in consideration herein, the covariance matrix
of the residuals is reduced to

cov(r) ¼ (Im � XH)s2
y (7:23e)

7.3.3 An Example with Two Parameters, m Data Points

The OLS estimation method presented in Section 7.3.2 is applied to the simple example of a
straight-line regression, where both the slope and intercept are to be retrieved. The model
is given by

ymo ¼ axþ b (7:24a)

Then the sensitivity coefficients are

Xa ¼ x and Xb ¼ 1 (7:24b)

Thus, the model is linear with respect to the parameters a and b.
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The data are y ¼ y1 y2 � � � ym½ �T and the parameter vector is P ¼ a
b

� �
The sensitivity matrix is built with the sensitivity vectors, such as

X ¼
x1 1
x2 1
. . . . . .
xm 1

2664
3775 (7:24c)

The two terms involved in the expression of the OLS estimator such as given by Equation
7.21 can be calculated explicitly:

XTy ¼
P

xiyiP
yi

� �
, XTX ¼

P
x2i

P
xiP

xi m

� �
The OLS estimation with Equation 7.21 yields

â ¼ S2xy
S2xx

, b̂ ¼ �y� â�x (7:24d)

where

S2xy ¼
1
m

Xm
i¼1

(xi � �x) � (yi � �y), S2xx ¼
1
m

Xm
i¼1

(xi � �x)2 and �x ¼ 1
m

Xm
i¼1

xi, �y ¼ 1
m

Xm
i¼1

yi

For the standard assumptions regarding the measurement errors, the covariance matrix of
the estimation error is obtained with Equation 7.22d such as

cov(P̂OLS) ¼ s2
a cov(ea, eb)

cov(ea, eb) s2
b

� �
¼ s2

Y

m2s2xx

m �P xi
�P xi

P
x2i

� �
(7:24e)

which yields the std of the parameters estimators and the correlation coefficient r, such as

sa ¼ sY

Sxx
ffiffiffiffi
m
p and sb ¼ sYffiffiffiffi

m
p 1þ �x2

S2xx

� �1=2

r ¼ cov(ea, eb)
sasb

¼ � 1

(1þ S2xx=�x2)
1=2

The non-diagonal terms of the covariance matrix of the parameters indicate that the
estimated parameters are correlated, even if the error in measurements is not.
These results confirm some usual characteristics of the statistical properties such as the

following:

1. Increasing the number of data points m yields a better quality for the estimates,
even if the measurements are quite noisy.

2. The quality of estimation of the slope a is better when the data points are chosen
within a large dispersion (Sxx large).

Introduction to Linear Least Squares Estimation and Ill-Posed Problems 249

  



3. The accurate estimation of the intercept needs both short times and large disper-
sion (S2xx=�x

2 is low).

4. The correlation coefficient r is negative, which means that the intercept is under-
estimated when the slope is overestimated. Moreover, the two parameters are
more uncorrelated if the value of S2xx=�x

2 is large.

The present example is also used for the examination of the residuals, such as defined with
Equation 7.23b. A normally distributed measurement error N(0,sy ¼ 1:89) is added to the
output of the model of Equation 7.24a—computed with a¼ 2 and b¼ 5, and the corre-
sponding simulated data are used for the OLS estimation of both the slope and intercept.
The simulated measurement error is plotted in Figure 7.5, where its histogram is also
shown. The residual obtained with the OLS estimator is plotted in Figure 7.6. As expected,
the residuals have zero mean and are distributed like the measurement error (the mean is
found to be 10�15 and cov(r) 
 s2

yIm).
Then, the effect of an error in the model is tested. The OLS estimation is still made with

the model given by Equation 7.24a, which means that the slope and intercept of a line are to
be retrieved, but the experimental data are simulated now with a modified model, such as
given in Equation 7.24f:

ymo ¼ axþ bþ g(x� x0)2 (7:24f)

This situation would appear if the model which is intended for the estimation of param-
eters does not describe conveniently the experiment. In this case, we are implementing the
estimation with an erroneous model. An example is plotted in Figure 7.7, with g¼ 0.01 and
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FIGURE 7.5
(a) Simulated error N(0, sy ¼ 1:89) and (b) histogram.
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FIGURE 7.6
Residual for OLS estimation with the model given by Equation 7.24a, where the data have been simulated with the
same model and the measurement error shown in Figure 7.5.
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FIGURE 7.7
Residual for the OLS estimation of the slope and intercept of a line with the model given by Equation 7.24a, where
the data have been simulated with an error in the model—Equation 7.24f—and the measurement error shown in
Figure 7.5.
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x0¼ 50. The curve of the residuals is not any more symmetric and centered on zero, but
exhibits a ‘‘correlated’’ behavior, which is due to the error in the model. A MATLAB1

program implemented to get these results is shown in Appendix 7.A.1. Hence, it is quite
important to always examine the curves of residuals, since their form yields important
information regarding the quality of estimation.

7.3.4 Another Look at the Normal Equations and the OLS Solution

With the previous example given in Section 7.1.2, we already noticed, as shown in
Equation 7.10, that the model does not hit simultaneously all the measurement points.
Another way to formulate this fact, which is quite clear in Figure 7.2, is to write that the
data vector y is not included in the subspace C(X) defined as the column space of X. It is
then possible to define the difference vector e as the difference between the model and the
data vectors, as shown in Figure 7.8a, and then minimize the norm of this vector. Obvi-
ously, the minimum norm of e is obtained when e is orthogonal to the subspace C(X) (see
Figure 7.8b). This is equivalent to searching the orthogonal projection of y onto the sub-
space spanned by the column vectors of X.
It seems quite reasonable to assume that the sensitivity vectors are independent, since

otherwise the estimation problem is turned to be ill-posed: the information matrix would
be singular and Equation 7.20d could not be solved.
If the sensitivity vectors are independent, they form a basis of X, and any vector of C(X)

can be written as a linear combination of these vectors. Hence, looking for a vector to be
orthogonal to C(X) is equivalent to searching a vector orthogonal to any linear combination
of the sensitivity vectors, that is, which dot product would be zero with any sensitivity
vector xj, such as

xTj ê ¼ 0, j ¼ 1, 2, . . . ,n (7:25a)

which can be expressed in a more compact matrix form as

XTê ¼ 0 (7:25b)

The orthogonal difference vector ê ¼ r ¼ y� XP̂ can be also recorded as the vector of
residuals defined in Section 7.3.2.3 by Equation 7.23b. Substituting this expression into
Equation 7.25b yields the result

XT(y� XP̂) ¼ 0 (7:25c)

which is identical to the normal equation given in Equation 7.20d.

(b)(a)

C(X)

y

ymo = XP

e = y − ymo

C(X)
ŷmo = XP

y
ê = y – ŷmo

ˆ

FIGURE 7.8
Projecting the data onto the subspace spanned by X: (a) non-orthogonal projection and (b) optimal orthogonal
projection.
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Thus, the normal equations are retrieved directly. It is noteworthy that the difference
vector is orthogonal to the column space of X.
As a result of this approach, we can also notice that the matrix X(XTX)�1XT is the

projection matrix that maps the data vectors in Rm onto the column space of the matrix X.
The regression model, as given by Equation 7.23b, which is the model predicted with the
estimated parameters, can now be analyzed as the projection of the data vector onto the
space spanned by themodel. Moreover, Equation 7.23b, defining the vector of residuals—or
as well the orthogonal difference vector in Figure 7.8—can be written in order to split the
data into two orthogonal parts, such as

y ¼ rþ ŷOLS ¼ y? þ y== (7:25d)

This kind of decomposition is usefully implemented for the SVD approaches, such as
proposed in Bamford et al. (2009) and explained in Tan et al. (2006).

7.4 Nonconstant Variance Errors

In the previous developments, all the measurements errors are assumed to have the same
precision. Obviously, this is not always the case, as the measurement errors may depend
on the amplitude of the signal, be recorded by different sensors, or be expressed in different
units.

7.4.1 Example and Motivation

In this section, we consider the problem of estimating a constant p, when two measurement
points yi i ¼ 1, 2 are available. As previously, the first approach is obtained by minimizing
the norm given by the objective function S, such as

S(p) ¼ (p� y1)2 þ (p� y2)2 (7:26a)

which yields an unbiased estimation of p which is the arithmetic mean of the observed
data, such as

p̂ ¼ �y ¼ y1 þ y2
2

(7:26b)

However, this simple formulation may present two important drawbacks, since it is very
sensitive both to a change of unit when the measurement data are not all expressed in the
same units, and to a nonconstant level of precision of the collected data.
For instance, let us assume that y2 is measured in a different unit than y1, within a

multiplication constant g, both for the measurement and the corresponding model, such as

S(p) ¼ (p� y1)2 þ (gp� gy2)2 (7:26c)
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Then the minimization of the square norm yields

p̂g ¼ y1 þ g2y2
1þ g2

(7:26d)

which gives a different solution according to the value of the scaling factor g.
Moreover, assuming that the statistical assumptions regarding the measurement errors

are standard except for constant variance and normal: additive, zero mean, and uncorrel-
ated errors, known statistical parameters, no error in the sensitivity matrix, and no prior
information regarding the parameters, we may be looking for the MVU estimator being a
linear combination of the observed data, and search the scalars a1 and a2 such as

p̂ ¼ a1y1 þ a2y2 (7:27a)

which has the expected value

E(p̂) ¼ E(a1y1 þ a2y2) ¼ a1E(y1)þ a2E(y2) ¼ (a1 þ a2)y*þ E(e1)þ E(e2) (7:27b)

Since the errors are assumed to have zero mean, a necessary condition to get an unbiased
estimator is obviously written as

a1 þ a2 ¼ 1 (7:27c)

The variance of p̂ is written as

var(p̂) ¼ E((p̂� y*)2) ¼ a21s
2
1 þ a22s

2
2 ¼ a21s

2
1 þ (1� a1)2s2

2 (7:27d)

and may be derived with respect to a1 in order to find the minimum variance estimator,
which yields

a1 ¼ s2
2

s2
1 þ s2

2
) a2 ¼ 1� a1 ¼ s2

1

s2
1 þ s2

2
(7:28a)

The solution for the MVU estimator of p is then obtained as

p̂MVU ¼
1
s2
1
y1 þ 1

s2
2
y2

1
s2
1
þ 1
s2
2

(7:28b)

In that case, it can be shown that the MVU has been obtained through the minimization of
the following objective function:

S(p) ¼ (p� y1)
2

s2
1
þ (p� y2)

2

s2
2

(7:28c)

In Equation 7.28b, the new element with respect to the OLS estimation, as previously
analyzed, is that the information relative to the precision of each individual measurement
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has been incorporated into the objective function to be minimized. It is apparent in
Equation 7.28c that more weight is given to the measurement points with a lower variance
while less weight is given to the data with a high level of uncertainty. It is also interesting
to note that the variance of this estimator is

1
var(p̂MVU)

¼ 1
s2
1
þ 1
s2
2

(7:28d)

The form of Equation 7.28d confirms that the quality of the estimation is mostly deter-
mined by the data with the lower uncertainty: if s2

1 � s2
2 ) var(p̂MVU) 
 s2

1.

7.4.2 Gauss–Markov Theorem

7.4.2.1 Gauss–Markov Estimator

In the example given in the previous section, the minimization of S does not depend in fact
on the size of any individual variance s2

i but only on their proportion. If the errors are not
independent, it seems to be consistent to apply a weighting which involves both the
covariances and the variances.
We consider herein the case where the statistical assumptions regarding the measure-

ment errors are ‘‘123789,’’ that is, the standard assumptions except normal, uncorrelated,
and constant variances, and the covariance matrix is known within a multiplicative
constant and is positive definite, such as

cov(y) ¼ s2V (7:29a)

With such assumptions regarding the errors, the Gauss–Markov theorem states the very
important result that the MVU estimator of all estimators which are a linear combination of
the observed data is the following estimator given as

P̂GM ¼ (XTV�1X)�1XTV�1y (7:29b)

The Gauss–Markov estimator is obtained by minimizing the objective function

SGM ¼ eTe ¼ (y� XPGM)
TV�1(y� XPGM) (7:29c)

and its covariance matrix is

cov(P̂GM) ¼ (XTV�1X)�1s2 (7:29d)

In the case where the measurement errors are uncorrelated, then the covariance matrix is
diagonal, and the objective function to be minimized, as seen with two data points in the
previous example, is

SGM ¼
Xm
i¼1

yi �
Pn

j¼1 XijPj

� 	2
s2
i

(7:29e)

which means that each observation is simply weighted with the corresponding variance.
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7.4.2.2 Example

The GM estimation method is applied to the simple example of a straight-line regression,
where both the slope and intercept are to be retrieved, as seen with OLS with the model
given in Equation 7.24a, but with nonconstant variances:

ymo ¼ 2tþ 5 (7:30a)

We assume that the covariance matrix is diagonal, known within a multiplicative constant,
and that the variance is proportional to the square of the independent variable (the time
here), sy(t) ¼ at such as

cov(y) ¼ a2V ¼ a2

t21 0 . . . 0

0 t22 0 . . .

. . . . . . . . . 0

0 . . . 0 t2n

266664
377775 (7:30b)

A MATLAB program implemented to get these results is shown in Appendix 7.A.2.
Applying OLS and GM estimators to this problem gives the results shown in Figure 7.9,
where the lines retrieved with the estimated parameters are plotted and compared to the
reference line drawn with the exact value of the parameters. The line retrieved with OLS is
far from the reference (exact) line, due to the variation of variance, while the GM estimator
successfully achieves to match the reference line. The exact values for the slope and
intercept and the estimated parameters are in that case respectively:

P* ¼ 2
5

� �
; P̂GM ¼ 2:01

4:99

� �
; P̂OLS ¼ 2:10

3:52

� �
; cov(P̂GM) ¼ 0:0013 �0:0015

�0:0015 0:0020

� �
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FIGURE 7.9
Estimation with nonconstant variance data.
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The Gauss–Markov estimator is quite close to the reference values, since it takes into
account the variation of uncertainty at each measurement point. The OLS estimator,
which is applied but does not consider the knowledge about this statistical behavior of
the errors, gives an ‘‘acceptable’’ result, but is far to be the best estimator in this case.
Moreover, the GM estimator is in this case the MVU, but the OLS is not.

7.4.3 Maximum Likelihood Estimation

The method of maximum likelihood consists of choosing among the possible values for the
parameter, the value that maximizes the probability of obtaining the sample of data that
have been observed. The joint probability distribution f (yjP) defines the distribution of the
measurement points for a given parameter vector, that is, associates a probability with each
different outcome y for a fixed P. On the other hand, if we are interested in finding the
vector of parameters which maximizes the probability of getting the observation we got,
then we are looking at f (yjP) as a function of P for a fixed set of measurement y already
obtained. This function, similar in its form to f (yjP), is called the likelihood function L(Pjy).
We consider the case where the assumptions are ‘‘1236789,’’ that is, the standard

assumptions are satisfied, except constant variance and uncorrelated errors. Note that
the only difference with the Gauss–Markov theorem case is that the errors have a normal
distribution.
The likelihood function is deduced directly from the probability density function as

L(Pjy) ¼ (2p)�m=2jcj�1 exp �(y� XP)T � c�1 � (y� XP)
2

 !
(7:31a)

where c¼ cov(y).
Taking the natural logarithm of the likelihood function yields

ln L(Pjy) ¼ � 1
2
[m ln (2p)þ ln (jcj)þ SML] (7:31b)

with

SML ¼ (y� XP)T � c�1 � (y� XP) (7:31c)

Thus, maximizing the likelihood function is equivalent to minimizing the objective func-
tion SML. The ML estimator is then obtained as

P̂ML ¼ (XTc�1X)�1XTc�1y (7:32a)

The covariance matrix of P̂ML is obtained by substituting the data by the model plus the
error into Equation 7.32a, with Equation 7.20a, and is quite similar to the calculus in the
OLS case, such as in Equation 7.22d. It yields

cov(P̂ML) ¼ (XTc�1X)�1 (7:32b)

Despite the fact that there is more information available regarding the statistical assump-
tions regarding the errors for the ML than for the GM estimator, both give the same result
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for the case envisioned herein. Moreover, since the GM estimator produces the MVU for
linear estimation, the ML does not yield more performance while it requires more a priori
assumptions. Thus, the ML is in fact mostly useful for nonlinear estimator implementation,
and is presented herein for the sake of general knowledge regarding the wide variety of
approaches.

7.4.4 Weighted Least Squares

If the covariance matrix of the errors is not known, but some information is available that
yields some specific variations regarding the errors, it might be of interest to include the
effect of some symmetric weighting matrix w in the estimation method, even if this matrix
is not necessarily equal to the inverse of the covariance matrix. This may be the case when
some change in the observed variables is implemented. An example is encountered when
the three-dimensional temperature field is separated into the multiplication of a two-
dimensional in-plane temperature and an in-depth temperature in a semi-infinite medium,
which is proportional to the square root of time. In that case, the measurement errors are
also multiplied by the independent variable, and this information must be incorporated in
the estimator.
The objective function which has to be minimized is then

SWLS ¼ (Y� XP)Tw(Y� XP) (7:33a)

which yields the estimator

P̂WLS ¼ (XTwX)�1XTwY (7:33b)

If the standard assumptions are valid, except constant variance, uncorrelated, normal, and
known statistical parameters (12389), the covariance matrix of the WLS estimator can be
calculated as

cov(P̂WLS) ¼ (XTwX)�1XTw cov(eY)wX(XTwX)�1 (7:33c)

If w is chosen as the inverse of the covariance matrix of the errors, that is, w ¼ cov(eY)
�1,

then this expression collapses to

cov(P̂WLS) ¼ (XTwX)�1 (7:33d)

7.5 Introduction to Ill-Posed Problems

The parameter estimation problem, such as defined in Figure 7.1, is relative to the com-
parison of a model which computes the output from the knowledge of the input and some
inner parameters which are used in the model. As seen previously in Chapter 1, the model
structure may be different according to the kind of problem in consideration, the observa-
tion scale, and complexity.
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The parameters to be recovered may be as well the passive structural parameters of the
model (model identification), the parameters relative to the input variables, initial state,
boundary conditions, some thermophysical properties, calibration, etc. For any of these
cases in consideration, the output of the model can be properly computed if all the required
information is available.
The problem is said to be well-posed, if, according to Hadamard (1923), three conditions

are satisfied, such as

1. A solution exists.

2. The solution is unique.

3. The solution depends continuously in the data.

Problems that are not well-posed in the sense of Hadamard are said to be ill-posed
problems. Note that the simple inversion of a well-posed problem may either be or not be a
well-posed problem.
In this chapter, solving the direct problem in consideration by the discrete linear model

defined by Equation 7.19c is a well-posed problem.
The example of searching the slope of a line with two or more data points, such as

discussed in Section 7.2.2 and Equations 7.8 and 7.9 may be either a well-posed or an ill-
posed problem:

1. A unique and stable solution exists if all the data points fit on the same line (no
noise in the data), and the time zero has not been chosen for some noisy data point.
In that very specific case, the problem of finding the slope is well-posed.

2. If, due to the noise in the measurement points, the data do not fit on the same line,
a solution does not exist (as shown in Figure 7.2); the corresponding inverse
problem of finding the slope is ill-posed.

3. If the values of time for taking the measurements are not properly chosen (mostly
close to zero), it has been discussed with Equation 7.14 that the solution is
unstable, since the errors in the measurement may increase drastically—see
Table 7.1 and Figure 7.3; this inverse problem is ill-posed.

The parameter estimation problem stated by finding the vector of parameters by matching
exactly the measurements to the model, and by making use of Equation 7.19c, is most often
an ill-posed problem, since it is generally overdetermined (because the number of meas-
urements m is greater than the number of parameters n), and has no solution because
y =2 Im(X). When the system is under-determined (m< n), it is also ill-posed because there is
an infinity of solutions. Moreover, when m¼ n, the problem may be well-posed if it were
stable, but may also be unstable due to the effect of noise in the data.

7.5.1 Examples and Motivation

In Section 7.2.2, the example given by Equation 7.10 was an ill-posed problem. Its conver-
sion into the least squares problem, defined by minimizing the norm in Equation 7.11, was
the approach chosen to turn this problem into a well-posed problem, and solve it with
Equation 7.13. We already stated that if the instants of measurements were not properly
chosen, the problem could turn to be unstable.
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We give hereafter some typical examples of ill-posed problems, such as derivation,
deconvolution, or extrapolation of the surface temperature by using some internal sensor
measurement.
The first and second examples are typical of a parameterized function estimation.

Instead of having a low number of parameters to be estimated with a high number of
measurements, as for Example 3.3, of estimating the slope and intercept of a linear
profile, the number of parameters to be estimated is very large and is quite of the same
order as the number of observable data y, which makes the problem highly sensitive to
noise. Unfortunately, in this case the inversion often also amplifies the measurement
noise.

7.5.1.1 Derivation of a Signal

The derivation of a signal is often required for data processing. It is the case of time-
dependent functions, for instance, when deriving the time evolution of the mass of a
product during drying or deducing the velocity of a body from the measurement of its
position. A usual case in heat transfer is the problem of estimating the heat flux q(t)
exchanged by a body with uniform temperature T(t) and volumetric heat capacity C
(lumped body approximation). The heat balance can be written as

C
dT
dt
¼ q(t) with the initial condition t ¼ 0 T ¼ 0

An inversion procedure for recovering an estimation of q(t) from the measured tempera-
ture values y(ti), for different levels of the measurement noise, is based on the following
steps:

a. Choose some heat flux function, such as q(t) ¼ 2t (arbitrarily chosen here).

b. Compute the corresponding analytical solution T(t) ¼ t2=C.

c. Add some random error, in order to simulate some experimental data, such as
y(t) ¼ T(t)þ e(t).

d. Retrieve the estimation by discrete derivation of the signal q̂(t) ¼ C
Dy
Dt

 C

dT
dt
.

e. Repeat for different values of the signal-to-noise ratio (characterized by different
levels of std).

The results are depicted in Figure 7.10, assuming that C ¼ 1. When the std of the error
is low, the heat flux is conveniently retrieved (Figure 7.10a). For case (b), the noise on the
signal y remains very low, in the sense that it is still almost not visible in the correspond-
ing curve. However, the heat flux is poorly computed. Increasing the level of noise,
such as in Figure 7.10c, where the std is 0.9 K, results in a drastically poor computation
of the heat flux. Thus, the derivation of an experimental signal is an ill-posed problem,
due to its unstable nature. The numerical derivation yields the computation of the
difference of successive measurements, divided by the time step. As previously seen in
Equations 7.14 and 7.15, the ill-posed character of the problem is more important as the
time step decreases.
The corresponding program can be found in Appendix 7.A.3.
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7.5.1.2 Deconvolution of a Signal

The deconvolution of a signal is also an operation often required when processing experi-
mental data, for instance, when searching the transfer function of a system or sensor, in
image processing, optics, geophysics, etc. We give again the heat transfer example of some
heat capacity exchangingwith convective heat losseswith the surroundingmedium, such as

C
dT
dt
¼ q(t)� hT with the initial condition t ¼ 0 T ¼ 0

We assume here that C ¼ 1,T1 ¼ 0 and that the boundary surface of the body is 1.
Solving this equation by using the Laplace transform of the temperature and heat flux

and inverting yields the solution in the form of the following product of convolution:

T(t) ¼
ðt
0

q(t� t) exp (�ht)dt
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FIGURE 7.10
Derivation of an experimental signal: (a) std¼ 0.03 K, (b) std¼ 0.3 K, and (c) std¼ 0.9 K.
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The same approach as in the previous example is proposed herein, such as

a. Choose some heat flux function, such as q(t).

b. Compute the corresponding analytical solution T(t) as the convolution product
above.

c. Add some random error, such as y(t) ¼ T(t)þ e(t).

d. Retrieve the heat flux by inverting the product this signal (deconvolution).

e. Repeat for different values of the signal-to-noise ratio (characterized by different
levels of std).

The results are depicted in Figure 7.11. For a low std of the error (std¼ 0.03 K), the heat
flux is conveniently retrieved by the deconvolution operation. When increasing the noise
level (std¼ 0.3 K), the drastic amplification of the errors in the deconvolution operation
makes the result absolutely inaccurate. The visual effect of the noise level in the curves
where the temperature outputs are drawn shows that the increase of noise between the two
situations, which makes the solution accurate or unavailable, is not significant. It is
apparent with this example that the deconvolution of an experimental signal may be an
ill-posed problem, depending on the functional form of the impulse response, due to its
unstable nature.
The corresponding program can be found in Appendix 7.A.4.
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FIGURE 7.11
Effect of the noise level on the deconvolution of a signal.
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7.5.1.3 Interpolation=Extrapolation of a Linear Profile

We consider the case of steady-state one-dimensional heat conduction in a homogeneous
slab, such as depicted in Figure 7.12. If two boundary conditions and the thermal conduct-
ivity and thickness are known, the problem is obviously well-posed, and the resulting
temperature profile is linear.
If the temperature at the left side of the wall is unknown, the problem is ill-posed, which

makes it necessary to add some additional information in order to define a new well-posed
problem. For instance, let us use the information of a thermal sensor inserted within the
wall, at x¼ xs, as shown in Figure 7.12. The inverse problem under consideration is to
retrieve the temperature T0 at the left wall from the measured temperature y.
The direct model, which computes the temperature at the sensor location, is written as

Ts ¼ 1� xs*ð ÞT0 þ xs*Te where xs* ¼ xs
e

(7:34a)

The error on the measured value given by the sensor is assumed to be additive, zero mean,
and known std s, such as

y ¼ Ts þ e (7:34b)

The estimator of T0 is obtained by substituting the temperature of the sensor by the
measured value y, which yields

T̂0 ¼ 1
1� xs*ð Þ y�

xs*
1� xs*ð ÞTe (7:35a)

Thus, the error on the estimate can be calculated easily as

eT0 ¼ T̂0 � T0 ¼ y� Ts

1� xs*ð Þ ¼
e

1� xs*ð Þ (7:35b)

Its expected value and std is then deduced as

E eT0ð Þ ¼ 0 and sT0 ¼
s

1� xs*ð Þ (7:35c)

These results show that the estimation is unbiased, and that the std is an increasing
function of the position of the sensor in the slab. The amplification of the error when the

FIGURE 7.12
Inverse steady-state heat conduction problem.
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sensor is located toward the ‘‘fixed’’ point has already been noted in the previous
examples on the estimation of the slope and intercept of a line, and is rather apparent in
the Figure 7.12, when comparing the real temperature profile with the predicted profile.
The predicted profile is obtained as

T̂x ¼ 1� x*
1� xs*ð Þ yþ

x*� xs*
1� xs*ð ÞTe where x* ¼ x

e
(7:36a)

The error on the predicted model of the temperature at the position x can be calculated by
the same approach as

eTx ¼
1� x*
1� xs*ð Þ e (7:36b)

Its expected value and std are then deduced as

E eTxð Þ ¼ 0 and sTx ¼
1� x*
1� xs*ð Þs (7:36c)

Again, the estimator of Tx is unbiased, and the expression of the std suggests that two
regions appear in the slab:

1. The layer located between the sensor and the right side of the slab xs � x � e,
where the boundary conditions are known exactly (Ts) or are approximated by the
measurement (y), the profile is determined by a linear interpolation, and the std of
the resulting error is reduced.

2. The layer located in front of the sensor 0 � x < xs, where one boundary condition
is unknown and the temperature is obtained by extrapolation of the temperature
profile, the measurement noise is amplified. The inverse problem is ill-posed in this
region, and more ill-posed while the sensor moves toward far from the front wall.

In the case of transient heat conduction, the extrapolation of the wall heat flux or wall
temperature from the information collected by an inner thermal sensor is also an ill-posed
problem, due to the amplification of the error in the inversion procedure. It is known as the
inverse heat conduction problem (IHCP), and has been widely discussed (Beck et al. 1985,
Ozisik and Orlande 2000, Alifanov 1994, Fudym et al. 2003, Petit and Maillet 2008).

7.5.2 Structure of the Linear Transform and Stability

7.5.2.1 Singular Value Decomposition

It was already discussed that the existence, unicity, and stability of the solution of the
discrete linear parameter estimation problem, such as defined in this chapter, depend
highly on the characteristics and structure of the rectangular matrix X. Moreover, when
the overdetermined problem y¼XP is turned into the least squares problem given by the
normal equations, such as Equation 7.20d, it appears that the structure of the square matrix
XTX is also important for the propagation of the errors between the observed data and the
parameters. The anatomy of such linear transformation is very clearly discussed in the text
of Tan et al. (2006).
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One approach of interest in order to analyze this problem is to consider the singular
value decomposition (SVD) of X. We assume herein that m> n (overdetermined system;
there is more data than parameters).
The square matrix XTX of size (n,n) and XXT of size (m,m) are symmetric and positive

semi-definite and hence have eigenvalues that are real and nonnegative.
Let l21,l

2
2, . . . ,l

2
n be the eigenvalues of XTX associated to the n eigenvectors

v1,v2, v3, . . . ,vn used to build the square matrix VT of size (n,n).
The eigenvalues of XXT, which are also l21, l

2
2, . . . ,l

2
n, are associated to the m eigenvectors

u1,u2,u3, . . . ,um used to build the square matrix U of size (m,m).
The rank of the matrix is given by the number r of nonzero eigenvalues. The singular

values are the square roots of the nonzero eigenvalues, written in decreasing order, such as
l1 � l2 � � � � � lr > 0.
The matrices U and VT are orthogonal such as VVT ¼ VTV ¼ In and UUT ¼ UTU ¼ Im.
Let us define the rectangular diagonal matrix S of size (m,n), which is built with the

singular values written in decreasing order—see Equation 7.37c.
The SVD of the matrix X is then written as

X ¼ USVT (7:37a)

Substituting the SVD of X in the linear relationship y ¼ XP yields

USVTP ¼ y , UTUSVTP ¼ UTy , SVTP ¼ UTy (7:37b)

where the estimation problem can be considered now with the new parameter vector
b ¼ VTP and a new observable vector: z ¼ UTy, such as

Sb ¼ y or

l1 0 . . . 0 . . . 0
0 l2 0

0 . . . 0
. . . lr

. . . 0 . . .

. . . . . . 0
0 0 0 0 . . . 0

26666666664

37777777775

b1
b2
. . .

br
. . .

bn

266666664

377777775 ¼
z1
z2
. . .

zr
. . .

. . .

zm

26666666664

37777777775
(7:37c)

The condition for the existence of a solution is that zi ¼ 0 for i ¼ rþ 1, . . . ,m, which is
equivalent to a condition of orthogonality of the eigenvectors UT

i for the values
i ¼ rþ 1, . . . ,n of the data yi.
The unicity of the solution is true if r¼ n, which is possible only if m � n (more data than

parameters). When r< n, the matrix X does not have full rank, and the parameters to be
estimated must be reduced, or some parameters must be determined in an arbitrary form.
The linear transform of y also yields a new covariance matrix associated to the observ-

able measurement noise. Hopefully, we can note that this operation does not affect the
variance of the error of the transformed signal z:

cov(z) ¼ UTcov(y)U ¼ s2UTU ¼ s2I (7:38a)

Thus the statistical assumption for b is also verified.
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The SVD can be used in the normal equations of Equation 7.20d in order to find the OLS
estimator in the diagonal basis, which yields

(XTX)P̂OLS ¼ XTy) STSb̂OLS ¼ STz (7:38b)

Thus the OLS problem can be solved alternatively in the SVD basis. Moreover, this formal
relationship will be useful to analyze the effect of the errors on the stability of the solution.

7.5.2.2 Condition Number and Stability

Assuming that the matrix has full rank (r¼ n), it is noteworthy that, from Equation 7.38b:

cov(b̂OLS) ¼ s2(STS)�1 or cov(b̂OLS) ¼

s2

l21
: 0

: : :

0 :
s2

l2n

2666664

3777775 (7:39)

The above equation shows that an effect of noise amplification appears due to the fact that
the eigenvalues l21,l

2
2, . . . ,l

2
n have a wide range of order of magnitude. It is of particular

interest to note in Equation 7.39 that the covariance matrix of the estimator in the diagonal
basis links the square of the singular values to the variance of noise, that is, to the level of
uncertainty in the measurement errors.
A small pertubation applied to a single component k of z, such as

dz ¼ dzkUk (7:40a)

yields the following variation to the OLS estimator:

db̂ ¼ dzk
lk

Vk (7:40b)

which implies a relative variation corresponding to

k db̂ k
k dz k ¼

1
lk

(7:40c)

Thus, the singular values indicate how the same perturbation yields different effects on the
components of the estimator. Moreover, this relative variation may increase drastically
when the singular values are close to zero. It is apparent that the maximum relative
variation factor is obtained between the first and the last component, such as

cond(X) ¼ l1
lr

(7:41)

where cond(X) is the condition number of the matrix X, defined as the ratio between the
higher and the lower singular values. Hence, cond(X) � 1, and cond(X) ¼ 1 occurs when X
is similar to a multiple of the identity. If cond(X) is not too large, the problem is said to be
well-conditioned and the solution is stable with respect to small variations of the
data. Otherwise the problem is said to be ill-conditioned. It is clear that the separation
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between well-conditioned and ill-conditioned problems is not very sharp and that the
concept of well-conditioned problem ismore vague than the concept ofwell-posed problem.
We can also note that

cond(XTX) ¼ l21
l2r
¼ (cond(X))2 (7:42)

Equation 7.42 confirms the previous comments in Section 7.3.2.2, which stated that com-
puting the normal equations by the direct inversion of the matrix XTX is not always the
most efficient method, since it is highly sensitive to ill-conditioning.

Example 7.2

Example of an ill-conditioned matrix

1 1
1 1:01

� �
p1

p2

� �
¼ 1

1

� �
the inversion yields

p1

p2

� �
¼ 1

0

� �
Let us give a perturbation of 1% on the second data point, such as

1 1
1 1:01

� �
p1

p2

� �
¼ 1

1:01

� �
the inversion yields

p1

p2

� �
¼ 0

1

� �
Hence, the resulting perturbation on the solution of the matrix inversion is surprisingly as far as
possible from the original solution. The solution is quite unstable. Note immediately that the
determinant is close to zero.
The eigenvalues are (2.005, 0.005), and the condition number is 402 � 1.

7.6 Minimization Based on a Predictive Model Error

The experimentalist is often faced with the problem of identifying directly the model of a
system by processing the experimental data, or retrieving the transfer function of some
system (Fudym et al. 2005). Moreover, the estimation of thermophysical properties or heat
transfer parameters is often a nonlinear estimation problem, as will be more deeply
discussed in Chapter 8. Nonlinear estimation yields the requirement for some iterative
computation procedure for the minimization of the objective function. This point may be
absolutely critical when dealing with the problem of retrieving the map of some physical
properties, such as thermophysical properties mapping from thermal images provided by
an IR camera, or more generally with global full fields methods where the field of some
magnitude must be retrieved by the means of some imaging system. The amount of data to
be processed and parameters to be estimated is in that case drastically increased. Solving
the estimation problem in a nonlinear framework where the resolution is iterative yields in
this case a prohibitive computation cost in terms of cpu time.
It is then of great interest to be able to turn this kind of problem into a similar but

linear estimation problem, for the same parameters. It is shown in this section how this can
be achieved by minimizing a predictive model error instead of an output model error
(Borne et al. 1997, Ljung et al. 1987). This section is devoted to the implementation of the
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predictive model error minimization. First, a simple basic example is proposed for the sake
of clarity. Then an application for thermal diffusivity mapping from thermal images
processing is presented.

7.6.1 Minimization Based on a Predictive Model Error

In this section, let us consider first the example previously proposed in Section 7.5.1.2 of a
body with uniform temperature and volumetric heat capacity C, exchanging heat at the
boundary, both by an input heat flux and convection at the wall, in order to illustrate the
nonlinear character of estimation. Moreover, we consider now that the input heat flux is
constant, such as

C
dT
dt
¼ q� hT with the initial condition t ¼ 0 T ¼ 0 (7:43a)

The analytical solution is, in that case, given by

ymo(t) ¼ T(t) ¼ � q
h
exp � h

C
t

� �
(7:43b)

Assuming that C is known, the two parameters to be retrieved are q and h.
The sensitivity coefficients defined by Equation 7.18a are in that case such as

Xq(t,Pmo) ¼ qymo

qq
¼ � 1

h
exp � h

C
t

� �
(7:43c)

Xh(t,Pmo) ¼ qymo

qh
¼ q

1
h2
þ 1
C

� �
exp � h

C
t

� �
(7:43d)

where Pmo ¼ q h½ �T.
The subscript ‘‘mo’’ indicates that the vector of parameters is defined with respect to the

model ymo. If we want to implement the output error method, as depicted in previous
sections, then we must compare the vector of the model ymo ¼ T(t1) T(t2) � � � T(tm)½ �T,
computed for some discrete values of the independent variable t and written in the form
given by Equation 7.17b, with the corresponding experimental measurements
y ¼ y1 y2 � � � ym½ �T.
Writing this problem in a matrix form for m discrete values of time, with the formulation

corresponding to Equation 7.19c, the sensitivity matrix is

X ¼ xq xh

 �

(7:44a)

with

xq ¼ Xq(t1,Pmo) Xq(t2,Pmo) � � � Xq(tm,Pmo)

 �T and

xh ¼ Xh(t1,Pmo) Xh(t2,Pmo) � � � Xh(tm,Pmo)�T



Then Equation 7.19c is

ymo ¼ X(Pmo)Pmo (7:44b)

where the model ymo ¼ T(t1) T(t2) � � � T(tm)½ �T is computed with Equation 7.43b.
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Then the OLS objective function defined in Equation 7.20a is chosen to be minimized,
which is the norm of the output error (as shown in Figure 7.1).
Obviously, the sensitivity coefficients are not independent of the parameters; hence, the

estimation is nonlinear with respect to the parameters. Thus, the least squares approach
applied to the minimization of the output model error, where the direct model is given by
Equation 7.43b is a nonlinear estimation problem.
The predictive model approach yields from the very important observation that the

temperature, which is given by Equation 7.43b, is obviously also required to satisfy
Equation 7.43a for any value of time, which means that the governing equation is always
fulfilled.
The predictive model is based on the idea that the experimental data may also be

assumed to fulfill the governing equation as well. This idea is very close to the ‘‘exact
matching’’ concept. The predictive model error is proposed to be built within the following
steps:

1. First, consider that the finite difference discretization of Equation 7.43a can be used
in order to predict the temperature at time ti from the knowledge of temperature at
time ti�1, such as

Ti ¼ 1� h
CDt

� �
Ti�1 þ q

CDt
(7:45a)

2. Then consider the predictive model by computing the right side of Equation 7.45a
with the experimental data points instead of the model, such as

ŷi ¼ 1� h
CDt

� �
yi�1 þ q

CDt
(7:45b)

3. Write the predictive model in a matrix form:

ŷ ¼ X(y)P (7:45c)

where

ŷ ¼ ŷ1 ŷ2 � � � ŷm½ �T; P ¼ 1� h
CDt

q
CDt

� �T
and X(y) ¼

0 1
y1 1
. . . . . .
ym�1 1

2664
3775 (7:45d)

Note in Equation 7.45d that the sensitivity matrix depends now on the experimen-
tal data, but is independent of the parameters. Equation 7.45c yields a predictor
which computes at any time step the predicted temperature, knowing the previous
outputs of the experimental measurements. Obviously, the predictive model is
linear with respect to the parameters. The sketch of the predictive model is drawn
in Figure 7.13, which shows how the predictive model is directly built with the
experimental data. Unfortunately, this kind of approach makes necessary to fill in
the sensitivity matrix directly with some linear operations on the measured data.
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In this particular example, the vector of parameters is not exactly the same for
the output model or the predictive model. This is absolutely not due to the
method. In many cases, the vector of parameters may remain unchanged, as will
be shown, for instance, in the example of Section 7.6.2.

4. Compute the predictive error and the norm to be minimized:

ep ¼ y� ŷ ¼ y� X(y)P (7:46a)

SOLS(P) ¼ eTpep ¼ (y� ŷ)T(y� ŷ) ¼ (y� X(y)P)
T(y� X(y)P) (7:46b)

The derivation of this norm can be made exactly as previously for the case of the
output model error, which yields the OLS estimator of P, such as

P̂OLS ¼ [(XTX)�1XT](y)y (7:46c)

For the sake of clarity, the OLS estimator is considered herein, but according to the
statistical assumptions regarding the measurement errors, another estimator such as a
GM estimator could be used as well.
Various different approaches are available in order to take into account the effect of

randomness of the sensitivity matrix, such as the Bayesian approach (Kaipio and Somer-
salo 2004), or the total least squares methods (Bamford et al. 2008, Van Huffel and
Vandewalle 1991), which are not within the scope of the present chapter, but are discussed
elsewhere in this book. Both sides of Equation 7.45c are computed with the experimental
data. Hence, this equation presents some symmetry characteristic, and could be easily
permuted. This symmetry is what is taken into account in the total least squares
approach, where the effect of noise of both the observable and the sensitivity coefficients
is considered.
However, assuming that the error is additive, such as defined with Equation 7.20a, it is

apparent in Equation 7.46c that the stochastic nature of the sensitivity matrix may yield
some bias in the OLS estimator, due to the correlation between the pseudo-inverse matrix
and the errors. Thus, the OLS estimator is generally biased in this case.

7.6.2 Example: Thermal Diffusivity Mapping

We give herein an example relative to thermal diffusivity mapping of a heterogeneous thin
plate, where the experimental data are recorded by an IR camera. Due both to the great
number of pixels of the IR camera and the fast frame rate, the quantity of information to be
processed is drastically increased (over 15 GB=s !), which makes it unrealistic to implement
some global nonlinear estimation problems. In this case, the problem is addressed instead

FIGURE 7.13
Minimization of the predictive model
error.
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+
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by using an approach based on the resolution of a linear estimation problem for each
pixel, by matching the experimental data with the local discretized equations, which leads
to a predictive error model. The parameter fields are retrieved by computing the local
correlations between pixels. Moreover, in the case of the heat pulse response analysis, the
signal-to-noise ratio is increased by applying a spatially random heat pulse heating
(Batsale et al. 2004, Bamford et al. 2009).
The mathematical formulation for this problem is given by

C(x, y)
qT
qt
¼ q

qx
k(x, y)

qT
qx

� �
þ q
qy

k(x, y)
qT
qy

� �
(7:47a)

The equation is discretized using an explicit finite difference scheme, where each node (i, j)
is considered as a sensor of the IR camera, such as

Ynþ1
i, j ¼ Lni, jai, j þDxni, jd

x
i, j þDyni, jd

y
i, j (7:47b)

where the subscripts pair (i, j ) denotes the finite-difference node at xi¼ iDx, i¼ 1 . . . ni, and
yj¼ jDy, j¼ 1 . . . nj, and the superscript n denotes the time tn¼ nDt, n¼ 0 . . . (nt� 1). The
other quantities appearing in Equation 7.47b are given by

Ynþ1
i, j ¼ Tnþ1

i, j � Tn
i, j (7:48a)

Lni, j ¼ Dt
Tn
i�1, j � 2Tn

i, j þ Tn
iþ1, j

(Dx)2
þ
Tn
i, j�1 � 2Tn

i, j þ Tn
i, jþ1

(Dy)2

 !
(7:48b)

Dxni, j ¼
Dt
2Dx

Tn
iþ1, j � Tn

i�1, j
� 	

and Dyni, j ¼
Dt
2Dy

Tn
i, jþ1 � Tn

i, j�1
� 	

(7:48c)

dxi, j ¼
1

C(x, y)
qk
qx

and d
y
i, j ¼

1
C(x, y)

qk
qy

(7:48d)

Equation 7.48a defines the forward temperature difference in time. Equation 7.48b approxi-
mates the Laplacian of temperature at time tn and node (i, j). Equations 7.48c and d are
relative to the spatial derivatives of temperature and local thermal conductivity.
ai, j, which is the local thermal diffusivity in m2 s�1.
dxi, j and d

y
i, j, which are the local thermal conductivity gradients along the x and y

directions, respectively, divided by the heat capacity.
We assume now that the temperature Tn

i, j at any pixel and any time is obtained from the
experimental images, and define the predictive model as

Ŷnþ1
i, j ¼ Lni, j(T)ai, j þDxni, j(T)d

x
i, j þDyni, j(T)d

y
i, j (7:49a)

where the variable ‘‘T’’ means that the operators are applied to the experimental data.
By writing Equation 7.49a for a given node (i,j) and all time steps, we obtain

Ŷij ¼ Jij(T)Pij (7:49b)
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where

Jij(T) ¼

L1i, j Dx1i, j Dy1i, j

L2i, j Dx2i, j Dy2i, j

..

. ..
. ..

.

Lnti, j Dxnti, j Dynti, j

26666664

37777775(T); Yij ¼

Ŷ1
i, j

Ŷ2
i, j

..

.

Ŷnt
i, j

26666664

37777775; Pij ¼
ai, j
dxi, j

d
y
i, j

2664
3775

where the different operators in the sensitivity matrix Jij are computed directly with the
experimental data obtained from the thermal images.
The predictive model Ŷij defined by Equation 7.49b is then used to compute the predict-

ive model error by making the difference with the ‘‘observable data’’ Yij(y(t) in Figure
7.13), such as

epi, j ¼ Yij � Ŷij ¼ Yij � JijPij with Yij ¼

Y1
i, j

Y2
i, j

..

.

Ynt
i, j

26666664

37777775 (7:50)

The objective function to be minimized is the norm of the predictive error, such as

Si, j ¼ eTpi, j epi, j ¼ (Yij � Ŷij)T(Yij � Ŷij) ¼ (Yij � JijPij)T(Yij � JijPij) (7:51)

Equation 7.49b, when used as a predictor, yields a linear dependence of the system
response with respect to the vector of parameters, based on the knowledge of the sensi-
tivity matrix. With the spatial resolution and frequency of measurements made available
by IR cameras, the sensitivity matrix can be approximately computed with the measure-
ments. It is noteworthy that the choice is made to solve simultaneously as many local linear
estimation problems as supplied by the measurement device (for instance, the number of
pixels) instead of a single global huge problem.
In the casewhere the statistical assumptions regarding the errors are the standard assump-

tions, except no error in the sensitivity coefficients—12345679—we use the OLS estimator,
such aswritten inEquation 7.21. TheOLS estimator is theMVUwhen the sensitivitymatrix is
deterministic. We analyze now which is the effect of violation of this assumption when the
sensitivity matrix is filled with measurements, and is then corrupted with random errors.
The plate under consideration is shown in Figure 7.14. It is obtained from a real IR image,

which is binarized in order to show the structure of the medium, composed by some circles
of material A in a matrix of material B. The thermal diffusivity map is drawn in Figure
7.14a. A numerical experiment is simulated with a level of noise such as sT ¼ 0:03K, which
is similar to the std of the IR camera sensors. The temperature field at the end of the
experiment is shown in Figure 7.14b. Due to the spatially random photothermal pulse,
two-dimensional heat transfer is achieved in the whole plate.
The retrieved maps of parameters estimated with the OLS estimator are depicted in

Figures 7.15 and 7.16. The thermal diffusivity map is drawn in Figure 7.15. The whole
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FIGURE 7.14
Heterogeneous plate: (a) thermal diffusivity
material A (black): aA¼ 1.00	 10�7 m2 s�1;
material B (white): aB¼ 2.53	 10�7 m2 s�1 and
(b) final temperature field (t¼ 1.2 s).
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FIGURE 7.15
Thermal diffusivity mapping with OLS
(sT ¼ 0:03K).
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map is estimated conveniently; the root mean square error (rms) is found to be rms¼
1.7	 10�8 m2 s�1. In Figure 7.16a and b are drawn the retrieved maps of the thermal
conductivity first derivatives in the x direction and y direction, respectively. As expected,
for a medium with sharp interfaces between the two materials A and B, these parameters
act as an edge filter.
The thermal diffusivity profiles corresponding to the line 60 of the plate are plotted in

Figure 7.17. The results obtained with the predictor are compared with the OLS estimator
which would be obtained when the sensitivity matrix is computed with the ‘‘exact’’
randomless temperature (without noise), while the observable data are still corrupted
with measurement errors. As expected, the solution with the predicted model in X is
more sensitive to noise, but no bias is present. Moreover, the residual between the
predictor and the data is quite good, as shown in Figure 7.18, since it is similar to a
white noise, with the same level of noise as the initial signal.

FIGURE 7.16
Thermal conductivity gradient maps: (a)
dxi, j and (b) dyi, j.
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FIGURE 7.17
Thermal diffusivity profile of line 60. Comparison between OLS estimation with noise in X (full predictive model)
and without noise in X.

0 0.2 0.4 0.6 0.8 1 1.2
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

Time (s)

Y 
ob

s (
K)

FIGURE 7.18
Residual (Yij � Jij( y)Pij) for pixel i¼ 60; j¼ 150.
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7.7 Conclusion

Linear least squares estimation is very efficient and robust for data processing in a
discrete frame, when some parameters are to be retrieved, due to its straightforward
implementation, since it is obtained directly, with no need for an iterative procedure,
and may be even solved analytically, when the number of parameters to be estimated is
low. Moreover, some statistical characteristics relative to the uncertainty on the esti-
mated parameters can be derived. Another advantage of linearity is that when estima-
tion is linear, the MVU always exists. According to the knowledge of the statistical
assumptions regarding the measurement errors, this MVU estimator can be found or
not. For the standard assumptions ‘‘1234589’’ previously discussed, the OLS estimator
is the MVU. When the variance is not constant and the errors correlated, that is,
‘‘123789,’’ the GM estimator is the MVU. When few information regarding the errors
is available, the OLS estimator still may be used, but obviously with a loss of precision
about its statistical behavior.
Hence, it is always of interest to turn the parameter estimation problem into a linear

estimation problem whenever it is possible. This is absolutely a key point when processing
an important quantity of data, and=or when the number of parameters is high. In that case,
one way of turning the problem to linear is by minimizing the predictive model error
instead of the output error. This approach is useful and efficient and is obtained by
computing directly the model with the measured data, applying the governing equation
to the measurements.
The inverse problem of retrieving some quantities by processing experimental data is

in many cases an ill-posed problem (we gave herein the examples of derivation,
deconvolution, extrapolation, and inverse heat conduction), or more specifically, in a
linear estimation approach an ill-conditioned problem, where the solution is highly
sensitive to experimental and=or modeling errors. The next chapters of this book are
mostly devoted to methods that yield a better understanding and resolution of such
problems.

Appendix 7.A.1: Example of Section 7.3.3

% Comparison of Residuals with or without error in the model
% y¼axþb
% yr¼yþnoise(x)
% yre¼yeþnoise(x)
% We estimate a and b with the noisy signal yr or yre
clear all;close all
n¼500;un¼ones(size(1:n));x¼(1:n).=5;y¼2*xþ5;
% Noise with normal distribution
gain¼2;noise¼gain*randn(size(x));sigy¼std(noise);
ye¼yþ0.01*(x�50).^2;% With error in the model
yr¼yþnoise;yre¼yeþnoise; % Noisy signal
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% OLS estimator with yr
X¼[x0 un0];% sensitivity matrix
bls¼i nv(X0*X)*X0*yr0

covls¼inv(X0*X).*sigy^2; % covariance matrix
yols¼bls(1)*xþbls(2); % OLS predictive model
covr¼(eye(n)�X*inv(X0*X)*X0).*sigy^2; % cov matrix of residuals
% OLS estimator with yre
blse¼inv(X0*X)*X0*yre0

yolse¼blse(1)*xþblse(2); % OLS predictive model
figure(1),plot(x,yr, ‘kþ’,x,y, ‘k.�’,x,yols, ‘k�’),legend(‘Observed
data’, ‘Reference line’, OLS’)

figure(2),plot(x,yols�yr, ‘k’),legend(‘Residual OLS’)
figure(3),plot(x,yre, ‘kþ’,x,ye, ‘k.�’,x,yolse, ‘k�’),legend(‘Observed

data’, ‘Reference line’, ‘OLS with error in model’)
figure(4),plot(x,yolse�yre, ‘k’),legend(‘Residual with error in model’)
figure(5),subplot(2,1,1),plot(x,noise, ‘k’),subplot(2,1,2),

hist(noise,25, ‘k’)
figure(6),imagesc(covr), colorbar

Appendix 7.A.2: Example of Section 7.4.2.2

% Gauss–Markov Estimator: Comparison with OLS
% y¼axþb
% yr¼yþnoise(x)
% We must estimate a and b with the noisy signal yr
clear all;close all
n¼100;un¼ones(size(1:n));
x¼(1:n);y¼2*xþ5;
% Noise with uniform distribution
gain¼0.02;amp¼gain*(x.^2);noise¼amp.*(0.5-rand(size(x)));
yr¼yþnoise; % Noisy signal
X¼[x0 un0];% sensitivity matrix
phi¼diag(un.=amp.^2);% inverse of covariance matrix of noise
% Gauss–Markov estimator and its covariance matrix (GM)
bgm¼inv(X0*phi*X)*X0*phi*yr0

covgm¼inv(X0*phi*X);
% OLS estimator and its covariance matrix
bls¼inv(X0*X)*X0*yr0

covls¼inv(X0*X);
ygm¼bgm(1)*xþbgm(2); % GM predictive model
yols¼bls(1)*xþbls(2); % OLS predictive model
figure(1), plot(x,yr, ‘kþ’,x,y,x,yols,x,ygm), legend(‘Observed data’,

‘Reference line’, ‘OLS’, ‘GM’)
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Appendix 7.A.3: Derivation of a Signal—Section 7.5.1.1

% dT=dt¼q(t)
% T¼t**2¼) q(t)¼2t
% y¼Tþnoise
clear;
dt¼0.1;nt¼100;time¼dt*(1:nt); % define time
q¼2*time; T¼time.^2; % define q and T
gain¼0.1; % adjust to change the std of noise
noise¼gain*(0.5�1*rand(size(time))); % define noise
y¼Tþnoise; % add noise to simulate experimental data
fi¼diff(y)=dt; % derivation of the ‘‘experimental’’ signal
t1¼dt*(1:nt�1);tr¼t1þ0.5*dt*ones(size(t1)); % center time values
sigma¼std(noise); % compute std of noise
% Plot of results
plot(time,T, ‘k’,time,y, ‘k.�’,time,q, ‘k:’,tr,fi, ‘kþ’);
legend(‘computed temperature T,’ ‘noisy signal y,’ ‘known q,’ ‘retrieved by

derivation of y’);
xlabel(‘time (s)’); ylabel(‘T and q’); grid on

Appendix 7.A.4: Deconvolution of an Experimental
Signal—Section 7.5.1.2

% dT=dt¼ q(t) �kT t¼ 0 T¼ 0
clear;
dt¼0.1;nt¼100;time¼dt*(1:nt); % define time
% define input q(t)
un¼ones(1,(2*nt�1));q¼zeros(size(time));
q(30:49)¼0.05*(1:20);q(50:69)¼1�0.05*(1:20);
h¼0.5;fc¼exp(�h*time); % impulse response
y¼conv(fc,q); % convolution product
gain¼0.1;noise¼gain*(0.5*un-rand(size(un)));sigma¼std(noise)
yr¼yþnoise; % noisy signal
fir¼deconv(yr,fc); % deconvolution
gain¼1;noise¼gain*(0.5*un-rand(size(un)));sigma¼std(noise)
yr2¼yþnoise; % noisy signal
fir2¼deconv(yr2,fc); % deconvolution
subplot(321),plot(time,fc, ‘k’,0,1.5,0,�0.5),title(‘Impulse

response’);
subplot(322),plot(time,q, ‘k’,0,1.5,0,�0.5),title(‘Input q(t)’);
subplot(323),plot(time,y(1:nt), ‘k’,time,yr(1:nt), ‘k.�’,0,2),

title(‘Noisy signal std¼ 0.03 K’);
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subplot(324),plot(time,q, ‘k’,time,fir, ‘kþ’),title(‘Retrieved input
for std¼0.03 K’);

subplot(325),plot(time,y(1:nt), ‘k’,time,yr2(1:nt), ‘k.�’,0,2),
title(‘Noisy signal std¼0.3 K’);

subplot(326),plot(time,q, ‘k’,time,fir2, ‘kþ’),title(‘Retrieved input
for std¼0.3 K’);

Nomenclature

a thermal diffusivity (m2 s�1)
b(�) bias of an estimated parameter vector: b(P̂) ¼ E(P̂)� P*

cov(u) covariance matrix of a random vector u
C volumetric heat capacity (J m�3 K�1)
ei difference between measurement and model at time ti
e vector of differences between measurement and model
E(�) expected value
g(t) volumetric heat source (W m�3)
k thermal conductivity (W m�1 K�1)
m mass (kg)
p scalar parameter
P vector of parameters
q(t) heat flux density (W m�2)
r correlation coefficient
ri residual at time ti
r vector of residuals
S objective function
t time (s)
T temperature (K)
T temperature vector
u input function
u input vector (components of uparam (M, t))
var(�) variance of a scalar random quantity
X sensitivity matrix
X sensitivity coefficient
y experimental outcome of Y
Y random variable of experimental observed data
Y experimental observed data vector
ei measurement error at time ti
e error vector
s standard deviation

Superscripts

^ estimated value or estimator or predictive model
* exact value or reduced value (for sensitivity functions and coefficients)
T transpose of a matrix or a vector
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Subscripts

GM Gauss–Markov
OLS ordinary least squares
ML maximum likelihood
mo model
p predictive model
WLS weighted least squares

Abbreviations

MVU minimum variance unbiased estimator
std standard deviation
VIM International Vocabulary of Metrology
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8.1 Introduction

Looking at light propagation, we ask ourselves: What is light? How is light propagated?
On observing the sea movements, we again wonder: How does the sea wave travel? And
how about the dynamics of sky bodies?
The aim of science is to answer the above questions. More generally, the understanding

of the natural and cultural phenomena is the challenge in science.
One historical point in the scientific development was in Isaac Newton’s book, Math-

ematical Principles of Natural Philosophy (written in Latin: Philosophiæ Naturalis Principia
Mathematica), usually called the Principia, the first edition of which was published in
1687. Actually, the Principia is made up of a set of three books: Book 1: De motu corporum
(On the Motion of Bodies), Book 2: (On the Motion of Bodies, but Motion through Resisting
Mediums), Book 3: De systemate mundi (On the System of the World). There are many
contributions related to Newton’s approach. The Principia has a lot of solved problems,
and it establishes many aspects of modern scientific thought. For example, the physics
applied for the planet Earth is the same as for the other celestial bodies. Moreover, natural
science should be a quantitative issue, that is, the quantities involved are connected
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according to mathematical relations. From the development of differential and integral
calculus, the quantitative relations are expressed as differential and=or integral equations.
Therefore, a long period was needed until we were able to describe the equations for

fluid dynamics, for example, for understanding qualitatively and quantitatively the move-
ment of a sea wave. The description of the mathematical equations, the material properties
(constitutive equations), and the initial and boundary conditions constitute the direct
problem (also called the forward problem).
However, estimating a property from a natural phenomenon, taking into account the

quantity measured or desired, characterizes an inverse problem. The expression ‘‘inverse
problem’’ is attributed to the Georgian astrophysicist Viktor Amazaspovich Ambartsu-
mian (for more information about him, consult the Internet: http:==www.phys-astro.
sonoma.edu=brucemedalists=ambartsumian=). One definition for inverse problems is
attributed to the eminent Russian scientist Oleg Mikailivitch Alifanov: ‘‘Solution of an
inverse problem entails determining unknown causes based on observation of their effects’’
(see in the Internet: http:==www.me.ua.edu=inverse=whatis.html).
In the first years of the twentieth century, a French mathematician, Jacques Hadamard, in

his studies on differential equations, established the concept of a well-posed problem, which
comprises the following: (1) the solution exists; (2) the solution is unique; (3) there is a
continuous dependence on the input data. Hadamard has derived some examples that fail
to follow one or more conditions cited. Such problems are called ill-posed problems (also
known as incorrectly posed or improperly posed problems). However, Hadamard believed that
ill-posed problems are curiosities, and problems from the physical reality should be well-
posed problems, because nature works in a stable way.
Unfortunately, inverse problems belong to the class of ill-posed problems. This was a

great motivation to change the conception that improperly posed problems are only a
pathological mathematical curiosity. This is the motivation to study mathematical methods
to deal with this kind of problems. Researchers like David L. Phillips (1962) and Sean A.
Twomey (1963a, 1963b) deserve special mention, but it was the scientific work from Andrei
Nikolaevich Tikhonov that was the starting point of the general formulation to the ill-
posed problems—the regularization method. Professor Tikhonov was a prominent Russian
mathematician from the famous Steklov Mathematical Institute. He worked mainly on
topology, functional analysis, mathematical physics, and computational mathematics.
The regularization method is based on computing the smoothest approximated solution

consistent with available data. The search for the smoothest (or regular) solution is the
additional information added to the problem, moving the original problem from the ill-
posed problem to the well-posed one. Figure 8.1 gives an outline of the idea behind the
scheme. This is one of the most powerful techniques for computing inverse solutions.
One competitive strategy is to consider the function to be estimated as a realization of a

stochastic process. The methods that employ only the statistical properties of the noise
(a permanent feature in the measured quantities) are the maximum likelihood (ML)
estimators. Another statistical approach is the Bayesian method, where an a priori

FIGURE 8.1
Principle of the regularization methods,
where an additional information is used.

Ill-posed
problem + A priori

information
Well-posed

problem

Physical
reality
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statistical density function is assumed to the unknown function. Some authors argue that
a Bayesian scheme is a statistical justification to the regularization methods.
A standard reference on the regularization method is Tikhonov and Arsenin’s book

(1977). Another reference with some mathematical details is Engl et al. (1996). However,
I would also like to suggest the books by Bertero and Boccacci (1998) and Aster et al. (2005).
For statistical methods of inverse problems (IP), Tarantola (1987) and Kaipio and
Somersalo (2005) are good references.

8.1.1 Estimating Initial Condition in Heat Transfer

Consider the problem of determining the initial condition of a linear conduction heat
transfer in an insulated slab, isotropic and homogeneous, without heat sources in the domain.
This problem can be mathematically formulated in a nondimensional form as follows:

qT
qt
¼ q2T

qx2
, t > 0, x 2 V � (0, 1), (8:1a)

qT
qx
¼ 0, t > 0, x ¼ 0, x ¼ 1, (8:1b)

T(x, 0) ¼ f (x), x 2 [0, 1]: (8:1c)

With convenient scaling, it is always possible to derive a nondimensional expression for
system (8.1a) through (8.1c) (see Muniz et al. [1999]). The solution to the forward problem
is explicitly obtained splitting the variables and applying the Fourier method (Fourier,
1940*; Özisik, 1980), x 2 (0, 1)	<þ in the following equation:

T(x, t) ¼
X1
m¼0

e�b
2
mt

1
N(bm)

X(bm, x)
ð
V

X(bm, x
0)f (x0)dx0, (8:2)

where
X(bm, x) is the eigenfunction associated to the problem
bm are the eigenvalues
N(bm) represents a normalization condition

For the Fourier method for the boundary condition (8.1b), we have

X(bm, x) ¼ cos (bmx), bm ¼ mp, N(bm) ¼
ð1
0

X2(bm, x)dx, m 2 N [ {0}: (8:3)

Equation 8.2 can be written in an integral formulation:

T(x, t) ¼
ð1
0

K(x, x0, t)f (x0)dx0, (8:4)

* Poincaré (2001) said that Fourier has invented the Fourier series to deal with discontinuous functions, emerging
from a physical problem: Heat conduction (Fourier, 1940). Poincaré also pointed out that our notion, about the
fact that continuous functions are the only valid function, would remain for a longer time if there was no Fourier
analysis.
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where the kernel is defined by

K(x, x0, t) ¼
X1
m¼0

e�b
2
mt

1
N(bm)

X(bm, x)X(bm, x
0): (8:5)

In Equation 8.4, the function f(x) should be bounded following the boundary conditions.
If the temperature field is known at a time t¼ t, and using the orthogonality of the

eigenfunction X(bm, x), the initial condition can be computed analytically as follows:

f (x) ¼
X1
m¼0

eb
2
mt

1
N(bm)

X(bm, x)
ð
V

X(bm, x
0)T(x0, t)dx0: (8:6)

The expression (8.6) could be verified employing an experiment. In a laboratory, one can
measure the temperature by the sensors (e.g., thermal couple) at several points, for an
insulated slab. The formula (8.6) can be written as

f (x) ¼
XNp

m¼0
eb

2
mt

1
N(bm)

X(bm, x)
ð
V

X(bm, x
0)ud(x0, t)dx0, (8:7)

where ud(xk, t), the observed temperature, differs from the true temperature T(xk, t), for all
measured points by a small experimental error (with d level of noise):

ud(x0, t) ¼ T(x, t)þ d: (8:8)

For our test, we can consider the d level of noise as a random variable with a 1% maximum
deviation from the true temperature. The result of the inverse solution under this condition
is shown in Figure 8.2. Clearly, the analytical inversion did not work. The inverse solution
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FIGURE 8.2
Initial condition: Triangular function is the true solution, while irregular function is the inverse solution computed
by Equation 8.7.
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exists, and it is unique. However, the solution (8.7) breaks the third Hadamard’s condition,
since it does not have a continuous dependency on input data (Hadamard, 1952).

Theorem 8.1

From the result (8.6), where (f,T) 2 L2([0, 1])	 L2([0, 1]), the computation of the initial
condition is ill-posed under the L2 norm.

Proof Consider two initial conditions f1, f2 2 L2([0, 1]), such as f2(x)¼ f1(x)þCX(bm, x), with
C 2 <� {0}. The true temperatures are denoted by T1(x, t) and T2(x, t), for a fixed t. From
the linearity,

T2(x, t) ¼ T1(x, t)þ
X1
0

e�b
2
mt

1
N(bm)

X(bm, x)
ð1
0

CX(bn, x)X(bm, x
0)dx0

¼ T1(x, t)þ Ce�b
2
mtX(bn, x): (8:9)

Therefore: kT2 � T1k22¼
Ð 1
0 [T2(x, t)� T(x, t)]2dx ¼ C2e�2b

2
ntN(bn). For any arbitrary number

C, the quantity kT2�T1k2 can be arbitrarily small for n sufficiently large.
Similarly, the difference between f1 and f2 can be evaluated on norm L2, with C 6¼ 0

k f2 � f1k22 ¼
ð1
0

C2X2(bn, x)dx ¼ C2N(bn) ¼ constant > 0:

Summarizing, for arbitrary small differences between T1 and T2, one can select n and C in
which the discrepancy between the corresponding inverse solutions could be arbitrary:

kT2 � T1k2! 0, but k f2 � f1k2 ! C2N(bm) (arbitrary):

Actually, there is no surprise in the result from Theorem 8.1. A well-known property is
the Fredholm alternative, asseverating a solution for integral equations of type (8.4). In a
more technical statement, the Fredholm alternative is applied when the integral operator
is a compact operator (Evans, 2000). In other words, from Fredholm’s theory, smooth
kernels of integral equations are compact operators. The spectrum of the compact oper-
ators is a subset (finite or infinity) of complex numbers, but countable, and it includes
zero as a limit point (Groetsche, 1984). From the spectral theory of compact operators, it is
possible to recognize that the inverse operator of Equation 8.4 will be ill defined for some
points in the domain.*
In the next section, we describe some techniques to compute good inversions, avoiding the

singularities in the inversion operation.

* Poincaré (2001) said that Fourier has invented the Fourier series to deal with discontinuous functions, emerging
from a physical problem—heat conduction (Fourier, 1940). Our notion that continuous functions are only the
valid functions could be retained for much more time without the Fourier analysis.
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8.2 Regularization Method: Mathematical Formulation

We start this section by stressing the well-posed problem from Tikhonov’s point of view.
Following Tikhonov (Tikhonov and Arsenin, 1977), the problem A(u)¼ f, with u 2 X and
f 2 F, is well posed if the space X contains a subspace M such that

1. A solution exists and it belongs to the subspace M.

2. The solution in item-(1) is unique.

3. Small variations on f imply in small variations on the solution u, and the new
solution remains in subspace M.

The well-posed problems from Tikhonov’s point of view are conditionally well-posed
problems. A pictorial representation is depicted in Figure 8.3. However, it is hard to
determine the subspace M. Therefore, we need some additional condition to express what
kind of solution in the spaceXwe are searching. This is a selection process for indicating the
type of properties we require from the candidate inverse solution. As indicated in Figure 8.1,
this selection condition is taken from our previous knowledge of the physical problem—it is
an a priori knowledge. For example, the requirement could allow only smooth or regular
functions—this is an example of such constraint or selection condition.
The regularization procedure searches for solutions that display global regularity. In the

mathematical formulation of the method, the inverse problem is expressed as optimization
problem with constraint:

min
u2X
kA(u)� f dk22 , subject to V[u] � r, (8:10)

where
A(u)¼ f d represents the forward problem
V[u] is the regularization operator (Tikhonov and Arsenin, 1977)

The problem (8.10) can be written as an optimization problem without constrains using a
Lagrange multiplier (penalty or regularization parameter)

min
u2U

kA(u)� f dk22 þaV[u]
� �

, (8:11)

where a is the regularization parameter. The first term in the objective function (8.11) is the
fidelity of the model with the observation data, while the second term expresses the
regularity (or smoothness) required from the unknown quantity.

FIGURE 8.3
According to Tikhonov, it could be possible to find a subspace
M � X, where a well-posed problem can be defined.

M

X
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Note that for a! 0, the fidelity term is overestimated; on the other hand, for a!1, all
information in the mathematical model is lost.
In order to have a complete theory, the regularization operator should be known, and it

is also necessary to have a scheme to compute the regularization parameter. A definition of
a family of regularization operator is given in the following.

Definition 8.1 A family of continuous regularization operators Ra: F ! U is called a
regularization scheme for the inverse operation of A(u)¼ f d, when

lim
a!0

Ra{A(u)} ¼ u, (8:12)

where u 2 U and a are regularization parameters.

The expression (8.11) is a practical implementation of Definition 8.1. Several regulariza-
tions operators have been derived from the pioneer works. Here, only three classes of these
regularization operators will be described.

8.3 Determining the Regularization Parameter

Equations 8.11 and 8.12 introduce the regularization parameter. The best choice for this
parameter is to indicate a good balance between the fidelity term (square difference between
the mathematical model and the observations: kA(u)� f dk22) and the smoothness term
(regularization term: V[u]).
Several methods have been developed, for example (Bertero and Bocacci, 1998),

Morosov’s discrepancy criterion, Hansen’s method (L-curve method), and generalized
cross validation.
Morosov’s criterion is based on the difference between data of the mathematical model

and observations. It should have the same magnitude as measurement errors (Morozov
and Stessin, 1992). Therefore, if d is the error in the measure process, a is the root of the
following equation:

kA(u)� f dk22
� �

a* 
 d: (8:13)

To determineN sensors in an inverse problem, assuming that measurement errors could be
modeled by a Gaussian distribution with s2 variance, the discrepancy criterion for inde-
pendent measures can be expressed as

kA(u)� f dk22 
 Ns2: (8:14)

If the statistics on the observational data is not available, the generalized cross-validation
method can be applied (Bertero and Bocacci, 1998; Aster et al., 2005). Considering now a
linear forward problem (A(u)¼Au, where A is a matrix), the goal of the cross-validation
scheme is to minimize the generalized cross-validation function (Aster et al., 2005):

V(a) ¼ N kA(ua)� f dk22
[Tr{I � B(a)}]2

: (8:15)
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where Tr{C} is the trace of matrix C, and B(a) is the following matrix:

B(a) � AA*(AA*þ aI)�1, (8:16)

where
A* is the adjoint matrix (Af,g)¼ ( f,A*g)
I is the identity matrix

Another scheme to compute the regularization parameter is the L-curve method. The
L-curve criterion is a geometrical approach suggested by Hansen (1992) (see Bertero and
Bocacci [1998]; Aster et al. [2005]). The idea is to find the point of maximum curvature on
the corner of the plot V[ua] 	 kA(u)� f dk22. In general, the plot smoothness	fidelity
shows an L-shape curve type.

8.3.1 Generalized Discrepancy Principle

The Gaussian distribution assumption for modeling the noise in the measured data could
be justified based on the central limit theorem* (Papoulis, 1984). However, there is a class of
distribution where the second statistical value is not defined, and Morosov’s criterion
cannot be applied. There are many distributions in this class, for example, Cauchy and
Lévy distributions or other distributions following a power law. Under the latter situation,
the idea is to develop a generalization of Morosov’s criterion (Morosov, 1984; Shiguemori
et al., 2004a).
Let rf (x) be the distribution of the measure f d. Now, a constrained variance is defined as

follows:

�s2 �
ðd
�d

xrf (x)dx ¼ 1: (8:17)

The generalization allows to compute the regularization parameter when the noise in the
experimental data are given by Cauchy, t-Student, and Tsallis’ distribution (with q> 5=3),
producing good inverse solutions.

8.4 Tikhonov Regularization

Regularized inverse solutions search by global regularity for producing the smoothest
reconstruction in agreement with the available measured (or desired) data.
The regularization operator in Equation 8.11 can be given by

V[u] ¼
XP
k¼0

mk ku(k) k22 : (8:18)

* The result can be expressed as the sum of a sequence of n independent and identically distributed (i.i.d.) random
variables, with finite values for mean m and variance s2: Sn¼X1þ � � � þXn, and considering the new random
variable Zn � (Sn � nm)=(s

ffiffiffi
n
p

), the distribution of Zn converges to the normal distribution N(0, 1), when n!1.
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Here, u(k) denotes the kth derivative (or difference, for discrete function) and mk � 0. In
general, k¼ dkj (Kronecker delta) and the operator becomes

V[u] ¼ku(k) k22 : (8:19)

This method is called the Tikhonov regularization of order-k, or Tikhonov-k. The effect of
Tikhonov-0 regularization is to reduce the oscillations on function u, searching for smooth
functions, in this case u(0)� u
 0. For the first-order regularization, the operator is u(1)
 0)
u 
 constant. Sometimes, the operator (8.18) is expressed as

V[u] ¼kLkuk22 (8:20)

with Lk the derivative or difference operators. For a discrete case, the Tikhonov operators of
zero-, first-, and second-orders are given by

L0 ¼ IM	M ¼
1 � � � 0
..
. . .

. ..
.

0 � � � 1

24 35
M	M

L1 ¼
�1 1

. .
.

�1 1

24 35
(M�1)	M

L2 ¼
2 �1
�1 2 �1

..

. ..
.

�1 2

2664
3775
(M�2)	M

:

(8:21)

The numerical experiment to determine the initial condition f(x) in the system (8.1) is based
on a triangular test function (Muniz et al., 1999):

f (x) ¼ 2x, x 2 [0, 0:5],
2(1� x), x 2 (0:5, 1]:



(8:22)

The synthetic experimental data (measured temperatures at time t> 0), which intrinsically
contains errors, is obtained by adding a random perturbation to the exact solution of the
direct problem, such that

ud(x, t) ¼ T(x, t)þ sh, (8:23)

where
s is the standard deviation of the errors
h is a random variable taken from a uniform distribution (h 2 [�1, 1])

The inverse solution is calculated using a discrete version of the system (8.1) with Nx¼ 100,
and the experiment was performed at t¼ 0.008 for the level of noise s¼ 0.05. According to
Morozov and Stessin (1992), the optimal value for a is reached as kA uaþð Þ � f dk

Nxs

2 ¼ 0:25, where aþ is the optimum regularization parameter (see Section 8.3 for more
details).
Regularized solutions for the inverse problem described in Section 8.1 are plotted in

Figures 8.4 and 8.5. As pointed out in Section 8.2, a small regularization parameter yields
oscillatory solutions, while a ! 1, the inverse solution tends to a fully uniform profile.
By using the values estimated by the discrepancy criterion a¼ 0.073 for zeroth-order
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Tikhonov regularization (Figure 8.6) and a¼ 0.34 for first-order Tikhonov regularization,
good estimations were obtained for the triangle test function. In real-world problems,
the choice of a regularization parameter for a specific test function provides good results
even when applied to other initial conditions.

8.5 Entropic Regularization

First proposed as a general inference procedure by Jaynes (1957), on the basis of Shannon’s
axiomatic characterization of the amount of information (Shannon and Weaver, 1949), the
maximum entropy (MaxEnt) principle emerged at the end of the 1960s as a highly
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successful regularization technique. Since then, the MaxEnt principle has successfully been
applied to a variety of fields—computerized tomography (Smith et al., 1991),
nondestructive testing (Ramos and Giovannini, 1995), pattern recognition (Fleisher et al.,
1990), and crystallography (de Boissieu et al., 1991).
As with other standard regularization techniques, MaxEnt searches for solutions that

display global regularity. Thus, for a suitable choice of the penalty or regularization
parameter, MaxEnt regularization yields the smoothest reconstructions, which are consist-
ent with the available data. However, in spite of being very effective in preventing the
solutions to be contaminated by artifacts, many times explicit penalizing roughness during
the inversion procedure may not be the best approach to be followed. If, for instance, it is
realistic to expect spikiness in the reconstruction of an image, or if there is prior evidence
on the smoothness of, say, the second-derivatives of the true model, imposing an isotropic
smoothing directly on the entire solution may lead to an unnecessary loss of resolution or
to an unacceptable bias. In other words, the solution so obtained may no longer reflect the
physical reality.
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FIGURE 8.6
Initial condition estimation (see Section 8.1.1) using Tikhonov-0 regularization for Equation 8.11—see Section 8.4:
(a) noise data following Cauchy distribution and (b) noise data following Tssalis’ distribution (q¼ 1.5).
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New entropic higher order regularization techniques have been introduced. They repre-
sent a generalization of the standard MaxEnt regularization method, and allow for a
greater flexibility for introducing any prior information about the expected structure of
the true physical model, or its derivatives, into the inversion procedure. One technique is
based on the minimization of the entropy of the vector of first-differences of the unknown
parameters. Adopting the standard terminology, it is called the minimum first-order
entropy method (MinEnt-1). Unlike the classical maximum entropy formalism, this method
constrains the class of possible solutions into a restricted set of low entropy models,
constituted by locally smooth regions, separated by sharp discontinuities. The method
MinEnt-1 was applied to the reconstruction of 2D geoelectric conductivity distributions
from magnetotelluric data (Campos Velho and Ramos, 1997). A second-order entropic
regularization is based on the maximization of the entropy of the vector of second-differences
of the unknown parameters, and is denoted as the MaxEnt-2 method. The MaxEnt-2
method was applied to the retrieval of vertical profiles of temperature in the atmosphere
from remote sensing data (Ramos et al., 1999).
For the vector of parameters ui with nonnegative components, the discrete entropy

function S of vector u is defined by

S(u) ¼ �
XN
q¼1

sq log (sq), with
u ¼ [u1 � � � uN],

sq ¼ uq=
PN

q¼1 uq,

(
(8:24)

where uq¼ u(xq). The (nonnegative) entropy function S attains its global maximum
when all sq are the same, which corresponds to a uniform distribution with a value of
Smax¼ log N, while the lowest entropy level, Smin¼ 0 is attained when all elements sq but
one are set to zero.
In practical situations, the definition of the maximal entropy regularizer can be extended

for f not necessarily positive. In this case, assuming that umin< ui< umax (i¼ 1, . . . , N), the
maximal entropy regularizer is redefined for the vector p ¼ [ p1 � � � pN]

T, where pi¼
ui� umin> 0, (i¼ 1, . . . , N).
It is also possible to define higher order entropy functions, as in the Tikhonov regular-

ization, defining new regularization procedures based on maximum entropy principle.
These two approaches are based on the maximization of the entropy of the vector of first-
and second-differences u. To this end, it is assumed that umin< ui< umax (i¼ 1, . . . , N). Under
this last assumption, the methods of MaxEnt-1 and MaxEnt-2 are defined as follows
(Muniz et al., 2000):

pi ¼
ui � umin þ B (zeroth order),

uiþ1 � ui þ (umax � umin)þ B (first order),

uiþ1 � 2ui þ ui�1 þ 2(umax � umin)þ B (second order),

8><>: (8:25)

where B is a small parameter (B¼ 10�10).
Maximum entropy of higher order is applied to obtain inverse solutions for problem

described in Section 8.1. The results are shown in Figures 8.7 up to 8.9. For all entropic
regularizations, Morosov’s discrepancy principle was used to compute the regularization
parameter for each entropic operator (Muniz et al., 2000) (Figures 8.8 and 8.9).
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FIGURE 8.7
Regularized inverse solution for the
zeroth-order entropy (a¼ 9).
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8.6 The Unified Regularization: The Principle of Maximum
Nonextensive Regularization

A nonextensive formulation for the entropy has been proposed by Tsallis (1988) (see also:
Tsallis [1999]). Recently, the nonextensive entropic was used to unify the Tikhonov and
entropic regularizations (Campos Velho et al., 2006). The nonextensive parameter q plays a
central role in Tsallis’ thermostatistics, in which q¼ 1, the Boltzmann–Gibbs–Shannon’s
entropy is recovered. In the context of regularization theory, the nonextensive entropy
includes another important particular case—when q¼ 2, the maximum nonextensive
entropy principle is equivalent to the standard Tikhonov regularization.
Two methods were investigated for determining the regularization parameter for

this new regularization operator: Morozov’s discrepancy principle and the maximum
curvature scheme of the curve relating smoothness versus fidelity, inspired by Hansen’s
geometrical criterion (Hansen, 1992).
A nonextensive form of entropy is given by the expression (Tsallis, 1988)

Sq(p) ¼ k
q� 1

1�
XN
i¼1

pqi

" #
, (8:26)

where
pi is a probability
q is a free parameter (nonextensive parameter)

In thermodynamics the parameter k is known as Boltzmann’s constant. Similarly, as in
the mathematical theory of information, k¼ 1 is considered in the regularization theory.
Tsallis’ entropy reduces to the usual Boltzmann–Gibbs–Shanon formula, for the limit q! 1.
Figure 8.10 shows the functional form for Tsallis’ entropy for several values of q. For

q< 5=3, the standard central limit theorem applies, implying that if pi is written as a sum of
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FIGURE 8.10
The behavior of the nonextensive entropy function for several values of q.
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N random independent variables, in the limit case N!1, the probability density function
(PDF) for pi in the distribution space is the normal (Gaussian) distribution (Tsallis, 1999).
However, for 5=3< q< 3 the Levy–Gnedenko’s central limit theorem applies, resulting for
N ! 1 in a Levy distribution as the PDF for the random variable pi. The index in such
Levy distribution is g¼ (3� 1)=(q� 1) (Tsallis, 1999).
The goal of this section is to describe formally the properties for this operator, taking

into consideration the regularization purposes. Regularization property for entropy
operator emerges from Jaynes’ inference criterion—the maximum entropy principle—
where all events have the same probability of occurring. Implying all parameters
assume the same value pi¼ 1=N, the following lemma extends this result for nonexten-
sive entropy.

Lemma 8.1

The nonextensive function Sq is maximum as pi¼ 1=N for all i.

Proof The problem is to find the maximum of the function (8.26), with the following
constrain:

XN
i¼1

pi ¼ 1

since pi represents a probability. Therefore, it is possible to define an objective function
where the constraint can be added to the nonextensive function:

J(p) ¼ Sq(p)þ a
XN
i¼1

pi � 1

 !
,

where a is the Lagrange multiplier. The Lagrange multiplier, in this case, can be deter-
mined when a minimum for the objective function J(p) is found, as follows:

qJ(pi)
qpi

¼ � q
q� 1

pq�1i

� �
þ a ¼ 0) pi ¼ a(q� 1)

q

� �1=(q�1)
:

This result can be used to obtain the value of the pi’s that maximizes the function J(p):

XN
i¼1

pi ¼
XN
i¼1

a(q� 1)
q

� �1=(q�1)
¼ N

a(q� 1)
q

� �1=(q�1)
¼ 1) pi ¼ 1

N
,

i.e., if pi¼ 1=N for all i¼ 1, . . . , N, the nonextensive entropy function is maximum.

Theorem 8.2 shows that the extensive entropy and Thikhonov’s regularizations are par-
ticular cases of the nonextensive entropy.
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Theorem 8.2

For particular values for nonextensive entropy q¼ 1 and q¼ 2 are equivalents to the
extensive entropy and Tikhonov regularizations, respectively.

Proof

(i) q¼ 1: taking the limit,

lim
q!1

Sq(u) ¼ lim
q!1

1�PN
i¼1 p

q
i

q� 1
¼ lim

q!1

1�PN
i¼1 exp (q log pi)
q� 1

¼ lim
q!1

�PN
i¼1 log (pi exp (q log pi))

1
¼ �

XN
i¼1

pi log pi:

(ii) q¼ 2: remembering that max{S2} is equivalent to min{�S2}, yields

max S2(u) ¼ max 1�
XN
i¼1

p2i

( )
, min {�S2(u)} ¼ min

XN
i¼1

p2i � 1

( )
:

Now, the maximum (minimum) value holds ruS2¼ 0, therefore

ruS2(u) ¼ ru

XN
i¼1

p2i � 1

 !
¼ ru

XN
i¼1

p2i

 !
¼ ru kuk22 :

In conclusion, max {S2(u)} ¼ min {kuk22 }, the zeroth-order Tikhonov regularization.

Table 8.1 shows the regularization parameters computed by the discrepancy principle and
the L-curve method. Figures 8.11 and 8.12 show inverse solutions determined for the initial
condition to the heat conduction problem (8.1). The L-curve scheme allows some oscilla-
tions for q¼ 0.5 and q¼ 1.5, while Morosov’s technique has a stronger regularization for all
values of the nonextensive parameters. It is important to note that boundary conditions for
x¼ 0 and x¼ 1 are better identified by Sq with q¼ 2.5. Unfortunately, there is no theory
until now to indicate the best value for the nonextensive parameter, and it is probably
problem dependent.

TABLE 8.1

Regularization Parameters Computed by
Morosov’s and Hansen’s Criteria

q a-Morosov a-Hansen

0.5 0.0285 0.0011
1.5 0.0234 0.0008

2.0 0.0414 0.0040

2.5 0.0579 0.0040

298 Thermal Measurements and Inverse Techniques

  



1
0.9
0.8
0.7
0.6
0.5
0.4
0.3

In
iti

al
 te

m
pe

ra
tu

re

0.2
0.1

0

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3

In
iti

al
 te

m
pe

ra
tu

re

0.2
0.1

0

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3

In
iti

al
 te

m
pe

ra
tu

re

0.2
0.1

0

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3

In
iti

al
 te

m
pe

ra
tu

re

0.2
0.1

10 20 30 40 50
x

60 70 80 90 100 10 20 30 40 50
x

60 70 80 90 100

0
10 20 30 40 50

x
60 70 80 90 100 10 20 30 40 50

x
60 70 80 90 100

(a) (b)

(d)(c)

FIGURE 8.11
Reconstructions for triangular test function, with a determined by Morosov’s criterion: (a) q¼ 0.5, (b) q¼ 1.5,
(c) q¼ 2.0, and (d) q¼ 2.5.
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8.7 Intrinsic Regularization

For solving the optimization problem (8.11), there are deterministic and stochastic tech-
niques. In general, the advantage attributed to the stochastic techniques is to avoid local
minima, while deterministic methods present a faster convergence (if the candidate solu-
tion is in the attractor basin). One example is the regularized inverse solution for the
determination of initial condition (8.1) by genetic algorithm (GA) and epidemic genetic
algorithm (EGA)—Figure 8.13 shows both solution, with regularization parameter com-
puted by the discrepancy principle (Chiwiacowsky and Campos Velho, 2003).
Recently, a novelty was proposed by stochastic methods dealing with population, such as

GA, extreme optimization, ant colony optimization (ACO), multiple particle collision, etc.
The new strategy was named intrinsic regularization. Regularization is an operation to select
some solutions with a specific characteristic, for example, smoothness. Therefore, the evalu-
ation of the solution candidates (elements of the population from a stochasticmethod) can be
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done not only for the agreementwith the experimental data, but also verifying the regularity
of the solution.
From an a priori information about the smoothness of the solution profile, such

knowledge is included in the generation of the candidate solutions. A larger number of
elements of population is randomly generated, but only a subset of this population is
selected, according to a smoothness criterion. Only the elements (in our example in heat
conduction—possible profiles for the initial condition) of this subset are evaluated by the
objective function:

J(u) ¼kA(u)� f dk22 , (8:27)

requiring the solution of the direct problem. This preselection scheme can be viewed as a
preregularization. For quantifying the smoothness any regularization norm can be applied.
The intrinsic regularization scheme was tested with radiation problems: estimating

albedo in heat transfer (Stephany et al., 2010) and optical properties for hydrological optics
(Souto et al., 2006; Carvalho et al., 2008). For these problems, a Tikhonov’ second-order
norm was applied to evaluate the smoothness

V[u] ¼ ukþ1 � 2uk þ uk�1, k ¼ 1, . . . ,N � 2: (8:28)

For applications mentioned, the ACO was employed for minimizing the objective function
(8.27). A list of advantages is as follows:

1. From the original population, only 15% of the smoothest solutions are preselected,
reducing the computational cost for the inverse solution.

2. For this technique, the regularization is not explicit. Therefore, no schemes are
necessary to compute a regularization parameter.

3. For the worked inverse problems in radiative transfer problems, better inverse
solutions were obtained applying the intrinsic regularization operation, instead of
using the standard regularization formulation.

8.8 Statistical Methods

The statistical estimation theory provides many methods for estimating properties and=or
parameters such as the following: best linear unbiased estimator (BLUE), minimum vari-
ance unbiased estimator (MVUE), minimum mean squared error (MMSE), least-square
estimator, maximum a posteriori (MAP), generalized method of moments, Markov chain
Monte Carlo (MCMC), ML, Wiener filter, Kalman filter, ensemble Kalman filter (EnKF),
particle filter, Bayes estimators, etc.
Some of statistical methods cited before have close relations, such as MCMC, EnKF,

particle filter, and Bayes estimator, for example. It is not our goal here to investigate such
relations. Our intention is to realize if some of these approaches present regularization
properties, and to verify under which conditions the methods inspired on statistical
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considerations address similar inverse solutions (mathematical properties), as in the stand-
ard regularization strategy discussed in Section 8.2.
We only treat in this chapter on the ML and Bayesian methods. A brief description of

these methods will be displayed, but for some definitions the previous definitions are
necessary (see Chapter 12 for more details on the Bayesian approach).
The expectation value on one variable (or function) is defined by

E{z} �
ðþ1
�1

wpz(w)dw, (8:29)

where pz(w) is the PDF of random variable z. In order to become clear in our application,
the forward model is expressed in an exact manner as

f ¼ A(u)þ d, (8:30)

where d is a random variable with zero mean. If we have a similar model, but under
different realizations, a random variable h can be written as

h ¼ A(u)þ m (8:31)

with m as a random variable with zero mean too. Denoting by ph( f ) is the PDF of random
variable h, our assumption is that the expected value for h should result in the same value
by the function f, or, in other words,

E{h} ¼ E{ f } ¼ A(u0), (8:32)

since m and d have zero mean. The expected value E{h} is not known, but the function
(vector, in discrete case) is a realization of the set hu¼A(u)þm. One issue to be pointed out
is ph( f ju) is the conditional PDF of the random variable hu. In addition, E{hu}¼A(u); and
finally, for u¼ u0, ph( f ju0) is the PDF of the random variable hu, given by Equation 8.31,
corresponding to the unknown function u0.
Assuming that m is an additive noise with zero expectation value (or, zero mean) and

known PDF pm(d), the PDF of hu is described by

ph( f ju) ¼ pm( f � A(u)), (8:33)

and condition 8.32 for pm( f�A(u)) follows the previous statement.
We are looking for a criterion to select the best representation from the set of realizations

hu, considering a noisy observation f d. The technique to provide an estimate for u0 is the
procedure that we are looking for.
The procedure adopted by the ML method is appropriate to take into account the PDF

for the random variable h, as expressed by the following equation:

L(u) ¼ ph( f ju): (8:34)
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ML estimation of u0 is the function that maximizes L(u) on its domain. In most of the cases,
the Gaussian function is adopted as the likelihood function, but other PDF can also be used
(Bertero and Bocaccio, 1998):

L(u) ¼ ph( f ju) ¼ 1

sf
ffiffiffiffiffiffi
2p
p exp �kA(u)� f dk22

2s2
f

" #
: (8:35)

To calculate the maximum of expression (8.35), one can employ an optimization solver
(e.g., deriving Equation 8.35 related to u becoming equal to zero, and the new equation
is solved by Newton method or other deterministic method; or applying a stochastic
optimization scheme). For N independent measurements, the PDF of function hu is a
product of N functions. As the logarithm function is a monotonic function, the maximum
of the logarithm of L(u) will be the same result for the function L(u) itself. However, the
problem (8.35) is unstable (there is no continuous dependency on the data f d), similar to
the problem in the deterministic approach (8.11) with a¼ 0. One a priori condition on the
unknown function is to assume that the distribution of the function u is a uniform
distribution on a subset of domain X (see Figure 8.1):

ph(u) ¼ constant 6¼ 0, for u 2 M,
0, for u =2M:



(8:36)

Under this assumption, the likelihood function becomes

L(u) ¼ ph( f ju) ¼ 1

sf
ffiffiffiffiffiffi
2p
p exp �kA(u)� f dk2F

2s2
f

" #
	 1

su
ffiffiffiffiffiffi
2p
p exp �ku� uþk2X

2s2
u

� �
, (8:37)

where uþ is a reference value (our a priori assumption). In Equation 8.37, we point out the
space that we are dealing in, as indicated by the norm used. The logarithm of the above
function, as mentioned, has the same optimal solution:

l(u) � log L(u) ¼ log
1

2psfsu

� �
� 1
2s2

f

kA(u)� f dk2F þas ku� uþk2X
� �

: (8:38)

Here, as � s2
f =s

2
u (note that the variance s2

u is unknown). The result obtained by ML
method has some similarity with the regularized optimization method. This result leads
some authors to conclude that there is no obvious advantage of the statistical methods over
the deterministic approaches (Berdichevsky and Dmitriev, 2002).
Bayesianmethods are procedures based on the Bayes theorem for estimating an a posteriori

PDF, computed from a former PDF (or a priori PDF). There are some controversies among
scientists of the estimation theory. Some of them do not believe on scientific foundation of
the maximum entropy method. Another team argues that Bayesian approach uses a sub-
jective (nonscientific) information for the choice of the prior distribution. In this chapter, we
are going to keep out of these discussions.
There are two fundamental features in the Bayesian approach. First, in the previous

methods, the solution is a specific function (could be random), but in the Bayesian
approach the solution is a distribution. Second, there is a natural way to introduce the
a priori information. Such a feature is due to the approach pioneered by Thomas Bayes, an
eighteenth-century researcher in probability theory.
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Theorem 8.3

For two statistically independent events A and B, with probability P(B) 6¼ 0, Bayes’ rule
follows:

P(AjB) ¼ P(BjA)P(A)
P(B)

: (8:39a)

Proof The proof is simple, and it can be found in several texts on probability theory
(Papoulis, 1984). From the definition of conditional probability of an event A given event B,
denoted by P(AjB) as

P(AjB) � P(A \ B)
P(B)

with P(B) > 0,

where P(A\B) is the joint probability of A and B. Similarly,

P(BjA) � P(A \ B)
P(A)

with P(A) > 0

is the conditional probability of an event B given event A. From the conditional probability
defined above, we have

P(A \ B) ¼ P(AjB)P(B) ¼ P(BjA)P(A):

From the last equation, it is possible to obtain Bayes’ rule (8.38). The posterior distribution
is computed using Bayes’ theorem

p(uj f d) ¼ L(u j f d)p(u)Ð
all solutions L(u j f d)p(u)du

¼ L(u j f d)p(u)
c

, (8:39b)

where L(.) is the likelihood function. The relation between the likelihood function and the
conditional probability is L(u j f d)¼ g( f dju). The constant c can be interpreted as a normal-
ization condition for the posterior distribution. Equation 8.39b can be expressed as

p(uj f d) / L(uj f d)p(u): (8:40)

For independent measurements, the likelihood function is written as a product likelihood
for each observation:

L(uj f d) ¼ g( f dju) ¼
YN
k¼1

g( f dk ju): (8:41)
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Assuming observations independent and normally distributed f dk with the expected value
A(u)k and variance s2, the conditional probability will be

g( f dju) ¼ 1

s
ffiffiffiffiffiffi
2p
p exp �

XN
k¼1

(A(u)k � f dk )
2

2s2

" #
: (8:42)

Expressions (8.35) and (8.43) are valid for uncorrelated measurements. To maximize
Equation 8.42, it is equivalent to minimize the negative of exponent

min
XN
k¼1

(A(u)k � f dk )
2

2s2 : (8:43)

In the multivariate situation, under Gaussian distribution assumption, covariances associ-
ated with the unknown parameters Cu and the observations Cf have important rules. The
prior distribution will be

p(u) / exp � 1
2
(u� u0)TC�1u (u� u0)


 �
(8:44)

and the likelihood function of the data given a profile u is

L(u) / exp � 1
2
(A(u)� f d)TC�1f (A(u)� f d)


 �
: (8:45)

Finally, combining Equations 8.42 and 8.44, the posterior density function is given by

p(u) / exp � 1
2
(A(u)� f d)TC�1f (A(u)� f d)þ (u� u0)TC�1u (u� u0)


 �
: (8:46)

As before, maximizing Equation 8.46 is equivalent to minimizing the negative of
exponent

min [A(u)� f d]TC�1f [A(u)� f d]þ (u� u0)TC�1u (u� u0)
n o

: (8:47)

The last term in Equation 8.47 can be understood as a regularization (Tikhonov-0). How-
ever, there are many implementations of the Bayesian formulation (Tarantola, 1987;
Gordon et al., 1993; Kaipio and Somersalo, 2005; Fudym et al., 2008).
Related to the Bayesian approach, the lesson in this section is that the a priori distribution

assumed for the unknown is a key issue to become the inverse process stable.
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8.9 Regularized Neural Networks

After some initial controversy, artificial neural networks (ANNs) have become a well-
established research field in artificial intelligence (AI). As a first approach (sometimes also
called strong AI), the idea was to develop an artificial device able to emulate the ability of
the human brain. The cognitive process is one component of intelligence. Information
storage and the association ability allow us to make inference. The response of the brain
under different situations is something linked to the experiences from the past for
calibrating an extrapolation, or for adopting some previous strategy. Can the cognition
emerge from a very complex connected system with unities with the ability for process-
ing? We do not know. However, it is possible to believe that we are able to produce an
answer (output) from inputs, after the establishment of the connection and=or reinforce
some connections (the ‘‘configuration’’ of the neural network). This is a dynamical
process with feedbacks, but a learning procedure is necessary to design a good connec-
tion configuration.
A simplified representation of a biological neuron is the artificial neuron—a weighted

combination of the inputs is the value for the nonlinear activation function (in general,
a sigmoid one). In ANNs, the identification of the connection weights is the learning (or
training) phase.
Neural networks are a new technique to solve inverse problems. Different from other

methodologies for computing inverse solutions, neural networks do not need the know-
ledge on forward problem. In other words, neural networks can be used as ‘‘inversion
operator’’ without a mathematical model to describe the direct problem.
There are several architectures for the ANNs. But, related to the learning process, ANNs

can be classified into two important classes: supervised NNs and unsupervised NNs. For
the supervised strategy, the connection weights are selected to become the output from the
ANN close to the target set, for example, by minimizing the functional of the square
differences between the ANN output and the target values. Some authors have suggested
the use of a Tikhonov’s functional, as given by Equation 8.11 (Poggio and Girosi, 1990;
Orr, 1995). The regularization suggested by Poggio and Girosi (1990) is applied on the
output values of the NN

H[y] ¼
XN
i¼1

[yTargeti � yi(W)]2 þ a kPyk , (8:48)

where
y is the NN output
W is the connection weight matrix
P is a linear operator

Poggio and Girosi (1990) use a radial base function (RBF) NN

yi ¼
XN
k¼1

wikG(kx� cik ), (8:49)

G(k�k) being an RBF (Gaussian, for example).
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Orr (1995) also employs an RBF-NN, but the regularized learning procedure is based
on minimization of more standard regularization procedure (Tikhonov zeroth-order regu-
larization):

�[y] ¼ a kWk22 : (8:50)

Shiguemori et al. (2004b) employed three different architectures for the NNs, with a focus
on the determination of the initial profile for the heat conduction problem in Section 8.1.
The NNs used were multilayer perceptron, RBF-NN, and cascade correlation. The back-
propagation algorithm was used for the learning process (without regularization).
Radial basis function networks are feedforward networks with only one hidden layer.

They have been developed for data interpolation in multidimensional space. RBF nets can
also learn arbitrary mappings. The primary difference between a backpropagation with
one hidden layer and an RBF network is in the hidden layer units. RBF hidden layer units
have a receptive field, which has a center, that is, a particular input value at which they
have a maximal output. Their output tails off as the input moves away from this point. The
most used function in an RBF network is a Gaussian (Figure 8.14).
RBF networks require the determination of the number of hidden units, the centers, and

the sharpness (standard deviation) of their Gaussians. Generally, the centers and standard
deviations are decided first by examining the vectors in the training data. The output layer
weights are then trained using the delta rule.
The backpropagation training is a supervised learning algorithm that requires both input

and output (desired) data. Such pairs permit the calculation of the error of the network as
the difference between the calculated output and the desired vector (e1=2¼ ytarget – y(w)).
The weight adjustments are conducted by backpropagating such error to the network,
governed by a change rule. The weights are changed by an amount proportional to the
error at that unit, times the output of the unit feeding into the weight. Equation 8.51 shows
the general weight correction according to the so-called delta rule

Dwji ¼ h
qe
qwji

yi ¼ hdiyi, (8:51)

FIGURE 8.14
Gaussian for three different variances.
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where
dj is the local gradient
yi is the input signal of neuron j
h is the learning rate parameter that controls the strength of change

For the NNs, the training sets are constituted by synthetic data obtained from the forward
model, that is, profile of a measure points from probes spread in the space domain. Two
different data sets were used. The first data set is the profiles obtained from 500 similar
functions (see examples in Figure 8.15a). The second one is that obtained with 500
no-similar functions (Figure 8.15b). Similar functions are those belonging to the same
class (linear function class, trigonometric function class, such as sine functions with
different amplitude and=or phase, and so on). No-similar functions are those completely
different, in which each one belongs to a distinct class.
The activation is a regular test used for checking out the NN performance, where a

function belonging to the test function set is applied to activate (to run) the NN. Good
activations were obtained for all three NNs for observational data with noise and noiseless
data, for similar and nonsimilar test function sets (not shown). In the activation test the NN
trained with similar data were systematically better than the training with nonsimilar
functions (not shown too), with and without noise in the data.
Nevertheless, the activation test is an important procedure, indicating the performance of

an NN, the effective test is defined using a function (initial condition) that did not belong to
the training function set. This action is called the generalization of the NN.
An interesting remark is the result for the activation test (evaluation of the performance

to produce the same answer with function in the data set used for training), where the
training with similar functions produced better identification than nonsimilar function.
However, reconstructions using nonsimilar functions were systematically better for the
generalization, except in one case—the estimation of semitriangular function by RBF-NN
with 5% of noise (not shown). Figure 8.16 shows the initial condition reconstruction for
noisy experimental data.
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FIGURE 8.15
Sample of test functions for training: (a) nonsimilar functions and (b) similar functions.
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8.10 Conclusion

The regularization technique was probably the first general mathematical procedure to
solve inverse problems. If we can elect two general schemes applied to inverse problems,
for sure regularization and Bayesian approaches are most used and very strong procedures.
This chapter is dedicated to the general aspects for regularization strategy. Of course, there
are other techniques to solve inverse problems. Some missing methodologies for solving
inverse problems that we can cite are as follows: variational approach, methods based on
filtering properties (inverse Fourier filtering, Wiener filter, mollification method, splines),
Kalman filter (and its variants), and iterative method (conjugate gradient, Landweber).
Another important issue that was not included here is related to the optimization

methods applied to find the minimum of regularization functional (8.11). There are
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Reconstruction using NN with 5% of noise: (a) multilayer perceptron and (b) radial base function.
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many deterministic (Newton, quasi-Newton, steepest descent, Levenberg–Marquardt,
conjugate gradient, simplex method) and stochastic ones (simulated annealing, GA, ant
colony system, particle swarm optimization, among others). A brief description of some of
the methods is given by Campos Velho (2008).
A novelty in the field is the application of ANNs. There are few examples where the

inverse methodology could be implemented on hardware devices. Two exceptions are
methods based on fast Fourier transform (FFT) and neural networks (Campos Velho
et al., 2007). If neural networks are good for many applications, some problems are not
easy for this new method, for example, in the context of damage identification,
with stiffness dependent on time; for systems with few degrees of freedom, neural
networks are able to compute good solutions (Chiwiacowsky et al., 2008a), but for larger
structures (see Chiwiacowsky et al. [2008b]), neural networks have not presented good
performance.

Appendix 8.A: Some Properties for Nonextensive Thermostatics

For Np microstates with probabilities pi � 0, i¼ 1, . . . , Np:

A1: Nonextensive entropy:

Sq(p) ¼ k
q� 1

1�
XNp

i¼1
pqi

 !
: (8:A:1)

A2: q-expectation of an observable:

Oq � hOiq ¼
XNp

i¼1
pqi oi: (8:A:2)

Properties

1. If q ! 1:

S1 ¼ k
XNp

i¼1
pi ln pi, (8:A:3)

O1 ¼
XNp

i¼1
piOi: (8:A:4)

2. Nonextensive entropy is positive: Sq � 0.

3. Nonextensivity:

Sq(Aþ B) ¼ Sq(A)þ Sq(B)þ (1� q)Sq(A)Sq(B), (8:A:5)

Oq(Aþ B) ¼ Oq(A)þOq(B)þ (1� q)[Oq(A)Sq(B)þOq(B)Sq(A)]: (8:A:6)
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4. Max Sq under constraint Oq ¼
P

i p
q
i ei (canonical ensemble):

pi ¼ 1
Zq

[1� b(1� q)ei]1=(1�q), (8:A:7)

where
the ei is the energy of state i
Oq¼Uq is the nonextensive form to the internal energy

and the normalization factor Zq (partition function), for 1< q< 3, is given by

Zq ¼ p

b(1� q)

� �1=2
G[(3� q)=2(q� 1)]

G[1=(q� 1)]
, (8:A:8)

where G(x) is the gamma function. For q¼ 1, yields

pi ¼ e�bei=Z1: (8:A:9)

Nomenclature

E{.} expected value
f(x) initial condition
J(u) objective function
k Boltzmann’s constant
K(x, x’, t) kernel for integral solution of the heat transfer problem
L(u) kikelihood function applied to function (vector) u
N(bm) ‘‘norm’’ for the forward heat transfer problem
pi probability of state i
Ra family of regularization operators
S(u) entropy of function u
Sq Tsallis’ entropy (nonextensity entropy, or q-entropy)
t time variable
T temperature
x space variable
X(bm, x) eigenfunction for the forward heat transfer problem

Greek Variables

a regularization parameter
bm eigenvalue for the forward heat transfer problem
d noise level
e square difference between target and the output from the neural network
h learning ratio in delta rule for neural network
V internal domain in partial differential equation
V(u) general representation for regularization operator applied to function u
s standard deviation
u temperature corrupted by noise
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9.1 Introduction

The experimental characterization of an insulating material will be studied first. This
material is sandwiched between two layers of highly conductive materials. Hence this
problem will be referred to as the three-layer thermal problem. The first part will be
dedicated to a self-sufficient presentation of the basic tools we need in order to analyze a
problem in view of data inversion for parameter estimation purposes. Some very common
concepts such as sensitivity analysis and confidence bounds will be recalled and applied to
our test case. The discussion will then be oriented to the analysis of ‘‘after-estimation’’
residuals. In this second part, recent developments that are still under progress will be
presented and the use of information (or noninformation) contained in the residuals will be
discussed. Especially, we will describe the tools that may be used to correct an identifica-
tion procedure from the existence of some bias in the model. In order to master the
proposed tools, the bias will be introduced by fixing the values of some parameters to
their nominal value. Once validated, this procedure can be applied to a very general
situation where the bias is not known (effect of model reduction or real experimental bias).
Regarding parameter estimation, the (philosophical) position of the authors is that

nothing can be done in the case of an ill-conditioned problem except recognizing that the
initial goal is in vain, or modifying the problem through physical thinking to make it well-
posed or adequately conditioned. This position emerges from the well-known parsimony
‘‘principle’’ (see http:==en.wikipedia.org=wiki=Parsimony), which in the field of science
could be summarized by this sentence: ‘‘trying to perfectly recover reality is indeed very
easy, when one adds parameters to each others so that it connects-the-dots.’’ There is much
more to learn and to retrieve from the distance maintained between a model and the
observations it is supposed to match. As a consequence, and to return back to our subject,
any minimization algorithm is a good one when the problem is well defined. For this
reason, no discussion will be found in this chapter regarding the minimization algorithmic
techniques (the authors will use the ‘‘basic’’ Levenberg–Marquardt algorithm for all the
adjustments presented in the text). On the contrary, we want to put forward that a deeper
understanding of how things go is always preferable.

9.2 A Parameter Estimation Problem in Thermal Transfer

A sample made of an insulating material of thickness e is considered. This material (r, c,l)
is sandwiched between two copper plates of very thin or very large thickness ec. The
characterization of the material (the measurement of some of its thermal properties) is
attempted using the flash technique: a heat pulse (Dirac distribution) is produced to
irradiate the so-called front face (z ¼ 0) of the sample. The heat transfer is experimentally
made 1D (large aspect ratio). Front and rear surfaces (z ¼ 0 and z ¼ eþ 2ec) can exchange
heat with the surroundings through a global heat exchange conductance h.
Figure 9.1 gives the schematic principle and main variables of the problem.
For this study, the following typical values of the heat density Q and heat exchange

coefficient h will be considered: Q ¼ 10, 000 J m�2 and h ¼ 10W m�2 K�1. These param-
eters have nothing to do with our metrological goals but are indivisibly present: Q for the
experiment to be possible and h as an undesired nuisance parameter. Two test cases A
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and B will be considered depending on the materials and thicknesses considered (refer to
Table 9.1). In test case A, the thickness of the copper blades is very small and a highly
insulating material of very low capacity is considered (aerogel substance). In test case B, the
thickness of the copper blades is pretty much larger than that of the insulating material
(polyvinyl chloride [PVC] or polymer glue). This case corresponds to the measurement of
thermal (contact) resistances.

9.2.1 The Physical Direct Model

Modeling in physics and engineering is one of the prior tasks to carry on. The model is the
basic instrument to approach reality either by anticipating the observation in order to see
whether the predictions make sense physically, or by ‘‘comparing’’ experimentally
obtained results with the model, supposed to be used in the same ‘‘conditions’’ (with the
same entries). But there may be different ways of constructing a model, which may lead to
different models (having different mathematical structures, for example). By different, we
mean that they may not approach physical reality with the same precision. And by
precision, we mean some acceptable distance that depends purely on the modeler decision,
which basically relies on well-assigned objectives. An open field exists for the experimen-
talist–metrologist in order to realize some compromise between ‘‘sufficient’’ precision in
the modeling and ‘‘optimal’’ estimation of parameters that he or she wants to measure.
Our example illustrates this point.
A basic reduced direct model (referred to as RDM1 in the following) is developed here

that, besides the thermal experiment design, integrates the fact that the material to be
characterized presents a very low thermal conductivity and heat capacity and that the two
layers used for technical constraints have been chosen to be highly conductive and

FIGURE 9.1
Principle of the flash experiment for thermal
characterization of materials.

Insulating layer  λ, ρ, ci

Qδ(t)
h

h

Copper layers

ec

ec

z

e

TABLE 9.1

Physical Properties for the Two Test Cases

Test Case A Copper Insulating Material A

Thickness (mm) 0.6 6

Thermal conductivity (SI) 385 0.02

Volumic heat capacity (SI) 3.6	 106 5000

Test Case B Copper Insulating Material B

Thickness (mm) 2.0 0.200

Thermal conductivity (SI) 385 0.2
Volumic heat capacity (SI) 3.6	 106 1.0	 106
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capacitive. The assumption that can be made here is that the capacitive effect of the
insulating material can be neglected when compared to that of the copper layers, and
that the thermal resistance of these layers may be of negligible impact compared to the
resistance of the well-defined insulating material. In other words, we assume that
the diffusion time in the copper layers is extremely short, thus leading to the sole effect
of the inertial behavior (lumped-body approximation), and that the diffusion time in
material A or B is so long that it should mask their own inertial effect. With respect to
the full parameter inversion problem, relying on the perfectly refined (or detailed) model-
ing of this experiment, this is in fact a first parameter model reduction which consists in
neglecting the thermal conductivity of the copper layers and the heat capacity of the
sandwiched material.
The model can be represented in the electrical analogy framework as a combination of

capacities and resistances as depicted in Figure 9.2.
Capacity C corresponds to the heat capacity of a copper layer expressed in J m�2 K�1,

product of the mass of copper per unit surface m and the specific heat capacity of copper
cc: C ¼ mcc ¼ reccc. Note that this means that the problem is free from any area definition
and that symbol f stands for a surface heat flux density. An identical heat exchange
coefficient is assumed on both the front and rear faces of the three-layer sample. Subscripts
i¼ 1 and i¼ 2 denote, respectively, the font and rear face vectors (ui,fi). In the Laplace space
(all variables are now considered to be Laplace transformed, p being the Laplace variable),
the solution of this problem can be put in the form of a quadrupole representation (Maillet
et al. 2000), that is, in a matrix form. The exact correspondence of the electrical scheme
above is given in Figure 9.3.
Note that the convective resistance 1=h, instead of appearing on the upper right corner of

the corresponding quadrupole matrix, has been located in the lower left corner in the form
of impedance (1=h)�1. These special quadrupoles connected in series lead finally to a direct

1

h 1

0 1

Cp 1

0 1

Cp 1

0 1

h 1

01

0 1

R
θ1

Insulating layer

θ2

φ1 φ2

FIGURE 9.3
RDM1 in Laplace space (quadrupole matrix product formulation).

FIGURE 9.2
RDM1 as seen through electrical analogy (pure
resistances and capacities).

C

φ2φ1

Insulating layerQδ(t)

C

R = —eλ

θ1 θ2
1
h
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h
—
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relationship between both front and rear face temperature-heat flux vectors. By a simple
matrix multiplication, we have

u1
f1

� �
¼ A0 B0

C0 D0

� �
u2
f2

� �
where

A0 ¼ 1þ hRþ RCp,
B0 ¼ R,
C0 ¼ h(2þ hR)þ 2C(1þ hR)pþ RC2p2,
D0 ¼ 1þ hRþ CRp,
f2 ¼ 0,
f1 ¼ Q:

8>>>>>><>>>>>>:
(9:1)

The front face Laplace temperature u1 and the rear face Laplace temperature u2, the
metrological signals we want to model in real-time space, are given by the following
formulas:

u1 ¼ A0

C0
Q

u2 ¼ Q
C0

8>>><>>>: or

u1 ¼ Q
C

(pþ a)

(pþ a)2 � v2

u2 ¼ Q
C

v

(pþ a)2 � v2

8>>>><>>>>: with
a ¼ 1þ Rh

RC
,

v ¼ 1
RC

:

8>>><>>>: (9:2)

The advantage of this (approximated) model in view of our further discussions is that it
presents a comfortable analytical solution. Indeed, return to the temporal domain gives
(Abramowitz and Stegun 1970)

T1(t) ¼ Q
2C

exp � h
C
t

� �
þ exp � 2

RC
þ h
C

� �
t

� �� �
,

T2(t) ¼ Q
2C

exp � h
C
t

� �
� exp � 2

RC
þ h
C

� �
t

� �� �
:

8>>>><>>>>: (9:3)

These two model response equations give us a sound basis to deal with the Parameter
Estimation Problem (PEP). We have responses made of two components, each of them
being a time exponential. Therefore, two characteristic times control the phenomenon.
They are made of the product of the two different resistances R and 1=h, and the thermal
capacity of a copper layer C.
Finally, this model gives rise to three parameters: b1 ¼ Q=2C, b2 ¼ C=h, and b3 ¼ RC=2.

They depend on the three physical parameters (Q, h, l), C and e being parameters assumed
to be perfectly known. Regarding the PEP, this model is obviously NonLinear in the
Parameters (NLP). It is evident, for example, that depending on the values of h and R,
the two parameters b2 and b3 will be identifiable or not (if the two characteristic times of
the exponentials are too close, these will be indistinguishable).

9.2.2 Direct Simulations for the Two Test Cases

Of course, a more refined model may be developed that takes into account the heat
capacity of the insulating material (but still neglecting the diffusion transfer in the copper
layers). This second Reduced Direct Model (RDM2) can be derived without effort since
the insulating material can now be represented (still approximately) by two resistances
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(whose sum is exactly the real resistance R ¼ e=l) and the capacity of the layer
denoted C0 ¼ Ci ¼ rce (Figure 9.4).
The model equations can be derived as previously, using the quadrupole representation

in Laplace space. Computing the new matrix product in Laplace domain gives equations
for u1(p) and u2(p) that differ from those given in Section 9.2.1, which do not lead to simple
analytical expressions when returning to the real-time domain. A numerical Laplace
inversion will be used in the computations.
Finally, the complete direct model (CDM) can be built for such a thermal problem, which

would be applicable to any case (without any approximations). But since the objective of
the chapter is to discuss NLE, RDM1 will be a nice object for such a purpose. Anyway, in
order to prove the consistency of both reduced models RDM1 and RDM2 with, for
example, the ‘‘perfect’’ model CDM, we have plotted in Figure 9.5 the rear and front face
temperature responses obtained for the two test cases under consideration, for both the
RDMs and the CDM. This latter can be obtained very easily through the quadrupole
framework (Maillet et al. 2000). It is obvious from these curves that the agreement is nice.
By ‘‘nice,’’ we mean that although one may be able to distinguish some slight discrepan-
cies, nothing has been obviously omitted regarding the phenomena involved in the prob-
lem. And the point is that with such an agreement, the bias induced by working with
RDM1 instead of RDM2 or CDM is far more preferable simply because the latter involves,
respectively, one or two additional parameters (thermal conductivity of the copper layers
and heat capacity of the insulating layer). Taking these two additional parameters into
account in our estimation problem (for the two test cases we have chosen) can be proved to
be seriously dangerous because we simply do not need them (this will be demonstrated in

FIGURE 9.4
Two options for modeling the behavior of the
insulating material which lead to either RDM1
or RDM2.
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Comparison between the CMD (dots *) and the reduced models RDM1 (lines) and RDM2 (^s) for test case A (left)
and test case B (right).
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Section 9.2.3). Mathematically speaking, they would either yield a very weak sensitivity to
the global response or, alternatively, they would introduce some correlation between all
parameters, which in both cases destroys the conditioning of the PEP and induces very
dispersed estimations. The question is, is there and what is the impact of this reduction in
parameter vector dimension on the measurements of the other parameters?

9.2.3 Inverse Analysis

9.2.3.1 Prerequisite Basic Tools

We recall rapidly all the mathematical ingredients necessary for conducting a stochastical
approach of the analysis. The method we used for this PEP is based on the (unweighted)
ordinary least square (OLS) criterion. The parameter vector b (dimension p) is found by
minimization of the OLS sum:

S(b) ¼
Xn
i¼1

(Yi � T(ti,b))
2, (9:4)

where the signal is corrupted by an additive noise ei for each data point i ¼ 1 : n.

Yi ¼ T(ti,b)þ ei: (9:5)

This noise is a stochastic variable that we choose to consider of zero mean, constant
standard deviation (std) s, and uncorrelated along time (Beck and Arnold 1977); hence,

E(ei) ¼ 0 var(ei) ¼ s2 cov(ei) ¼ s2Id: (9:6)

The observable, the model variable, and the noise are considered as (discrete) vectorial data
of dimension n	 1 according to the number of considered experimental acquisition times.
The least square sum (9.4) can be rewritten as

S(b) ¼ (Y� T(b))t (Y� T(b)): (9:7)

Its minimum is obtained when the jth equations qS(t,b)=qbj ¼ 0 ( j ¼ 1 . . . p) are verified.
Since the model is NLP, the minimum is found through an iterative process (Gauss–

Newton algorithm basically, Levenberg 1944) of the form

b̂(kþ1) ¼ b̂(k) þ (X(k)tX(k))�1X(k)t (Y� T(b(k))), (9:8)

with X(k) ¼ X(b̂(k)) and where the sensitivity matrix X gathers the sensitivity coefficients
Xbj
¼ qT(t,b)=qbj.

We recall that the iterative process (9.8) requires using the inverse of a matrix; therefore,
it is clear that the parameters can be found only if the sensitivity coefficients are nonzero
and linearly independent. Without any specialized and dedicated tools, this iterative
process can be stopped when the residuals are of the same order of magnitude as the
measurement noise, that is, when

S(b̂(k)) 
 ns2: (9:9)
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At convergence, the standard deviation of the error made on the estimated parameters
can be evaluated, thanks to the (symmetrical) estimated covariance matrix of the estimator.
It characterizes the precision that can be reached on the estimated parameters (its inverse
is sometimes named the precision matrix) and depends on the statistical assumptions
that can be made on the data. We assume here the validity of the set 1111—11 for these
assumptions (according to Beck’s taxonomy, see Beck and Arnold 1977, p. 134 and
Chapter VII), which means additive, zero mean, uncorrelated errors with constant
variance, nonstochastic independent variable (time), and no prior information on the
parameters.
This OLS method is of particular interest since it allows the estimation of the uncertain-

ties on estimated values of parameters. From Equations 9.5 through 9.8, expectancy E and
standard deviations sb̂ of the estimated parameters can be evaluated.

9.2.3.1.1 Expectancy of the Estimator

E(b̂) ¼ bþ E[(XtX)�1Xt«(t)] ¼ bþ (XtX)�1XtE[«(t)]: (9:10)

And, because of a zero mean assumption on the noise,

E(b̂) ¼ b: (9:11)

The expectancy shows that the estimated values are equal to the true values of parameters
(unbiased estimator). This fully justifies the use of least squares method for the determin-
ation of unknown parameters.

9.2.3.1.2 Standard Deviation of the Estimator (Variance–Covariance Matrix)
By definition of the covariance matrix,

cov(b̂) ¼ E[(b̂� E(b̂))(b̂� E(b̂))t] ¼ E[(b̂� b)(b̂� b)t]: (9:12)

Substituting b̂ by its expression

cov(b̂) ¼ E[(XtX)�1Xt««tX(XtX)�1] ¼ (XtX)�1XtE(««t)X(XtX)�1: (9:13)

As « is assumed to be noncorrelated, the matrix E(««t) is diagonal. Assuming the standard
deviation of noise to be constant, this matrix is spherical, E(««t) ¼ s2:Id. We finally obtain

cov(b̂) ¼ s2
b(X

tX)�1: (9:14)

This can be also written as

cov(b̂) 

var(b̂i) cov(b̂i, b̂j) � � �

cov(b̂i, b̂j) var(b̂j) � � �
..
. ..

. . .
.

2664
3775 ¼ s2(Xt(b̂)X(b̂))�1: (9:15)

It depends obviously on the level of the signal-to-noise ratio (SNR) and brings into play the
inverse of the (XtX) matrix, already pointed as a decisive operation for a troubleless
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estimation. It also depends on the number of points and of their distribution along the
estimation interval, which, by the way, may be optimized if necessary (Beck et al. 1985).
The diagonal terms represent the square of the estimated standard deviation of each
parameter s2

b̂i
. They quantify the error that one can expect through inverse estimation.

This is true if the above assumption made for the noise is consistent within the experiment.
The problem being NLP, retrieving these optimum bounds through a statistical analysis
may depend on the starting guesses made to initialize the estimation algorithm. This
matrix can also be an indicator for detecting possible correlations between the parameters.
Estimation of the correlation matrix is calculated according to

cor(b̂) 

1 rij � � �
rij 1 � � �
..
. ..

. . .
.

26664
37775 all terms being the result of rij ¼

cov(b̂i, b̂j)ffiffiffiffiffiffiffiffiffiffiffiffiffi
s2
b̂i
s2
b̂j

q : (9:16)

The correlation coefficients (off-diagonal terms) correspond to some measure of the
correlation existing between the two parameters bi and bj. They vary between �1 and 1.
They are global quantities (in some sense, ‘‘averaged’’ over the considered identification
interval, the whole [0, t] here). Gallant (1975) suggested that difficulty in computation may
be encountered when the common logarithm of the ratio of the largest to smallest
eigenvalues of cor exceeds one-half the number of significant decimal digits used by the
computer. A more practical hybrid matrix representation Vcor can be constructed. It
gathers the diagonal terms of the covariance matrix (more precisely their square root,
normalized by the value of the estimated parameter) and the off-diagonal terms of the
correlation matrix:

Vcor(b̂) 


ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(b̂i)

q
=b̂i rij � � �

rij

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var(b̂j)

q
=b̂j � � �

..

. ..
. . .

.

2666664

3777775: (9:17)

The OLS estimator can be proved to be unbiased, which means that the statistical mean of
multiple estimated values b̂ is equal to the exact parameter vector b.
Now the inverse analysis can start. The first step is to compute the sensitivity coefficients

(this can be made analytically here in the case of the RDM1, but it is generally made
through centered finite differences approximations). Remember that if the (deterministic)
minimization numerical algorithm is based on exact sensitivity coefficients, the plot of
these coefficients and the conclusions you may extract from it (if any) are more pertinent in
the nondimensional form. We will then compute the reduced sensitivity coefficients
Xbi
* ¼ bi(qT(t,b)=qbi) and plot them as a function of the explanatory variable t. Regarding

the synthetic noise introduced in the present study for stochastic and statistical analysis, a
histogram plot is given in Figure 9.6.

9.2.3.1.3 Expectancy of the Residuals Curve
One way to validate the estimation is to compare the experimental curve with the theor-
etical curve given by the analytical model, using the estimated values of the unknown
parameters by calculating the residuals denoted r, which is defined as the difference
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between the experimental and theoretical curves. If Equation 9.5 is checked, then we can
easily show that the expectancy of residuals curves is equal to a null function:

E(r) ¼ E[Y(t,b)� F(t, b̂)] ¼ E[X(b� b̂)] ¼ E[�X(XtX)�1Xt«(t)]

¼ �X(XtX)�1XtE[«(t)]: (9:18)

Since E[«(t)] ¼ 0,

E(r) ¼ 0: (9:19)

So, if the model we used for describing the experiment is adapted, the residuals curve is
‘‘unsigned’’ and allows to prove the theoretical model used for the estimations is unbiased.

9.2.3.2 Case of Null Sensitivity to Ci

The sensitivity and identifiability study starts by considering RDM2 (taking into account
the capacity of the insulating layer). The reduced sensitivities are plotted for both test cases
in Figures 9.7 through 9.10 for both the front and rear faces. The four parameters
b ¼ [Qh lCi]

t are considered at their nominal values given in Table 9.1.
Note first that the sensitivity to parameter Ci, the capacity (C0 ¼Ci) of the sandwiched

insulated layer, is very weak (nearly null) in both test cases. This means that with its
nominal value, this parameter plays no role in the calculations or has no influence on the
experimental signal. As a consequence, it can be assumed to be a known parameter and
then, RDM1 would be the most appropriate model. Note also that on these figures, the
reduced sensitivity XQ* appears equal to the signal itself, Ti (i ¼ 1, 2). It is evident from
Equations 9.3 of RDM1 that the pre-factor role of Q is responsible for the fact that
XQ* ¼ T2 or T1.
Before going on to the analysis of RDM1, we want to show here the effect of conserving a

parameter of poor sensitivity in the estimation process. Considering only test case A, the
following sensitive curves are obtained and corresponding stochastic results (information
from matrix Vcor) have been reported in Table 9.2.

FIGURE 9.6
Synthetic noise histogram used for statis-
tical analysis (type: Gaussian, std
s ¼ 0:005, SNR¼ 100, n¼ 1000 data
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The following remarks can be made. For the rear face, three of the correlation coefficients
calculated for the nominal b vector are extremely high. This means that the PEP exhibits
strong correlations between three parameters and this will make the estimation difficult.
Note that Beck andArnold (1977, p. 379) give a condition according towhich, if all correlation
coefficients are greater than 0.9, then the PEPwill fail. But the fact that in the present case, the
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b ¼ [Q ¼ 10, 000 h ¼ 10 l ¼ 0:02Ci ¼ 30]t.
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sensitivity to one of the parameter is zero (or nearly so) deserves to be discussed. Anyway, if
one looks at the estimated variances of the parameters, we observe that they are quite large
(the estimated values cannot be considered as reliable). Parameters Q, l, and Ci would be
estimated with an error level of, respectively, 3%, 3.5%, and 10%. This means that if a 95%
confidence interval is given for approximately 2sb (in a perfect world!), the capacity of the
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Test case B: Front face temperature signals along with the reduced sensitivities to the set of parameters—RDM2:
b ¼ [Q ¼ 10, 000 h ¼ 10 l ¼ 0:2Ci ¼ 200]t.
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insulated layer would be identified with around�20% error. It is interesting to note that the
parameter with quasi-null sensitivity presents the highest variance in its estimate. Clearly,
this PEP appears badly conditioned. Note nevertheless that the (more) global information
given by the determinant of matrix (XtX), the conditioning number of matrix (XtX)�1, or the
Gallant number Ga ¼ 2 log10 (l

max=lmin)cor—where l is the singular value of the correlation
matrix—all indicate that computer precision will not be responsible for the estimation
algorithm failure (for this nominal value!). The Gallant number gives the minimum number
of significant digits required to overcome the bad conditioning of the problem.
We must also note that on the contrary, working with the front face observable appears

to be the good solution here.
A statistical analysis (random noise of s ¼ 0:005 added to the simulated signal and

random initial parameter vector selected within a [�50%;þ50%] range around the nominal
values) performed over 200 estimations gives estimators with no bias, except for Ci (5%)
and reduced standard deviations sb̂i

=b̂i of 0.032, 0.010, 0.035, and 0.40, respectively, for
Q, h, l, and Ci. One must note that these values corroborate in a perfect manner the
prediction of the stochastic analysis (Table 9.2) except for Ci. As said earlier, these estima-
tions of the errors made on the parameters are optimum values. Choosing initial param-
eters in a larger set around the nominal values, for example, leads to larger errors.
Considering the residuals obtained for one of the runs of the repeated estimations, one

obtains (Figure 9.11) perfect ‘‘unsigned’’ residualswith a standard deviation exactly equal to
the standard deviation given as input to the normal synthetic random noise. This means that
based on the observation of the residuals, the fitting procedure has been successful. This is
absolutely true. But this has been made possible because of the overdetermined character of
the model (too many degrees of freedom) which has allowed the values of the parameters to
adjust in such a way that the OLS criterion is satisfied. The presence of parameter Ci is
responsible for this. Regarding the metrological aspect (measuring parameters precisely),
the conclusion is nevertheless that the procedure has failed. For the figure below, the
following values have been identified: Q ¼ 10, 443, h ¼ 10:08, l ¼ 0:019, and Ci ¼ 24:53!
As a conclusion to this section, we can see that RDM2 is not an appropriate model for our

metrological purpose basically because one of the parameters in the unknown set has a
very poor sensitivity. It is of course out of question to use the CDM in these conditions. The
decision that must be made at this point is to retrieve this (unnecessary) parameter from
the model and make a new sensitivity analysis for model RDM1. One can also recall the
following principle:
Perfectly uncorrelated and zero-mean experimental residuals should be regarded with

suspicion. It is not a sign of good experimental design! It may signify that the PEP is
overdetermined.

TABLE 9.2

Stochastic Data for Test Case A Using RDM2 (Errors on Parameter Estimates Given for s ¼ 0:005)

Rear Face T2 Front Face T1

det (XtX) 5.5	 10�11 2.3	 10�5

Cond (XtX)�1 2.7	 1014 1.5	 1010

Gallant number 8.3 3.8

rQh, rQl, rQC0 0.994 �0.999 �0.74 �0.34 �0.61 0.4

rhl, rhC0 , rlC0 �0.98 �0.66 0.77 �0.92 0.014 0.11

sb̂i
=bi for Q̂, ĥ, l̂, Ĉ0 0.03 0.007 0.035 0.10 0.0002 0.0008 0.004 0.015
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9.2.3.3 Inverse Analysis with RDM1

The reduced sensitivities for the new parameter vector b ¼ [Q h l]t (Ci being set to its
nominal value) are still observable in Figures 9.7 through 9.10 (they do not change in a
visible manner). What can be said from these figures is that the sensitivities do not
apparently exhibit evident correlations. This is true for test case B (Figures 9.9 and 9.10).
This is also true for test case A. Note that the front face response (Figure 9.7) shows that the
sensitivity to l is weaker than the other two. Regarding the rear face response, the three
sensitivities exhibit the same behavior, but shifted in time. Direct correlation Xb1

* ¼ KXb2
*

would be manifested by some linear relationship between the sensitivities. Therefore, one
can plot in the same figure the curves Xbi

* ¼ f (�Xbj
* ) for i, j ¼ 1, 2, 3. This has been done in

Figure 9.12 for the rear face response, which seems more interesting in order to identify all
three parameters. One can see that all three parameters seem to be uncorrelated when
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FIGURE 9.11
Simulated identification performed for test case A, observable T2, with RDM2.

FIGURE 9.12
Sensitivities plotted by pairs.
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compared by pair. The plot Xh* ¼ f �Xl*
� �

in Figure 9.12 is the most suspect, as it draws a
narrow loop whose orientation axis passes close to the origin.
But trouble in the identification process can also come from a more indirect correlation,

like some linear combination between all three parameters of the type Xl* ¼ K1XQ*þ K2Xh*.
Attempting to find the optimal coefficients Ki through a least-square minimization process
lead in our case to find K1 ¼ 0:939 and K2 ¼ 0:225, with the result plotted in Figure 9.13. As
can be seen, this linear combination is quasi-perfect (correlation coefficient of 0.99 for the
line adjusted on the loop). For RDM1 and test case A, the PEP appears badly conditioned
because of this evident correlation between parameters. Let us look at all the major data
that can be obtained from the stochastic and statistical analysis and reported in Table 9.3.
All correlation coefficients for observable T2 are greater than 0.99. This confirms that all the
three parameters are correlated. According to Beck and Arnold (1977, p. 380), the fact that
all the correlation coefficients are greater than 0.9 in absolute value leads to inaccurate
estimates. But all other indicators reveal that the estimation is possible, especially the
Gallant criterion. The variances of the parameter estimates show that for a standard
deviation of 0.005 on the noise, the confidence bounds on the thermal conductivity will
be roughly of the order of �2sl=l ¼ �6%. This table reveals that some errors are also
made on the parameters; there is no problem in estimating the parameters from the rear
face temperature (the algorithm converges through the unbiased values). Of course, one

FIGURE 9.13
Evidence of linear combination
between all three parameters.
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TABLE 9.3

Stochastic and Statistical Data for Test Case A Using RDM1 (Errors on Parameter Estimates
Given for s ¼ 0:005)

Rear Face T2 Front Face T1

det (XtX) 1.14	 10�5 0.18

Cond (XtX)�1 2	 1014 1.3	 1010

Gallant number 7.8 3.8
rQh, rQl, rhl 0.994 �0.999 �0.989 �0.38 0.63 �0.93
sb̂i

=bi for Q̂, ĥ, l̂ 0.0275 0.0066 0.029 0.0002 0.0008 0.0042

Statistical result over 200 estimations

sb̂i
=bi for Q̂, ĥ, l̂ 0.0264 0.0062 0.0281 0.0002 0.0006 0.0037
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must be very careful with these results which assume that the observable does not carry
any experimental bias, which is not true in general (see Section 9.2.3.5).
What this table also reveals is that, compared to RDM2 and Table 9.2, the removal of the

parameter with null sensitivity has diminished the variances on the remaining parameters.
This must be retained as a general rule in nonlinear estimation (and in linear cases as well).
In our case, the effect is not very spectacular because in this problem, the correlation
coefficients between Ci and the remaining three parameters are not very strong. But in
other cases, the effect can be drastic.

9.2.3.4 About a Change in the Parameterization

It has been suggested earlier that some change of parameterization would allow to
overcome parameter estimation difficulties such as in the case of high correlation coeffi-
cients inducing high variances for the estimated parameters, for example. Here, we want to
come back to this discussion to give, very briefly, some precisions and our conclusions.
First, and taking experience of what has been shown previously, if a change of parameter-

ization is made that results in the production of a new parameter of null sensitivity, this new
parameterization will have a benefit effect to properly estimate the remaining ones. Note
that it is the object of dimensional analysis to help make such reparameterization efficient.
Second, if all the parameters of the problem have nonnegligible sensitivities but appear

correlated, the question is, is it possible to find a new set of parameters defined from the
initial one, to enhance the quality of the estimation process?
The answer is no. It can be demonstrated (see Annex in Remy and Degiovanni [2005])

that the sensitivities to a new set of parameters can be expressed from the sensitivities of
the current set (using the Jacobian of the transformation). The same is true for the variance–
covariance matrix. What these relations reveal is that

. If two parameters appear correlated in a given set of parameters, two parameters
of a new set, recombined from the previous ones, will also be correlated.

. If the sensitivity of a parameter is changed with a new parameterization (for
example, it is enhanced), this will not change its variance in fine.

9.2.3.5 About the Presence of Some Bias

Here, a bias means that there exists a systematic and generally unknown inconsistency
between the model and the experimental data. A statistical analysis can be performed in
the above case in the same way as before to see whether the presence of some bias in the
data may change our results. This analysis will be made through simulations of estimation,
with synthetic data produced in the same way as before (corruption with a noise of
standard deviation ¼ 0.005). The initial values of the parameters are generated in a random
manner within a [�100%; þ100%] range about the nominal values. The influence of a bias
when using RDM1 will be checked in two different manners:

. First, we use RDM2 to generate the synthetic data (with Ci set to its true value of 30
for test case A). RDM1 is then used to perform the identifications where the
capacity Ci of the insulating layer does not exist! Note that compared to the
capacity of the copper layers, this means that an error of 30=2160¼ 1.4% is intro-
duced in the total heat capacity of the system. We then use a model which appears

330 Thermal Measurements and Inverse Techniques

  



biased with respect to the data (or on the contrary, it is a matter of point of view).
This bias comes from the structure of the model itself and, more precisely, from the
fact that one of the parameters is assumed to be known. A total of 200 estimations
have been performed. The populations of estimated parameters, the mean esti-
mated value of each parameter, and its calculated standard deviation are given in
Figure 9.14a through c. This shows first that the bias existing between the data and
the model has totally biased the estimated parameters. The average errors intro-
duced in the estimated values are of 32%, 5%, and 27%, respectively, for Q, h,
and l. The relative errors sb̂=b̂ are of the order of 0.05, 0.0086, and 0.005. Contrary
to what has been shown when RDM1 was used to identify parameters through
RDM1 (Table 9.3), no general conclusion can be predicted. Q and h have increased
and l has decreased. The residuals for one of the run are plotted in Figure 9.14d.
They present now a ‘‘signed’’ character (oscillation around zero with a much
smaller frequency than the noise). This signed character has been made visible in
Figure 9.14d by superposing the residuals obtained for the same estimation in the
absence of noise (solid dark line) and the residuals obtained with the noise (gray
line). This signed character is typical of the presence of some bias which in real life
is generally not known and can originate from different sources. It will be the
object of Section 9.3 to demonstrate that the residuals can be used with benefit to
predict the bias that has been made on the estimated parameters. This bias can also
be calculated rigorously from the knowledge of the sensitivities to the remaining
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and known parameters. It will be shown further on that this bias is a systematic
error due to the error made on the parameters supposed known, to which adds up
a stochastic component (due to the noise). It must be retained that the bias
introduced on the estimated parameters caused by giving fixed nominal value to
the others (with some error) depends on the degree of correlation existing between
estimated and fixed parameters.

. Second, we use RDM1 to generate the synthetic data and add to it a bias supposed
to represent a real perturbation (a drift) of experimental origin: we choose a linear
increase supposed to occur when the temperature signal is not at equilibrium
before the flash excitation. Now the bias comes from the experiment, and the
structure of both the identification and direct models is conserved. It is very
small, as can be seen in Figure 9.15d, when compared to the temperature response.
The populations of estimated parameters, the mean estimated value of each param-
eter, and its calculated standard deviation are given in Figure 9.15a through c. Also
in this case, one must recognize that this small bias has nevertheless drastically
corrupted the identification.

One possibility for the experimentalist to check if its estimations may be biased is to
observe the output of the inversion process for varying identification ranges of the inde-
pendent variable.
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For example, we can vary the time identification interval. If a bias affects the data when
compared to the modeling, then the estimations will vary, depending on the selected
identification interval. This can be observed in Table 9.4 where three identifications have
been performed for three different time intervals [0–70 s], [0–150 s], and [0–300 s]. The
thermal diffusivity and conductivity estimated from RDM1 depend strongly on the iden-
tification intervals. The values can change within a factor of 60% or 170% in such a case.
As a conclusion to this section, the sensitivity coefficients must be carefully analyzed in

order to identify possible correlations between them. It must be retained that in case of
high correlations for a set of nominal values representative of the metrological problem
under concern, the most important task for the ‘‘inverse man’’ is to track the presence of
some bias in the data, or in the model (especially through the parameters that are assumed
to be known). Even a small bias may lead the PEP to fail.
Of course, the demonstration would be complete by considering either the front face

response of test case A or any of the front or rear face responses for test case B. Because this
model (RDM1) is in fact NLP, the sensitivity and Vcor matrix analysis shows that the PEP
is not critical for those cases. It can be seen that the variances calculated after statistical
analysis (repetitions of identification) correspond exactly to the ones predicted by the
stochastic approach. One must also say that the statistical data have been obtained with
initial values of the parameters selected randomly in a �100% range of deviation from the
nominal values, which is a broad range. It has been observed that the results may slightly
depend on the algorithm used. This illustrates the robustness of this case. These results also
confirm, for example, that the estimator is unbiased. In order to save space in this text, no
additional results or comments are given, but the interested reader can develop its own
code with all the equations given above to verify this by himself or herself. As a bench-
mark, we give in Table 9.5 the stochastic data obtained for test case B.

TABLE 9.4

Influence of the Existence of Some Bias on the Parameter Estimates
for a Badly Conditioned Problem RDM1—Test Case A

Time Interval 70 s 150 s 300 s

a (m2 s�1) 3.76	 10�6 3.22	 10�6 2.21	 10�6

l (W m�1 8C�1) 0.031 0.064 0.084

Thermal diffusivity and conductivity estimates from real thermograms obtained
on an aerogel medium sandwiched between two copper layers.

TABLE 9.5

Stochastic and Statistical Data for Test Case B Using RDM1 (Errors on Parameter Estimates
Given for s ¼ 0:005)

Rear Face T2 Front Face T1

det (XtX) 2.9	 10�6 2.9	 10�6

Cond (XtX)�1 1.8	 107 1.8	 107

Gallant number 1.9 1.9

rQh, rQl, rhl 0.785 �0.24 �0.186 0.788 0.38 0.30

sb̂i
=bi for Q̂, ĥ, l̂ 0.0006 0.0012 0.0079 0.0006 0.0012 0.0083

Statistical result over 200 estimations

sb̂i
=bi for Q̂, ĥ, l̂ 0.0006 0.0011 0.0075 0.0006 0.0011 0.0079
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9.2.4 Conclusion of the Three-Layer Characterization Problem

With this simple physical model and PEP, we do have an NLP problem. We have shown
that

1. An appropriate reduced model must be chosen that allows correct estimation of
the parameters (problem with a parameter having a too low sensitivity).

2. The reduced model, which is still NLP, exhibits different behaviors with respect to
the estimation problem.

3. These different behaviors are caused by possible correlations between the remain-
ing parameters and the presence of some bias in the experimental data.

In test case A, we can expect troubles in the estimation procedure using the rear face
temperature signal. If we look at the physical reasons behind this phenomenon, it is
interesting to note that the physical model is made of the sum (or difference) of two
exponentials. Among the two characteristic times, t1 ¼ b2 is directly proportional to
parameter 1=h. The second time constant t2 ¼ (1=b3 þ 1=b2)

�1 ¼ (1=b3 þ 1=t1)�1 depends
on parameter l. Table 9.6 gives the calculated time constants for both test cases. It can be
seen that for test case A, these time constants are in a ratio of 1.66, which is too low to
discriminate between two exponentials (a ratio of 3 is generally the required order of
magnitude). In test case B, the ratio t1=t2 ¼ 200 is large enough to distinguish the contri-
butions of both exponentials.
In test case B, the experimentalist has advantage in diminishing the thickness of the thin

layer that he or she wants to characterize: makes the layer you want to characterize
disappear! Indeed, for a given very large t1, determined by the capacity of the copper
layers and the heat exchange coefficient, the best conditions for the identification of l (b3)
are obtained when t2 is made as small as possible. This implies to make b3 ¼ RC=2 as small
as possible and hence to decrease the thickness of the intermediate layer.
Finally, we want to convince the reader that there is no general rule in non-linear PEP.

However, a toolbox of mathematical instruments exists: it can be used to analyze each
metrological problem as a particular case. A last example is mentioned below.
The three-layer problem considered in the first section (test case B) is again consi-

dered but material B is now a layer of liquid* (water) and its properties are given in
Table 9.7. This problem has led to the development of a special apparatus dedicated to the

* The aspect ratio of the measurement cell (height=thickness) is very large compared to 1, which suppress any
natural convection contribution to heat transfer.

TABLE 9.6

Time Constants Analysis for RDM1 and the Two Test Cases A and B

b2 (s) b3 (s) t1 (s) t2 (s) t1=t2

Test case A 216 324 216 129.6 1.66

Test case B 720 3.6 720 3.58 200
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measurement of both the thermal conductivity and heat capacity of liquids using the flash
method (Remy and Degiovanni 2005). The heat capacity of the layer (rCe)W is 80 times
larger and the thermal resistance about 7 times larger compared to test case B. As a
consequence, with this new set of nominal parameters, the PEP has been moved to a
different ‘‘point’’ in the parameter space. The heat capacity of the layer cannot be neglected
anymore. RDM2 is now the expected, more pertinent, reduced model we have to consider
for the PEP. Furthermore, a four-parameter identification must be considered, which in this
study involves b1 ¼ aW , b2 ¼ (rC)W , b3 ¼ Q, and b4 ¼ h.
As done earlier (see Section 9.2.3.2), the results of the stochastic analysis applied to this

new PEP are summarized through the Vcor matrix. In Table 9.8, one can see that although
some (but not all) of the correlation coefficients are very high, the variances for the
four parameters are nevertheless small enough to guarantee a correct identification. In
Table 9.8, right column, the stochastic analysis has been made by assuming that one of the
four parameters is fixed to its assumed correct value. One can once again verify that
although a bias can be introduced, this has the consequence of diminishing the variances
on the remaining parameters: in the previous four-parameter identification, the relative
errors (within 1 standard deviation and in %) were 0.5% for the thermal diffusivity and
1.6% for the heat capacity.
In this experiment, the bias has been shown to occur exclusively from an error made due

to a difficult-to-achieve perfect concentricity between the two copper cylinders. The nega-
tive effect of this bias has been avoided (and suppressed) by introducing four thermo-
couples located at a 908 angle from each other and taking the average as observable. The
gap between the cylinders can then be precisely calculated and ascribed to the thickness of
the liquid layer.

TABLE 9.7

Physical Properties for the Flash Equipment Developed
for Thermal Characterization of Liquids

Test Case: Water Copper Material B: Water

Thickness (mm) 2.0 4.5

Thermal conductivity (SI) 385 0.597

Volumic heat capacity (SI) 3.6	 106 4.175	 106

TABLE 9.8

Vcor Matrix: Diagonal Terms¼Relative Errors on Parameters b—Off-Diagonal
Terms¼Correlation Coefficients (Std. of the Noise s ¼ 0:005K)

Test Case W—RDM2 Identification
Test Case W—RDM2 Identification Parameter b2 Is Fixed

Vcor(b̂) 

0:005 �0:989 �0:995 �0:115
� 0:016 0:998 �0:004
� � 0:011 0:006
� � � 0:011

2664
3775 Vcor(b̂) 


0:0008 �0:861 �0:81
� 0:0007 0:978
� � 0:011

24 35
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9.3 Calculation of the Standard Deviations of Estimated Parameters
in the Case of a Biased Model

In the ideal case of a complete or detailed model (unbiased model) as that considered in
Section 9.2.3.1, where the model is assumed to be corrupted by an additive noise in the
signal with classical assumptions, we have previously shown that the OLS method through
an iterative procedure (in the case of a nonlinear problem) is a very interesting tool for
estimating values of the unknown parameters because the estimator is unbiased, E(b̂) ¼ b,
and the errors on the estimated parameters are only stochastic, cov(b̂) ¼ s2

b(X
tX)�1. This

means that the covariance matrix shows that errors in the estimated parameters are small if
the measurement noise is small.
For a given measurement noise level, errors in the estimated parameters can become

large if the determinant of the sensitivity matrix product tends to zero as, for instance, if the
sensitivity of the model to a given parameter is small or if two parameters are correlated.
As shown in Section 9.2.3, optimization of the parameters’ estimation consists in redu-

cing the standard deviations or variances of the parameters by reducing the number of
parameters in the detailed model by setting different parameters to their nominal values.
To describe the rear face response of a sample submitted to heat pulse stimulation in its
front face as in the case of a Flash method, one can use, for example, a reduced model like
the adiabatic model in which heat loss effects can be neglected, or a model in which heat
losses are fixed to their nominal values.
These two kinds of strategies allow reducing the stochastic errors caused by noise, but as

illustrated in Section 9.2.3.5, a systematic error or bias may appear for the estimated
parameters. In the next section, we will see how it is possible to evaluate this bias from
known quantities such as the residuals curve and the sensitivities to the parameters
involved in the reduced model and by working with time variable intervals. For more
clarity, we decided to work in a more simple case than those used in Section 9.2, the
‘‘Flash’’method on a single layer material. The reason is that this model is more simple and
the number of unknown parameters is reduced both in the unbiased and biased models.

9.3.1 Evaluation of the Bias on the Estimated Parameters of a Reduced Model

As explained in the introduction of Section 9.2 and demonstrated in Section 9.2.3.5, setting
different parameters to their nominal values or using a reduced model that neglects
different physical aspects (a particular case where the nominal value is null) leads to a
bias in the parameters that are estimated. In this section, we will show how it can be
evaluated.
The biased (reduced) model can be formally written from the unbiased model (exact

model):

~T(t, b̂r,bcnom ) ¼ T(t,br,bc)þ Xrjbr
(b̂r � br)þ Xcjbc

(bcnom � bc) (9:20)

with

. br and bc: true values of the ‘‘unknown’’ and ‘‘known’’ parameters, respectively

. b̂r: current estimated values of ‘‘unknown’’ parameters

. bcnom : nominal values of fixed of ‘‘known’’ parameters
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The sign ‘‘�’’ on T indicates that the model we used for the estimation is a biased model
(reduced model). In the vicinity of the true solution, ~T, the only function of br, can be
written from the detailed T model which is the function of (br,bc).
The error on the fixed parameters (assumed to be ‘‘known’’ parameters) is defined by

ebc
¼ bcnom � bc: (9:21)

The estimator vector b can be split into two components: an ‘‘unknown’’ component br,
composed of the unknown parameters, and a ‘‘known’’ component bc, composed of
parameters fixed to their nominal value—b ¼ (brjbc). The sensitivity matrix is composed
of the sensitivities of the model to the ‘‘unknown’’ and ‘‘known’’ parameters: X ¼ (XrjXc).
Equation 9.20 shows that ~Xt

r(b̂r) ¼ (q~T=qb̂r) ¼ Xt
r(br). The linear system that has to be

solved only depends on the sensitivities ~Xt
r of the ‘‘unknown’’ parameters of the biased

model. As ~Xt
r(b̂r) ¼ Xt

r(br),

Xt
r(Y� ~T) ¼ 0: (9:22)

Expression (9.20) can be written as

~T
�
t, b̂r,bcnom

� ¼ T(t,br,bc)þ (XrjXc)
b̂r � bc
ebc

� �
: (9:23)

The experimental curve Y depends on the true values of both ‘‘unknown’’ br and ‘‘known’’
bc parameters and is given by the detailed model T with an assumed additive noise:

Y(t,br,bc) ¼ T(t,br,bc)þ «(t): (9:24)

Substituting Y and T by their expressions (9.23) and (9.24) in Equation 9.22 leads to

b̂r ¼ br þ Xt
rXr

� ��1Xt
r«|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

e«

� Xt
rXr

� ��1Xt
rXcebc|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

bbr

: (9:25)

As expected, the estimated parameters b̂r are composed of two additive errors: a stochastic
error e« as in the unbiased model and a deterministic error bbr

defined by

bbr
¼ � Xt

rXr
� ��1Xt

rXcebc
: (9:26)

As for the detailed model, Equation 9.25 allows the calculation of the expectancy and
standard deviation of the estimated values of the ‘‘unknown’’ parameter br.

9.3.1.1 Expectancy of the Estimator

E(b̂r) ¼ br þ Xt
rXr

� ��1Xt
rE(«)� Xt

rXr
� ��1Xt

rXcebc
: (9:27)

Since the mean value of noise (expectancy) is null, we finally obtain

E(b̂r) ¼ br � Xt
rXr

� ��1Xt
rXcebc

¼ br þ bbr
: (9:28)
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In this case, the estimated parameters are biased. This error bbr
or ‘‘bias’’ is linearly linked

to the errors on the ‘‘known’’ parameters ebc
.

We can notice that this bias is small if

1. The sensitivities of the detailed model to the fixed parameters are small.

2. The nominal values of fixed parameters are close to the true values of these
parameters.

3. The ‘‘known’’ and ‘‘unknown’’ parameters are independent (i.e., Xt
rXc ¼ 0).

Furthermore, if the sensitivity matrix to ‘‘unknown’’ parameters Xt
rXr is well conditioned,

then the effect of the errors of ‘‘known’’ parameters ebc
on estimated parameters b̂r will be

reduced.

9.3.1.2 Standard Deviation of the Estimator (Variance–Covariance Matrix)

By definition

cov(b̂r) ¼ E (b̂r � E(b̂r))(b̂r � E(b̂r))
t

h i
¼ E (b̂r � br � bbc

)(b̂r � br � bbc
)t

h i
: (9:29)

Using Equations 9.25 and 9.26,

cov(b̂r) ¼ E Xt
rXr

� ��1Xt
r««

tXr Xt
rXr

� ��1h i
¼ s2

b Xt
rXr

� ��1, (9:30)

cov(b̂r) ¼ s2
b Xt

rXr
� ��1

: (9:31)

The expression of the covariance matrix remains unchanged and is only a function of the
standard deviation of the noise and of the sensitivity matrix to ‘‘unknown’’ parameters.
Consequently, the dispersion is lower than in the case of detailed model because the size of
the sensitivity matrix is smaller. Nevertheless, it is important to remember that this
covariance matrix has been evaluated from the biased values of ‘‘unknown’’ parameters
(expectancy of the estimated parameter): E(b̂r) ¼ br þ bbr

.

9.3.1.3 Modified Standard Deviation of the Estimator (Mean Squared Error)

Amore realistic approach for the standard deviation evaluation of ‘‘unknown’’ parameters
consists in evaluating the covariance matrix not from the estimated and biased values of
‘‘unknown’’ parameters E(b̂r) ¼ br þ bbr

but from their true values br, that is,

covm(b̂r) ¼ E[(b̂r � br)(b̂r � br)
t]: (9:32)

To distinguish the variance calculated from the expectancy of ‘‘unknown’’ parameters
from this new variance, this latter is denoted covm for ‘‘modified’’ parameters. Using
Equation 9.25,

covm(b̂r) ¼ E Xt
rXr

� ��1Xt
r«þ bbr

� 	
Xt
rXr

� ��1Xt
r«þ bbr

� 	t� �
: (9:33)
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As the noise is a stochastic quantity and the bias a deterministic quantity, this yields

covm(b̂r) ¼ s2
b Xt

rXr
� ��1þ bbr

bt
br
: (9:34)

Thus, the errors on estimated values of ‘‘unknown’’ parameters are composed of two
components: ‘‘stochastic’’ and ‘‘systematic’’ errors. In order to present an interest, the
use of a reduced model or the reduction of the number of ‘‘unknown’’ parameters must
lead to smaller errors.
The illustration of the two consequences yielded by the above demonstration, namely,

the error introduced in the expected value of the unknown parameters and the reduction of
their variance, is given in Figure 9.16. Application on a basic example, the classical ‘‘Flash’’
method, will be made in the next section.

9.3.1.4 Expectancy of the Residuals Curve

The expectancy of residuals in the case of a reduced model is given by

E(r) ¼ E[Y(t,b)� F(t, b̂)] ¼ E[«(t)� Xr(b̂r � br)� Xcebc
]

¼ �Xr E Xt
rXr

� ��1
Xt
r«(t)� Xt

rXr
� ��1

Xt
rXcebc

h i
� Xcebc

(9:35)

and finally,

E(r) ¼ Xr Xt
rXr

� ��1
Xt
r � I

� 	
Xcebc

: (9:36)

This relation shows that the residuals are ‘‘signed’’ in the case of a biased model.

V(βr)= σ2 (Xt X)−1ˆ ˆV(βr) = σ2 (Xr
t Xr)−1 + bβc

bt
βc

ˆE(βr) = βr

βrˆE(βr) = βr + bβc

Pr
ob

ab
ili

ty
 (β

r)

FIGURE 9.16
Comparison between the standard deviation of parameters estimated in the case of detailed and reduced models.
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9.3.2 Application: Case of the Classical ‘‘Flash’’ Method

For validating the theoretical results established in Sections 9.2.3.1 and 9.3.1, Monte Carlo
simulations have beenperformedon a simulated Flash experiment (see Figure 9.17) (100 runs
with different random noise have been generated). The expectancy and standard deviations
on estimated parameters have been then calculated using biased and unbiased models.
The Flash experiment consists in applying a uniform space heat pulse stimulation of a

very short duration (Dirac) onto a sample. Measurement of its rear face temperature
evolution allows the estimation of the thermal diffusivity. Different nonideal aspects of
the experiment, related to heat losses with the surrounding environment, will be consid-
ered. The sample is assumed cylindrical with a thickness e and a radius R. This sample is
submitted to an impulsed flux: f(t) ¼ f0d(t). If the heat flux is uniform, then heat transfer is
one dimensional. The heat transfer equation in 1D is given by

q2T
qx2
¼ 1

a
qT
qt

(9:37)

with the following boundary conditions:

at t ¼ 0, T ¼ 0,

in x ¼ 0, l
qT
qx
¼ hT0 � f(t),

in x ¼ e, �l qT
qx
¼ hTe:

8>>>>><>>>>>:
(9:38)

The solution can be easily obtained using a Laplace transform and is a function of three
independent parameters:

T(t,b) ¼ f
Q
rce

,
he
l
,
a
e2
, t

� �
: (9:39)

Working on the reduced thermogram normalized by its maximum, the problem is reduced
to two ‘‘unknown’’ parameters (this normalized thermogram T* will be noted T in the
followings for more clarity):

T*(t,b) ¼ T(t,b)
Tmax

¼ f
he
l
,
a
e2
, t

� �
: (9:40)

FIGURE 9.17
Principle of the Flash method. h x

h0

e

(t)
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. The Fourier number (inverse of the characteristic time): Fo ¼ (a=e2)(tc ¼ 1=Fo)

. The Biot number (heat losses): Bi ¼ (he=l)

The ‘‘unknown parameters’’ vector is defined by b ¼ 1=Fo
Bi

� �
.

Nominal values:

Fo ¼ 10,

Bi ¼ 0:05:

For validating the theoretical relations we obtained, Monte Carlo simulations have been
carried out. Estimations of a theoretical signal composed of 1000 points in time and
corrupted by an additive ‘‘white’’ noise with a reduced standard deviation s of 1% (100
runs have been considered) have been carried out.
To make the difference between the theoretical expectancy E and standard deviation

cov ¼ s2 and the results obtained in practice by Monte Carlo simulations, the practical
quantities are denoted by the superscript ‘‘^.’’ Estimations have been performed at first
without considering a bias and second using a biased model by fixing the heat losses to a
nominal value.

9.3.2.1 Estimation without Bias

Figure 9.18 gives an example of estimation and compares the estimated thermogram
calculated from the estimated values of the ‘‘unknown’’ parameters given by a Leven-
berg–Marquardt algorithm (OLS method). The ‘‘oscillating’’ curve represents the residuals
curve (difference between direct model corrupted by noise and estimated thermogram).
The following estimated values were obtained:

. For the expectancy, Ê(b̂) ¼ 0:099998
0:049987

� �
.

Since b ¼ 0:10
0:05

� �
, an error (of stochastic origin) exists but is small 0:002%

0:026%

� �
.

This error can be reduced through a repetition of the experiments and averaging of
estimations since E(b̂) ¼ b.

. For the standard deviations on parameters (diagonal terms of cov matrix),

ŝ2
b̂1

ŝ2
b̂2

0@ 1A ¼ 0:0242	 10�9

0:9070	 10�9

 !
, since

s2
b1

s2
b2

 !
¼ diag (s2

b :(X
tX)�1) ¼ 0:0243	 10�9

0:9003	 10�9

 !
:

. For expectancy of residuals curves, we obtain Ê(r) ’ 0.

Thus, theoretical results of Section 9.2.3.1 have been checked.

9.3.2.2 Estimation with a Bias

For generating an artificial bias, we now reduce intentionally the number of ‘‘unknown’’
parameters involved in the theoretical model (two parameters in the model considered
here) by setting some parameters to their nominal values (only one parameter in this case).
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For instance, we decide to fix the heat loss coefficient by setting the Biot number to
bc ¼ 0:04. This corresponds to an error ebc

¼ �0:01 on this parameter.
In this case, the Biot number is like an assumed ‘‘known’’ parameter and plays the role of

parameter vector bc. The only ‘‘unknown’’ parameter in this case corresponds to the
characteristic time and is denoted br.

. For the expectancy, we can check that the expectancy of estimated parameters is
biased. We found Ê(b̂r) ¼ 0:101095 instead of br ¼ 0:1. We can calculate the bias
(difference between the expectancy of estimated parameter b̂r and its true value br)
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FIGURE 9.18
Estimation from a thermogram corrupted by noise. (a) With an unbiased model. (b) With a biased or reduced
model.
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Ê(b̂r)� br ¼ 0:001095 and compare this result with the theoretical bias given by
Equation 9.26, that is, bbr

¼ 0:001096. This result is very close and consequently
allows us to check Equation 9.28: E(b̂r) ¼ br þ bbr

.
. For the variance, we obtained ŝ2

b̂1
¼ 1:3311	 10�11 (standard deviation calculated

with 100 runs) compared to the theoretical result s2
b1
¼ s2

b Xt
rXr

� ��1¼
1:3968	 10�11. Within an error of 4.7%, we verified Equation 9.31
cov(b̂r) ¼ s2

b Xt
rXr

� ��1.
. For the ‘‘modified’’ variance (9.34) or mean squared error, calculated from 100

runs and from true values, we find

^covm(b̂r) ¼ 1:2031	 10�6 to compare with s2
b Xt

rXr
� ��1þ bbr

bt
br
¼ 1:2031	 10�6:

. It is interesting to notice that the ‘‘modified’’ variance (standard deviation between
the estimated value and the true value) is larger than the stochastic error. In this
case, the bias is larger than the stochastic error.

. Two residuals curves are compared in Figure 9.19. The calculated ones (resulting
from the difference between the input thermogram and the after-estimation recal-
culated thermogram) and the theoretical ones obtained from the theoretical rela-
tion correspond to E(r) given by Equation 9.36. A good agreement between these
two curves can be observed. The difference corresponds to the noise that appears
in the residuals but not in its theoretical expectancy.
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FIGURE 9.19
Residuals curves in the case of a biased model.
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9.3.3 Can Residuals Curve Help to Determine Information Regarding Estimation of Bias?

As illustrated in the previous section, in the ideal case, when we use a detailed model that
perfectly describes the experiment (experimental curve is equal to the theoretical model
with an additive random noise), the residuals curve is ‘‘unsigned’’ and the standard
deviations in estimated parameters are of stochastic origin and only depend on the random
noise in the signal (see Sections 9.2.3 and 9.3.2.1).
In practice, the detailed model that must perfectly describe the experiment is not known

because to obtain the theoretical model, different simplifying assumptions are made.
Depending on these assumptions, we only have a more or less reduced and=or biased
model. In this case, we can observe a signature in the residuals curve and in its expectancy
(see Sections 9.2.3.5 and 9.3.2.2 for instance). We call of ‘‘signed’’ residuals. The standard
deviations on parameters are composed of two components: a stochastic error and a
systematic bias bbr

. The evaluation of this bias is important because it can lead, as
previously shown, to some errors larger than the stochastic one.
As shown in the previous section (see Equation 9.26), the bias bbr

on the estimated
parameters is a function of the sensitivities of the detailed model and errors on fixed
parameters through Xcebc

, which are unknown in practical case.

The problem is: How can we evaluate the bias on the estimated parameters of the reduced
model if the detailed (unbiased) model is unknown?

We will show that it is possible to estimate the unknown quantity Xcebc
from the residuals

curve r, more precisely from its expectancy E(r). The unknown quantity Xcebc
can be

formally eliminated by combining Equations 9.26 and 9.36:

bbr
¼ � Xt

rXr
� ��1Xt

r Xr Xt
rXr

� ��1
Xt
r � I

� 	�1
E(r)

� �
: (9:41)

Consequently, a direct relation between the bias bbr
on ‘‘unknown’’ parameters and the

residuals curve E(r) exists and allows the calculation of modified standard deviation on
‘‘unknown’’ parameters sm(b̂r) through Equation 9.34.

Remark

In practice and as usually done with the sensitivity coefficients in a nonlinear case where
sensitivity to real value of parameters X(t,b) is assumed close to the sensitivity coefficients
to estimated values X(t, b̂), we can consider that a good evaluation of the residuals
expectancy is given by the residual curves of a given estimation, that is, E(r) ’ Ê(r) ’ r.

9.3.3.1 Estimation of the Sensitivity of the Detailed Model: Xcebc

To obtain Xcebc
allowing the calculation of bias (Equation 9.26), we have to solve a linear

problem ‘‘A:X ¼ B’’ (see Equation 9.36):

Xr Xt
rXr

� ��1
Xt
r � I

� 	
� Xcebc

¼ E(r)! A � X ¼ B (9:42)
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with

� A ¼ �Xr Xt
rXr

� ��1
Xt
r � I

�
� X ¼ Xcebc

� B ¼ E(r)

A is (n	 n) matrix (n being the number of points in time) that is perfectly known since it
only depends on the sensitivities of the reduced model Xr. (Let us note that this matrix has
no unit.) Vector B corresponds to the expectancy of residuals and X is the unknown vector
that we are seeking for.
Unfortunately, we can show that the matrix A is singular (determinant equal to zero).

This means that different detailed models that lead to the same residuals curve can exist.
A solution consists in finding an approximate solution using the ‘‘pseudo-inverse’’ of

this matrix using a singular value decomposition (SVD):

A ¼ USVt: (9:43)

U and V are two orthogonal matrices so that Ut �U ¼ I and Vt �V ¼ I. S is a diagonal
matrix that contains the singular values of A sorted in decreasing order.
In the case of our matrix A ¼ �Xr Xt

rXr
� ��1

Xt
r � I

�
, we can show that it can be decom-

posed under the following form A ¼ USVt with

USVt ¼
U1,1 . . . Un,1

..

. . .
. ..

.

U1,n � � � Un,n

2664
3775

1 . . . 0

..

.
1 ..

.

0 � � � 0

2664
3775

V1,1 . . . Vn,1

..

. . .
. ..

.

V1,n � � � Vn,n

2664
3775: (9:44)

The diagonal matrix is only composed of two different singular values 0 (order 1) and 1
(order n� 1). The matrix A is a projector. As only one null singular value exists, the rank of
this matrix is thus equal to n� 1. Two approximated solutions can be obtained either by
using a direct truncature method which consists of reducing the size of matrix A (the
truncature method consists in deleting one row and one column of matrix A, the last ones
for instance), or by using the ‘‘pseudo-inverse’’ solution given by deleting the null singular
value (last row and column of the matrix S), the last column of matrix U and the last row of
the matrix V (SVD solution).
To validate the calculation of Xcebc

by these two techniques, these two solutions are
compared in the case of the Flash ‘‘method’’ with the ‘‘true’’ function of Xcebc

. The results
are drawn in Figure 9.20:

. First, if we compare truncature and SVD solutions, they are in good agreement
with small discrepancies due to the truncature in the SVD. This means that the
solution obtained by the truncature of the matrix A and the solution given by SVD
leads to the same results. If we now compare these two results with the true
expression of Xcebc

, we can observe that these two solutions are different
from Xcebc

.
. Nevertheless, in all cases, as shown in Figure 9.21, if we compute the residuals

(using Equation 9.36 and the solution obtained by SVD) and compare this curve
with the true residuals curve, we find the same curve. This means that the solution
of our problem is not unique.
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This result can be explained by the fact that A is a projector and, consequently, that
different vectors can lead to the same projection.
It is clear that the SVD procedure yields a particular solution XSVD of the linear system

AX ¼ B. The true solution of our problem is composed of a second term, which corres-
ponds to the eigenvector associated with the null eigenvalue (Kernel solution) that has
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FIGURE 9.21
Comparison of the true residuals and the residuals calculated from X ¼ Xcebc

obtained by SVD.

0 1 2 3 4 5 6 7 8 9 10
–0.015

–0.01

–0.005

0

0.005

0.01

0.015

0.02

“True” Xc eβc

SVD solution

Truncature solution

Time t (s)

X

FIGURE 9.20
Solution obtained by SVD and comparison with true function X ¼ Xcebc

.

346 Thermal Measurements and Inverse Techniques

  



been removed in the ‘‘pseudo-inverse’’ calculation by SVD. This vector corresponds to the
direction of projection.
Thus, to obtain the general solution, we have also to take into account the solution

associated to the null eigenvalue denoted X0 that satisfies the system AX0 ¼ 0 (Kernel
solution):

Xr Xt
rXr

� ��1Xt
r � Id

� 	
X0 ¼ 0 (9:45)

or

Xr Xt
rXr

� ��1Xt
r

� 	
X0 ¼ 1*X0: (9:46)

The solution X0 can be obtained by solving an eigenvalue problem (9.46). It is plotted in
Figure 9.22.
Since XSVD satisfies AXSVD ¼ B and X0 satisfies AX0 ¼ 0, it is clear that X ¼ XSVD þ aX0

is also a solution of the system AX ¼ B for any values of the coefficient a.
The previous decomposition is fully justified from the expressions of the expectancy of

residuals and bias:

E(r) ¼ Xr Xt
rXr

� ��1Xt
r � Id

� 	
Xcebc

,

bbr
¼ � Xt

rXr
� ��1Xt

rXcebc
:

8<: (9:47)

Thus,

E(r) ¼ Xr Xt
rXr

� ��1Xt
rXcebc

� Xcebc
(9:48)
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FIGURE 9.22
Solution X0 obtained by solving an eigenvalue problem (Kernel solution).
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and consequently,

E(r) ¼ �Xrbbr
� Xcebc

: (9:49)

We find that

Xcebc
¼ �E(r)þ Xt

rbbr
: (9:50)

By identification with Xcebc
¼ XSVD þ aX0, we find that

XSVD ¼ �E(r),
aX0 ¼ �Xrbbr

:

(
(9:51)

We show that an infinite number of solutions to our problem exist, which appears as the
sum of the SVD solution (pseudo-inverse) XSVD and the Kernel solution X0, with a
weighting coefficient a. The problem now stays in the determination of a, because only
one value of this coefficient allows us to calculate the real values of the bias.
As shown here, we cannot determine the coefficient a through only one estimation

without any complementary information.
The idea is to work with variable time intervals. Indeed, with an unbiased model, the

bias is null for any time intervals. On the contrary, in the case of a reduced or biased model,
bias on parameters varies with the time interval as illustrated in Table 9.4 (see also Section
9.2.3.5).
In the next section, we will show how it is possible to use the variations of the bias with

respect to time in order to estimate it.

9.3.3.2 Estimation of the Bias Using a Variable Time Interval

We will show in this section that it is possible to have an approximation of the bias in the
estimated parameters if we are working with at least two different time intervals. For more
simplicity, we make the assumption that time intervals are equally spaced Dt ¼ Cste, which
is not necessary. The maximum time interval length is noted by tmax ¼ n � Dt (n is the
maximum number of time steps). We used 1000 points in practice.
The experimental curve is simulated using the unbiased model T but with no added

noise. The sensitivities of the unbiased models T to the ‘‘unknown’’ br and ‘‘known’’ bc
parameters are defined by

Xr ¼ qT(t,br,bc)
qbr

and Xc ¼ qT(t,br,bc)
qbc

: (9:52)

The sensitivities of the biased model ~T to the ‘‘unknown’’ br denoted ~Xbr
are defined by

~Xr ¼
q~T(t, b̂r,bcnom )

qb̂r

¼ Xr: (9:53)

Equation 9.20 clearly shows that in first approximation, sensitivities to the detailed model
Xr usually unknown are close to the sensitivities of the reduced model ~Xr. We decided to
keep these two quantities in the following equations to remember what type of sensitivity
should be rigorously considered.
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The estimated parameters br of the biased model ~T are estimated by an OLS method that
consists in minimizing the scalar product between ~Xr and the residuals curve r (residuals
vector orthogonal with each sensitivity coefficient of the biased model ~Xr to ‘‘unknown’’
parameters). The residuals are given here by r ¼ T� ~T (no noise):

~Xt
r � r ¼ 0: (9:54)

Since r ¼ T(t,br,bc)� T̂(t, b̂r,bcnom ) ¼ �Xrbbr
� Xcebc from (9.20) and ~Xt

rr ¼ 0, we obtain

~Xt
r � r ¼ 0 ¼ �~Xt

rXr � bbr
� ~Xt

rXc � ebc , (9:55)

and finally,

bbr
¼ � ~Xt

rXr
� ��1~Xt

rXcebc : (9:56)

In practice, it is not possible to evaluate the bias from this relation because the sensitivities
Xr and Xc of the unbiased model (ideal model) are unknown. As previously shown, a good
approximation of Xr can be given by ~Xr but Xcebc

remains unknown.
The expression of Xcebc

can be calculated from the residuals by Xcebc ¼ �r� Xrbbr
(see

(9.20)) and gives

r ¼ Xr ~Xt
rXr

� ��1~Xt
r � Id

� 	
Xcebc : (9:57)

The difficulty then comes from the fact that this matrix is singular and leads to an infinite
number of solutions.
Let consider now two different time intervals [0� t1 ¼ n1 � Dt] and [0� t2 ¼ n2 � Dt], with

n1 � n2 � n. Truncated vector quantities (thermograms and sensitivity curves are trun-
cated to their n1 and n2 first points) related to these two time intervals and the correspond-
ing values of the ‘‘unknown’’ parameters br are denoted with the subscripts 1 or 2 (b̂r1
and b̂r2 ).
The OLS minimization allows us to write (see Equation 9.54)

~Xr1 � r1 ¼ 0 and ~Xr2 � r2 ¼ 0: (9:58)

From bias expression (Equation 9.56), we obtain

bbr1
¼ b̂r1 � br ¼ � ~Xt

r1Xr1

� 	�1
~Xt
r1Xc1ebc

,

bbr2
¼ b̂r2 � br ¼ � ~Xt

r2Xr2

� 	�1
~Xt
r2Xc2ebc

:

(9:59)

b̂r1 and b̂r2 are estimated by an OLS procedure with two different time intervals and are
thus perfectly known. So it is for ~Xr1 and ~Xr2 . If we take the difference of these two relations,
we obtain the bias variations Dbbr2�1 ¼ bbr2

� bbr1
:

Dbbr2�1 ¼ b̂r2 � b̂r1 ¼ � ~Xt
r2Xr2

� 	�1
~Xt
r2Xc2ebc

þ ~Xt
r1Xr1

� 	�1
~Xt
r1Xc1ebc

: (9:60)

From this expression, it is possible to obtain information on Xcebc
.
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If we assume that t2 ! tn and t1 ! t2, then we have in a first approximation for the
cumulative sum ~Xt

r2Xr2 :

~Xt
r2Xr2 ¼ ~Xt

r1Xr1 þ
Xn2

i¼n1þ1
~Xt
riXri ’ ~Xt

r1Xr1
t1!t2=t2!tmax

, (9:61)

with

Dbbr2�1 ¼ b̂r2 � b̂r1 ¼ � ~Xt
r1Xr1

� 	�1
~Xt
r2Xc2ebc

� ~Xt
r1Xc1ebc

h i
: (9:62)

We also have

~Xt
r2Xc2ebc ¼ ~Xt

r1Xc1ebc þ
Xn2

i¼n1þ1
~Xt
riXciebc

: (9:63)

This leads to

Dbbr2�1 ¼ b̂r2 � b̂r1 ¼ � ~Xt
r1Xr1

� 	�1 Xn2
i¼n1þ1

~Xt
riXci:ebc

" #
: (9:64)

If t2 ¼ t1 þ Dt (n2 ¼ n1 þ 1), then

Dbbr2�1 ¼ b̂r2 � b̂r1 ¼ � ~Xt
r1Xr1

� 	�1
~Xt
r(t2)Xc(t2) � ebc


 �
: (9:65)

If t1 and t2(tm ¼ (t1 þ t2)=2! m ¼ (n1 þ n2)=2) are close and assuming that the function
Xc(t)ebc

is nearly constant in the interval [t1 � t2] and equal to the value of the function in
the middle of the interval Xc(tm)ebc

, then

Dbbr2�1 ¼ b̂r2 � b̂r1 ¼ � ~Xt
r1Xr1

� 	�1
~Xt
r(tm)Xc(tm)ebc

(n2 � n1)

 �

: (9:66)

We finally obtain

~Xt
r(tm)Xc(tm)ebc

¼ �
~Xt
r1Xr1

� 	
Dbbr2�1

(n2 � n1)
: (9:67)

From the value of residuals r(tm) ¼ �Xr(tm)bbr
� Xc(tm)ebc at time tm, the value of the bias

can be calculated by

bbr
¼ ~Xt

r(tm)Xr(tm)
� ��1 �~Xt

r(tm)r(tm)� ~Xt
r(tm)Xc(tm)ebc

� �
: (9:68)

So, we have shown that two biased estimations on two different intervals [0� t1] and
[0� t2] can give access to the estimation of bias. Of course, the main assumption is about
the approximation of the cumulative sum (Equation 9.61) that can be only checked if
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t1 ! t2 and t2 ! tn. An illustration of this method is presented in the next and last section.
Finally, knowing the value of bias bbr

, we can obtain the function Xcebc from the residuals
and Xr by

Xcebc ¼ �r� Xrbbr
: (9:69)

9.3.3.3 Application in the Case of the ‘‘Flash’’ Method

To illustrate these results, we consider the case of the Flash method. As previously shown,
this problem is a function of two parameters: the characteristic time (thermal diffusivity of
the material) and the Biot number (heat losses).
For the simulation of an experimental result, the following nominal values were con-

sidered:

. Fourier number: Fo ¼ a
e2
¼ 0:1

. Biot number: Bi ¼ he
l
¼ 0:05

To simulate a bias on this fine model, we consider the heat losses as a ‘‘known’’ parameter.
The value of the Biot number is fixed to a nominal value Bi ¼ 0:03 (relative error of �40%).
To simplify, we will consider the signal without noise (only the systemic error is consid-
ered).
Theoretical thermogram (fine model) and sensitivities to ‘‘unknown’’ Xr and assumed

‘‘known’’ Xc parameters are plotted in Figure 9.23. The sensitivity curves show that
thermogram is sensitive to Xr. This parameter has been estimated by an OLS method
with the biased model. The solution is presented in Figure 9.24. It is clear that the estimated
value is different from the input nominal value.
If we then try to perform this estimation for different time interval lengths, we can

observe a variation of bias as illustrated in Figure 9.25. This means, as explained before,

FIGURE 9.23
Thermogram with heat loss and sensi-
tivities.
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Estimated thermogram b̂r ¼ 0:1021 and bc ¼ 0:03—residuals curve.
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Evolution of bias versus time interval length.
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that a bias on the estimated parameter exists. Figure 9.25 clearly shows that the estimated
values are a function of the time interval length. This information can be used for the
determination of Xcebc

. Only one point in time is required to determine the value of the bias
on the estimated parameter.
In Figure 9.26, the estimated function Xcebc

obtained using (9.69) is compared with the
theoretical one. These two curves are indeed very close. The bias we calculate is equal to
0.0022186 and is very close to the theoretical one.

9.4 Conclusion

To conclude, we have presented different relations giving an estimation of the bias or
‘‘systematic error’’ introduced in the estimated parameters when they are estimated from a
biased model or a reduced model. These relations have been checked in the case of the
Flash method. We have shown that it is possible to estimate the bias even if the detailed
model is unknown. This bias can be calculated from the residuals curve and sensitivity to
the ‘‘unknown’’ parameters. This method must be considered as the first track for estimat-
ing bias. Of course, more investigations are needed to improve, for instance, the choice of
the number of temporal points that can be used for its determination.
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Abbreviations

NLP Nonlinear in the parameters
OLS Ordinary least squares
PEP Parameter estimation problem
SNR Signal-to-noise ratio
SVD Singular value decomposition
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10.1 Introduction

Inverse problems usually involve theminimization of some objective function as part of their
formulation. Such minimization procedures require the use of an optimization technique.
Thus, in this chapter, we address solution methodologies for single-objective optimization
problems, based on minimization techniques. Several gradient-based and non-gradient-
based (stochastic) techniques are discussed, together with their basic implementation steps
and algorithms. We present some deterministic methods, such as the conjugate gradient
method, the NewtonMethod, and the Davidon–Fletcher–Powell (DFP)method (Levenberg,
1944; Hestenes and Stiefel, 1952; Davidon, 1959; Fletcher and Powell, 1963;Marquardt, 1963;
Fletcher and Reeves, 1964; Broyden, 1965, 1967; Daniel, 1971; Polak, 1971; Beale, 1972; Bard,
1974; Beck and Arnold, 1977; Moré, 1977; Powell, 1977; Tikhonov andArsenin, 1977; Dennis
and Schnabel, 1983; Beck et al., 1985; Stoecker, 1989; Murio, 1993; Alifanov, 1994; Alifanov
et al., 1995; Kurpisz and Nowak, 1995; Dulikravich and Martin, 1996; Trujillo and Busby,
1997; Jaluria, 1998; Beck, 1999; Belegundu and Chandrupatla, 1999; Colaço and Orlande,
1999, 2001a,b, 2004; Fletcher, 2000; Ozisik and Orlande, 2000; Woodbury, 2002). In addition,
we present some of the stochastic approaches, such as the simulated annealing method
(Corana et al., 1987; Goffe et al., 1994), the differential evolutionarymethod (Storn and Price,
1996), genetic algorithms (Goldberg, 1989; Deb, 2002), and the particle swarm method
(Kennedy and Eberhart, 1995; Kennedy, 1999; Eberhart et al., 2001; Naka et al., 2001).
Deterministic methods are, in general, computationally faster (they require fewer objective
function evaluations in case of problemswith low number of design variables) than stochas-
tic methods, although they can converge to a local minima or maxima, instead of the global
one. On the other hand, stochastic algorithms can ideally converge to a global maxima or
minima, although they are computationally slower (for problems with relatively low num-
ber of design variables) than the deterministic ones. Indeed, the stochastic algorithms can
require thousands of evaluations of the objective functions and, in some cases, become
nonpractical. In order to overcome these difficulties, wewill also discuss the so-called hybrid
algorithms that take advantage of the robustness of the stochastic methods and the fast
convergence of the deterministic methods (Dulikravich et al., 1999, 2003, 2004, 2008; Colaço
and Orlande, 2001a,b; Colaço et al., 2004, 2005b, 2006, 2008; Colaço and Dulikravich, 2006,
2007; Dulikravich andColaço, 2006;Wellele et al., 2006; Silva et al., 2007; Padilha et al., 2009).
Each technique provides a unique approachwith varyingdegrees of convergence, reliability,
and robustness at different stages during the iterative minimization process. A set of
analytically formulated rules and switching criteria can be coded into the program to
automatically switch back and forth among the different algorithms as the iterative process
advances (Dulikravich et al., 1999; Colaço et al., 2005b, 2008).
In many optimization problems, evaluation of the objective function is extremely expen-

sive and time consuming. For example, optimizing chemical concentrations of each of the
alloying elements in a multicomponent alloy requires manufacturing each candidate alloy
and evaluating its properties using classical experimental techniques. Even with the most
efficient optimization algorithms (Dulikravich et al., 2008), this means that often thousands
of alloys having different chemical concentrations of their constitutive elements would have
to be manufactured and tested. This is understandably too expensive to be economically
acceptable. Similar is the situation when attempting to optimize three-dimensional aerody-
namic shapes. Aerodynamics of thousands of different shapes needs to be analyzed using
computational fluid dynamics software, which would be unacceptably time consuming.
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For problems where objective function evaluations are already expensive and where the
number of design variables is large thus requiring many such objective function evalu-
ations, the only economically viable approach to optimization is to use an inexpensive
and as accurate as possible surrogate model (a metamodel or a response surface) instead
of the actual high fidelity analysis method. Such surrogate models are often known as
response surfaces (Colaço et al., 2007, 2008). In the case of more than three design
variables, a response surface becomes a high-dimensional hypersurface that needs to be
fitted through the available (often small) set of high fidelity values of the objective
function. Once the response surface (hypersurface) is created using an appropriate ana-
lytic formulation, it is very easy and fast to search such a surface for its minima given a
set of values of design variables supporting such a response surface. Therefore, we also
present in this chapter some basic concepts related to the response surface generation
methodology.

10.2 Basic Concepts

10.2.1 Objective Function

The first step in establishing a procedure for the solution of either inverse problems or
optimization problems is the definition of an objective function. The objective function is the
mathematical representation of an aspect under evaluation, which must be minimized (or
maximized). The objective function can be mathematically stated as

S ¼ S(P); P ¼ {P1,P2, . . . ,PN} (10:1)

where P1, P2, . . . , PN are the variables of the problem under consideration, which can be
modified in order to find the minimum value of the function S.
The relationship between S and P can, most of the time, be expressed by a physical=

mathematical model. However, in some cases, this relationship is impractical or even
impossible and the variation of S with respect to P must be determined by experiments.

10.2.2 Unimodal versus Multimodal Objective Functions

Some of the methods that will be discussed here are only applicable to certain types of
functions, namely unimodal, which are those having only one maximum (or minimum)
inside the range of parameters being analyzed. This does not mean that the function must
be continuous, as one can see from the Figure 10.1, where the first two functions are
unimodals. The third function is unimodal in the interval 0<P< 3p=2 and the forth
function is multimodal.
For unimodal functions, it is extremely easy to eliminate parts of the domain being

analyzed in order to find the place of the maximum or minimum. Consider, for example,
the first function of Figure 10.1: if we are looking for the maximum value of the function,
and we know that S(P¼ 1) is less than S(P¼ 2), we can immediately eliminate the region to
the left of P¼ 1, since the function is monotonically increasing its value. This is not true for
multimodal functions, sketched as the fourth function in Figure 10.1.
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10.2.3 Single- and Multi-Objective Functions

This chapter will deal only with single-objective functions. However, it is interesting to
introduce the reader to the multi-objective optimization problems (Deb, 2002) since their
applications in industry are very important. Consider, for example, the project of devel-
opment of an automobile. Usually, we are not interested in only minimizing or maximizing
a single function (e.g., fuel consumption), but extremizing a large number of objective
functions as, for example: fuel consumption, automobile weight, final price, performance,
etc. This problem is called a multi-objective optimization and it is more complex than the
case of a single-objective optimization.
In an aero-thermo-elasticity problem, for example, several disciplines are involved with

various (often conflicting) objective functions to be optimized simultaneously. This case
can be illustrated by the Figure 10.2.

10.2.4 Constraints

Usually, the variables P1, P2, . . . , PN, which appear in the objective function formulation,
are only allowed to vary within some prespecified ranges. Such constraints are, for
example, due to physical or economical limitations.
We can have two types of constraints. The first one is the equality constraint, which can be

represented by

G ¼ G(P) ¼ 0 (10:2)

This kind of constraint can represent, for example, the prespecified power of an automobile.

(a) (b) (c) (d)
2 4 6 0 2 4 6 0 2 4 6 0 2 4 60

FIGURE 10.1
Some examples of functions S (ordinate) of a single design variable P (abscissa). (a) Continuous unimodal
function, (b) discontinuous unimodal function, (c) and (d) multimodal functions.

FIGURE 10.2
An example of a multi-objective design opti-
mization problem.
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The second type of constraint is called inequality constraint, and it is represented by

Q ¼ Q(P) < 0 (10:3)

This can represent, for example, the maximum temperature allowed in a gas turbine
engine.

10.2.5 Optimization Problems

Inverse problems are mathematically classified as ill-posed, whereas standard heat transfer
problems are well-posed. The solution of a well-posed problem must satisfy the conditions
of existence, uniqueness, and stability with respect to the input data (Hadamard, 1923). The
existence of a solution for an inverse heat transfer problem may be assured by physical
reasoning. On the other hand, the uniqueness of the solution of inverse problems can be
mathematically proved only for some special cases. Also, the inverse problem is very
sensitive to random errors in the measured input data, thus requiring special techniques
for its solution in order to satisfy the stability condition.
Successful solution of an inverse problem generally involves its reformulation as an

approximate well-posed problem and makes use of some kind of regularization (stabiliza-
tion) technique. Although the solution techniques for inverse problems do not necessarily
make use of optimization techniques, many popular methods are based on them.
Despite their similarities, inverse and optimization problems are conceptually different.

Inverse problems are concerned with the identification of unknown quantities appearing in the
mathematical formulation of physical problems, by using measurements of the system response. On
the other hand, optimization problems generally deal with the minimization or maximization of a
certain objective or cost function, in order to find design variables that will result in extreme value
of the objective function. In addition, inverse and optimization problems involve other
different concepts. For example, the solution technique for an inverse problem is required
to cope with instabilities resulting from the noisy measured input data, while for an
optimization problem, the input data is given by the desired response(s) of the system.
In contrast to inverse problems, the solution uniqueness may not be an important issue for
optimization problems, as long as the solution obtained is physically feasible and can be
practically implemented. Engineering applications of optimization techniques are very
often concerned with the minimization or maximization of different quantities, such as
minimumweight (e.g., lighter airplanes), minimum fuel consumption (e.g., more economic
cars), maximum autonomy (e.g., longer range airplanes), etc. The necessity of finding the
maximum or minimum values of some parameters (or functions) can be governed by
economic factors, as in the case of fuel consumption, or design characteristics, as in the
case of maximum autonomy of an airplane. Sometimes, however, the decision is more
subjective, as in the case of choosing a car model. In general, different designs can be
idealized for a given application, but only a few of them will be economically viable.
For optimization problems, the objective function S can be, for example, the fuel con-

sumption of an automobile and the variables P1, P2, . . . , PN can be the aerodynamic profile of
the car, the material of the engine, the type of wheels used, the distance from the floor, etc.
In this chapter, we present deterministic and stochastic techniques for the minimization

of an objective function S(P) and the identification of the parameters P1, P2, . . . , PN, which
appear in the objective function formulation. This type of minimization problem is solved
in a space of finite dimension N, which is the number of unknown parameters. For many
minimization problems, the unknowns cannot be recast in the form of a finite number of
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parameters and the minimization needs to be performed in an infinite dimensional space of
functions (Hadamard, 1923; Daniel, 1971; Beck and Arnold, 1977; Tikhonov and Arsenin,
1977; Sabatier, 1978; Morozov, 1984; Beck et al., 1985; Hensel, 1991; Murio, 1993; Alifanov,
1994; Alifanov et al., 1995; Kurpisz and Nowak, 1995; Dulikravich and Martin, 1996;
Kirsch, 1996; Trujillo and Busby, 1997; Isakov, 1998; Beck, 1999; Denisov, 1999; Yagola
et al., 1999; Zubelli, 1999; Ozisik and Orlande, 2000; Ramm et al., 2000; Woodbury, 2002).

10.3 Deterministic Methods

In this section, some deterministic methods like the steepest descent method, the conjugate
gradient method, the Newton–Raphson, and the quasi-Newton methods will be discussed.
Some practical aspects and limitations of such methods will be addressed.
These types of methods, as applied to nonlinear minimization problems, generally rely

on establishing an iterative procedure, which, after a certain number of iterations, will
hopefully converge to the minimum of the objective function. The iterative procedure can
be written in the following general form (Bard, 1974; Beck and Arnold, 1977; Dennis and
Schnabel, 1983; Stoecker, 1989; Alifanov, 1994; Alifanov et al., 1995; Jaluria, 1998;
Belegundu and Chandrupatla, 1999; Fletcher, 2000; Fox, 1971):

Pkþ1 ¼ Pk þ akdk (10:4)

where
P is the vector of design variables
a is the search step size
d is the direction of descent
k is the iteration number

An iteration step is acceptable if Skþ 1< Sk. The direction of descent d will generate an
acceptable step if and only if there exists a positive definite matrix R, such that d¼�RrS
(Bard, 1974).
Such requirement results in directions of descent that form an angle greater than 908with

the gradient direction. A minimization method in which the directions are obtained in this
manner is called an acceptable gradient method (Bard, 1974).
A stationary point of the objective function is one at which rS¼ 0. The most that we can

hope for any gradient-based method is that it converges to a stationary point. Convergence
to the trueminimum can be guaranteed only if it can be shown that the objective function has
no other stationary points. In practice, however, one usually reaches the local minimum in
the valley where the initial guess for the iterative procedure was located (Bard, 1974).

10.3.1 Steepest Descent Method

The most basic gradient-based method is the steepest descent method (Daniel, 1971;
Stoecker, 1989; Jaluria, 1998; Belegundu and Chandrupatla, 1999). Some of the concepts
developed here will be used in the next sections, where we will discuss more advanced
methods. The basic idea of this method is to ‘‘walk’’ in the opposite direction of the locally
highest variation of the objective function, in order to locate the minimum value of it. This
can be exemplified in Figure 10.3.
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The objective function can be mathematically stated as

S ¼ S(P); P ¼ {P1,P2, . . . ,PN} (10:5)

The direction in which the objective function S varies most rapidly is the direction of
gradient of S. For example, for the case with two variables (Figure 10.3), the gradient is

rS ¼ qS
qP1

i1 þ qS
qP2

i2 (10:6)

The iterative process for finding the minimum value of the objective function can be
written in the most general terms as

Pkþ1 ¼ Pk � akrS(Pk) (10:7)

where
P is the vector of variables being optimized
a is the search step size
k is a counter for the iterations

Comparing Equations 10.4 and 10.7, one can check that for the steepest descent method,
the direction of descent d is given by

dk ¼ �rS(Pk) (10:8)

In spite of this being the natural choice for the direction of descent, it is not very efficient as
can be seen in Figure 10.3. Usually, the method starts with large variations in the objective
function. As the minimum of the objective function is being approached, the convergence
rate of this method becomes very low.

Initial guess

20

15

10

5

0
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–10
–10 –5 0 5 10 15 20

Minimum

FIGURE 10.3
Convergence history for the steepest descent method.
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The optimum choice for the search step size is the one that causes the maximum
variation in the objective function. Thus, using the iterative procedure given by Equation
10.7 and the definition of the objective function (10.1), we have that at iteration level kþ 1,

S(Pkþ1) ¼ S(Pk þ akdk) (10:9)

The optimum value of the step size a is obtained by solving

dS(Pkþ1)
dak ¼ 0 (10:10)

Using the chain rule,

dS(Pkþ1)
dak ¼ dS(Pkþ1

1 )
dPkþ1

1

dPkþ1
1

dak þ
dS(Pkþ1

2 )
dPkþ1

2

dPkþ1
2

dak þ � � � þ
dS(Pkþ1

N )
dPkþ1

N

dPkþ1
N

dak (10:11)

Or

dS(Pkþ1)
dak ¼ [rS(Pkþ1)]T,

dPkþ1

dak

� �
(10:12)

However, from Equations 10.7 and 10.8, it follows that

dPkþ1

dak ¼ dk ¼ �rS(Pk) (10:13)

Substituting Equation 10.13 into (10.12) and (10.10), it follows that for steepest descent
(Figure 10.4)

[rS(Pkþ1)]T, rS(Pk)
� � ¼ 0 (10:14)

Thus, the optimum value of the search step size is the one that makes the gradients of the
objective function at two successive iterations mutually orthogonal (Figure 10.3).
In ‘‘real life’’ applications, it is not possible to use Equation 10.14 to evaluate the search

step size, a. Thus, some univariate search methods need to be employed in order to find the
best value of the search step size at each iteration. In the case of a unimodal function, some
classical procedures can be used, such as the dichotomous search (Stoecker, 1989; Jaluria,
1998), Fibonacci search (Stoecker, 1989; Jaluria, 1998), golden search (Stoecker, 1989;
Jaluria, 1998), and cubic spline interpolation (de Boor, 1978), among others. However, for
some realistic cases, the variation of the objective function with the search step size is not
unimodal and then, more robust techniques are presented. The first one is the exhaustive
search method and the second one is a technique based on exhaustive interpolation.

10.3.1.1 Exhaustive Search

This method (Stoecker, 1989; Jaluria, 1998) is one of the less efficient search methods
available for sequential computation (which means not parallel computation). However,
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it is a very good approach for parallel computing. Let us suppose, for example, that we are
on a highway searching for a gas station with the lowest price of gasoline within an
interval of 5 miles. If we do not have a newspaper or a telephone, the best way to do
this is to go to each gas station and check the price and then determine the lowest value.
This is the basis of the exhaustive search method. This method serves as an introduction to
the next method, which is based on splines.
The basic idea consists in uniformly dividing the domain that we are interested in (the

initial uncertainty region), and finding the region where the maximum or minimum value
are located. Let us call this domain I0. Let us suppose, for instance, the situation shown in
Figure 10.5, where an uncertainty interval I0 was divided into eight subregions, which are
not necessarily the same size.

S(Pk)dk+1 = –

k = 0

Start

Initial guess for Pk

k = k + 1

No

No

Converged?

Pk is an
optimum

Pk+1 = Pk+ αkdk+1

End
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Determine αk

Calculate
  S(Pk) Calculate

  S(Pk)
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3. Did    S(Pk)

value?
reach an expected

2. S(Pk) reached
an expected
value?

1. Max iterations
reached?

FIGURE 10.4
Iterative procedure for the steepest descent method.

FIGURE 10.5
Exhaustive search method.
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The objective function is evaluated at each of the nine points shown in the previous
figure. From this analysis, we obtain the following:

y1 < y2 < y3 < y4 < y5
y5 > y6 > y7 > y8 > y9

(10:15)

Thus, the maximum point must be located between x4 and x6. Notice that we cannot say
that the optimum is located between x4 and x5, nor between x5 and x6, since only a more
refined grid could indicate this.
Thus, the final uncertainty interval I is (x6� x4) and the optimum point is located

somewhere inside this interval. It can be shown (Stoecker, 1989; Jaluria, 1998) that I is
given by

I ¼ 2I0
nþ 1

(10:16)

where n is the number of objective functions evaluated. Notice that, once I is found, the
process can be restarted making I0¼ I and a more precise location for the maximum can be
found. However, its precise location can never be reached.
In terms of sequential computation, this method is very inefficient. However, if we have

a hypothetically large number of computers, all objective functions at each point in I0 can
be evaluated at the same time. Thus, for the example shown in Figure 10.5, for n¼ 9, if we
can assign the task of calculating the objective function at each point to an individual
computer, the initial uncertainty region is reduced by five times within the time needed to
just perform one calculation of the entire region using a single computer. Other more
sophisticated methods, such as the Fibonacci method, for example, need sequential evalu-
ations of the objective function. The Fibonacci method, for example, requires four objective
function evaluations for the same reduction of the uncertainty region. Thus, in spite of its
lack of efficiency in single processor applications, the exhaustive search method may be
very efficient in parallel computing applications. A typical parallel computing arrange-
ment is where one computer is the master and the other computers perform the evaluations
of the objective function at each of the locations. A typical arrangement for the case
depicted in Figure 10.5 is presented in Figure 10.6 where there are 10 computers; one of
them being the master and the other nine performing the evaluations of the objective
functions at the nine locations shown on Figure 10.5.

10.3.1.2 Exhaustive Interpolation Search

This method is an improvement over the previous one, in that it requires fewer calculations
to find the location of the minima. The method starts as the previous one, where domain is
divided into several regions, where the objective functions are evaluated. The objective
function is evaluated at a number of points in this domain. Next, a large number of points
needs to be generated inside this domain and the objective function at these new points is
estimated by spline fitting at the original points and interpolating at the new points using
cubic splines (Dulikravich and Martin, 1994), B-splines (de Boor, 1978), kriging (Oliver and
Webster, 1990), or other interpolants. Interrogating these interpolated values, we can find
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the region where the maximum or minimum values are located. The process can be
repeated until a sufficiently small interval of uncertainty is obtained.

10.3.2 Conjugate Gradient Method

The steepest descent method, in general, converges slowly for non-quadratic functions,
since optimum search step sizes produce orthogonal gradients between two successive
iterations. The conjugate gradient method (Hestenes and Stiefel, 1952; Fletcher and Reeves,
1964; Daniel, 1971; Polak, 1971; Beale, 1972; Alifanov, 1974, 1994; Powell, 1977; Stoecker,
1989; Jarny et al., 1991; Artyukhin, 1993; Truffart et al., 1993; Dantas and Orlande, 1996;
Huang and Tsai, 1997; Machado and Orlande, 1997; Orlande et al., 1997; Alencar Jr. et al.,
1998; Colaço and Orlande, 1998; Jaluria, 1998; Belegundu and Chandrupatla, 1999; Colaço
and Orlande, 2000, 2001a,b, 2002) tries to improve the convergence rate of the steepest
descent method by choosing the directions of descent that reach the minimum value of the
objective function faster. The iterative process for this method is given by the same general
equation used in the steepest descent method, Equation 10.4. The difference is in the
formulation for the direction of descent, which, for the conjugate gradient method,

Workstation Workstation

Workstation

Workstation

Workstation

Workstation Workstation Workstation

Workstation

Workstation

Workstation

Workstation

FIGURE 10.6
Typical setup for a parallel computing.
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is given as a conjugation of the gradient and the direction of descent of the previous
iteration, given as

dkþ1 ¼ �rS(Pk)þ gkdk�1 þ ckdq (10:17)

where gk and ck are conjugation coefficients. The superscript q in Equation 10.17 denotes the
iteration number where a restarting strategy is applied to the iterative procedure of the
conjugate gradient method. Restarting strategies for the conjugate gradient method of
parameter estimation were suggested by Powell (1977) in order to improve its convergence
rate. Different versions of the conjugate gradient method can be found in the literature
depending on the form used for the computation of the direction of descent given by
Equation 10.17 (Hestenes and Stiefel, 1952; Fletcher and Reeves, 1964; Daniel, 1971; Polak,
1971; Beale, 1972; Alifanov, 1974, 1994; Powell, 1977; Jarny et al., 1991; Artyukhin, 1993;
Truffart et al., 1993; Dantas and Orlande, 1996; Machado and Orlande, 1997; Orlande et al.,
1997; Alencar Jr. et al., 1998). In the Fletcher–Reeves version (Fletcher and Reeves, 1964), the
conjugation coefficients gk and ck are obtained from the following expressions (Fletcher and
Reeves, 1964; Daniel, 1971; Alifanov, 1974, 1994; Powell, 1977; Jarny et al., 1991; Dantas and
Orlande, 1996; Huang and Tsai, 1997; Machado and Orlande, 1997; Orlande et al., 1997):

gk ¼ krS(P
k)k2

krS(Pk�1)k2 , with g0 ¼ 0 for k ¼ 0 (10:18a)

ck ¼ 0, for k ¼ 0, 1, 2 (10:18b)

In the Polak–Ribiere version of the conjugate gradient method (Daniel, 1971; Polak, 1971;
Powell, 1977; Jarny et al., 1991; Artyukhin, 1993; Truffart et al., 1993; Alifanov, 1994), the
conjugation coefficients are given by

gk ¼ [rS(Pk)]T[rS(Pk)�rS(Pk�1)]
krS(Pk�1)k2 , with g0 ¼ 0 for k ¼ 0 (10:19a)

ck ¼ 0, for k ¼ 0, 1, 2, . . . (10:19b)

Based on a previous work by Beale (1972), Powell (1977) suggested the following expres-
sions for the conjugation coefficients, which gives the so-called Powell–Beale’s version of
the conjugate gradient method (Beale, 1972; Alifanov, 1974; Powell, 1977):

gk ¼ [rS(Pk)]T[rS(Pk)�rS(Pk�1)]

[dk�1]T[rS(Pk)�rS(Pk�1)]
, with g0 ¼ 0 for k ¼ 0 (10:20a)

ck ¼ [rS(Pk)]T[rS(Pqþ1)�rS(Pq)]

[dq]T[rS(Pqþ1)�rS(Pq)]
, with g0 ¼ 0 for k ¼ 0 (10:20b)

In accordance with Powell (1977), the application of the conjugate gradient method with
the conjugation coefficients given by Equations 10.20 requires restarting when gradients at
successive iterations tend to be non-orthogonal (which is a measure of the local nonlinear-
ity of the problem) and when the direction of descent is not sufficiently downhill. Restart-
ing is performed by making ck¼ 0 in Equation 10.17.
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The non-orthogonality of gradients at successive iterations is tested by the following
equation:

ABS([rS(Pk�1)]TrS(Pk)) � 0:2 krS(Pk)k2 (10:21a)

where ABS(�) denotes the absolute value.
A non-sufficiently downhill direction of descent (i.e., the angle between the direction of

descent and the negative gradient direction is too large) is identified if either of the
following inequalities is satisfied:

[dk]TrS(Pk) � �1:2 krS(Pk)k2 (10:21b)

[dk]TrS(Pk) � �0:8 krS(Pk)k2 (10:21c)

We note that the coefficients 0.2, 1.2, and 0.8 appearing in Equations 10.21a through c are
empirically determined and are the same values used by Powell (1977).
In Powell–Beale’s version of the conjugate gradient method, the direction of descent

given by Equation 10.17 is computed in accordance with the following algorithm for k � 1
(Powell, 1977):

Step 1: Test the inequality (10.21a). If it is true, set q¼ k� 1.

Step 2: Compute gk using Equation 10.20a.

Step 3: If k¼ qþ 1, set ck¼ 0. If k 6¼ qþ 1, compute ck using Equation 10.20b.

Step 4: Compute the search direction dkþ 1 using Equation 10.17.

Step 5: If k 6¼ qþ 1, test the inequalities (10.21b and c). If either one of them is
satisfied, set q¼ k� 1 and ck¼ 0. Then, recompute the search direction using
Equation 10.17.

The steepest descent method, with the direction of descent given by the negative gradient
equation, would be recovered with gk¼ck¼ 0 for any k in Equation 10.17. We note that the
conjugation coefficients gk given by Equations 10.18a, 10.19a, and 10.20a are equivalent for
quadratic functions, because the gradients at different iterations are mutually orthogonal
(Daniel, 1971; Powell, 1977).
The same procedures used for the evaluation of the search step size in the steepest

descent method can be employed here. Figure 10.7 illustrates the convergence history for
the Fletcher–Reeves version of the conjugate gradient method for the same function
presented in Figure 10.3. One can see that the conjugate gradient method is faster than
the steepest descent. It is worth noting that the gradients between two successive iterations
are no longer mutually orthogonal.
Colaço and Orlande (1999) presented a comparison of Fletcher–Reeves’, Polak–Ribiere’s,

and Powell–Beale’s versions of the conjugate gradient method, as applied to the estimation
of the heat transfer coefficient at the surface of a plate. This inverse problem was solved as
a function estimation approach, by assuming that no information was available regarding
the functional form of the unknown. Among the three versions tested for the conjugate
gradient method, the method suggested by Powell and Beale appeared to be the best, as
applied to the cases examined in that paper. This algorithm did not present the anomalous
increase of the functional as observed with the other versions, and its average rates of
reduction of the functional were the largest. As a result, generally, the smallest values for
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the root mean square (RMS) error of the estimated functions were obtained with Powell–
Beale’s version of the conjugate gradient method.
Figure 10.8 shows the iterative procedure for the Fletcher–Reeves version (Fletcher and

Reeves, 1964) of the conjugate gradient method.

10.3.3 Newton–Raphson Method

While the steepest descent and the conjugate gradient methods use gradients of the
objective function in their iterative procedures, the Newton–Raphson method (Daniel,
1971; Stoecker, 1989; Jaluria, 1998; Belegundu and Chandrupatla, 1999) uses information
of the second derivative of the objective function in order to achieve a faster convergence
rate (which does not necessarily mean a shorter computing time).

FIGURE 10.7
Convergence history for the Fletcher–Reeves version of
the conjugate gradient method.
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FIGURE 10.8
Iterative procedure for the Fletcher–Reeves version of the conjugate gradient method.
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Let us consider a function S(P), which is at least twice differentiable. The Taylor expan-
sion of S(P) around a vector h is given by

S(Pþ h) ¼ S(P)þrS(P)Thþ 1
2
hTD2S(P)hþO(h3) (10:22)

where
rS(P) is the gradient (vector of first-order derivatives)
D2S(P) is the Hessian (matrix of second-order derivatives)

If the objective function S(P) is twice differentiable, then the Hessian is always symmet-
rical, and we can write

rS(Pþ h) ffi rS(P)þD2S(P)h (10:23)

The optimum is obtained when the left side of Equation 10.23 vanishes. Thus, we have

hoptimum ffi �[D2S(P)]�1rS(P) (10:24)

and the vector that optimizes the function S(P) is

(Pþ hoptimum) ffi P� [D2S(P)]�1rS(P) (10:25)

Thus, introducing a search step size, which can be used to control the rate of convergence
of the method, we can rewrite the Newton–Raphson method in the form of the Equation
10.4 where the direction of descent is given by

dkþ1 ¼ �[D2S(Pk)]�1rS(Pk) (10:26)

The Newton–Raphson method is faster than the conjugate gradient method as demon-
strated in Figure 10.9. However, the calculation of the Hessian matrix coefficients takes a
long time. Figure 10.10 shows the iterative procedure for the Newton–Raphson method.

FIGURE 10.9
Convergence history for the Newton–Raphson
method.
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Some other methods, which do not require second-order derivatives, so-called quasi-
Newton methods, will be addressed in the next section.

10.3.4 Quasi-Newton Methods

The quasi-Newton methods (Daniel, 1971; Stoecker, 1989; Jaluria, 1998; Belegundu and
Chandrupatla, 1999) try to calculate the Hessian appearing in the Newton–Raphson
method in a manner that does not involve second-order derivatives. Usually, they employ
approximation for the Hessian based only on first-order derivatives. Thus, they have a
slower convergence rate than the Newton–Raphson method, but they are overall compu-
tationally faster.
Let us define a new matrix H, which is an approximation to the inverse of the Hessian as

Hk ¼ [D2S(Pk)]�1 (10:27)

Thus, the quasi-Newton methods follow the general iterative procedure given by Equation
10.4, where the direction of descent is given by

dkþ1 ¼ �HkrS(Pk) (10:28)

The matrix H for the quasi-Newton methods is iteratively calculated as

Hk ¼ Hk�1 þMk�1 þNk�1 for k ¼ 1, 2, . . . (10:29a)

Hk ¼ I for k ¼ 0 (10:29b)

where I is the identity matrix. This means that during the first iteration, the quasi-Newton
method starts as the steepest descent method.
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Different quasi-Newton methods can be found depending on the choice for the matrices
M and N. For the DFP method (Davidon, 1959; Fletcher and Powell, 1963), such matrices
are given by

Mk�1 ¼ ak�1 d
k�1(dk�1)T

(dk�1)TYk�1 (10:30a)

Nk�1 ¼ � (Hk�1Yk�1)(Hk�1Yk�1)T

(Yk�1)THk�1Yk�1 (10:30b)

where

Yk�1 ¼ rS(Pk)�rS(Pk�1) (10:30c)

Figure 10.11 shows the results for the minimization of the objective function shown before,
using the DFP method. One can see that its convergence rate is between the conjugate
gradient method and the Newton–Raphson method.
Note that, since the matrix H is iteratively calculated, some errors can be propagated

and, in general, the method needs to be restarted after certain number of iterations (Colaço
et al., 2006). Also, since the matrix M depends on the choice of the search step size a, the
method is very sensitive to its value.
A variation of the DFPmethod is the Broyden–Fletcher–Goldfarb–Shanno (BFGS)method

(Davidon, 1959; Fletcher andPowell, 1963; Broyden, 1965, 1967), which is less sensitive to the
choice of the search step size. For this method, the matrices M and N are calculated as

Mk�1 ¼ 1þ (Yk�1)THk�1Yk�1

(Yk�1)Tdk�1

 !
dk�1(dk�1)T

(dk�1)TYk�1 (10:31a)

Nk�1 ¼ �dk�1(Yk�1)THk�1 þHk�1Yk�1(dk�1)T

(Yk�1)Tdk�1 (10:31b)

Figure 10.12 shows the iterative procedure for the BFGS method.

FIGURE 10.11
Convergence history for the DFP method.
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At this point, it is of interest to explore the influence on the initial guess for the four
methods introduced thus far. Usually, all these methods quickly converge to the minimum
value if it is close to the initial guess. The Newton–Raphson method, however, without the
search step size, moves to the extreme point closest to the initial guess, irregardless if it is a
maximum, minimum, or a saddle point. This is the reason why we introduce a search step
size in Equation 10.25. The search step size prevents the method from jumping to a
maximum value when we look for a minimum and vice versa. Figures 10.13 and 10.14
show the influence of the initial guess for all four methods for a Rosenbrock ‘‘banana-
shape’’ function (More et al., 1981).
It should be pointed out that in real-life situations, topology of the objective function

space is not smooth and second derivatives of the objective function cannot be evaluated
with any degree of confidence. Thus, all gradient-based and second-derivative-based
search optimization algorithms have serious issue with robustness and reliability of their
applications to realistic problems.

10.3.5 Levenberg–Marquardt Method

The Levenberg–Marquardt method was first derived by Levenberg (1944), by modifying
the ordinary least squares norm. Later, in 1963, Marquardt (1963) derived basically the
same technique by using a different approach. Marquardt’s intention was to obtain a
method that would tend to the Gauss method in the neighborhood of the minimum of
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FIGURE 10.12
Iterative procedure for the BFGS method.
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the ordinary least squares norm, and would tend to the steepest descent method in the
neighborhood of the initial guess used for the iterative procedure. This method actually
converts a matrix that approximates the Hessian into a positive definite one, so that the
direction of descent is acceptable.
The method rests on the observation that if J is a positive definite matrix, then Aþ lJ is

positive definite for sufficiently large l. If A is an approximation for the Hessian, we can
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FIGURE 10.13
First initial guess for the (a) steepest descent, (b) conjugate gradient, (c) Newton–Raphson, and (d) DFP methods.
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choose J as a diagonal matrix whose elements coincide with the absolute values of the
diagonal elements of A (Bard, 1974).
The direction of descent for the Levenberg–Marquardt method is given by (Bard, 1974)

dk ¼ �(Ak þ lkJk)�1rS(Pk) (10:32)

and the step size is taken as ak¼ 1. Note that for large values of lk, a small step is taken
along the negative gradient direction. On the other hand, as lk tends to zero, the
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Second initial guess for the (a) steepest descent, (b) conjugate gradient, (c) Newton–Raphson, and (d) DFP
methods.
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Levenberg–Marquardt method tends to an approximation of Newton’s method based on
the matrix A. Usually, the matrix A is taken as that for the Gauss method (Bard, 1974; Beck
and Arnold, 1977; Ozisik and Orlande, 2000).

10.4 Evolutionary and Stochastic Methods

In this section, some evolutionary and stochastic methods like genetic algorithm, differential
evolution, particle swarm, and simulated annealing will be discussed. Evolutionary
methods, in contrast to the deterministic methods, do not rely, in general, on strong math-
ematical basis and do not make use of the gradient nor second derivative of the objective
function as a direction of descent. The evolutionary optimization algorithms attempt to
mimic nature in order to find the minimum of the objective function.

10.4.1 Genetic Algorithms

Genetic algorithms (Goldberg, 1989) are heuristic global optimization methods that are
based on the process of natural selection. Starting from a randomly generated population
of candidate designs, the optimizer seeks to produce improved designs from one gener-
ation to the next. This is accomplished by exchanging genetic information between designs
in the current population, in what is referred to as the crossover operation. Hopefully, this
crossover produces improved designs, which are then used to populate the next generation
(Goldberg, 1989; Deb, 2002).
The basic genetic algorithm works with a collection or population of candidate solutions

to the optimization problem. The algorithm works in an iterative manner. At each iteration,
also called generation, three operators are applied to the entire population of designs.
These operators are selection, crossover, and mutation. For the operators to be effective,
each candidate solution or design must be represented as a collection of finite parameters,
also called genes. Each design must have a unique sequence of these parameters that define
it. This collection of genes is often called the chromosome. The genes themselves are often
encoded as binary strings, though they can be represented as real numbers. The length of
the binary string determines how precisely the value, also known as the allele, of the gene
is represented.
The genetic algorithm applied to an optimization problem proceeds as follows. The

process begins with an initial population of random designs. Each gene is generated by
randomly generating 0’s and 1’s. The chromosome strings are then formed by combining
the genes together. This chromosome string defines the design. The objective function is
evaluated for each design in the population. Each design is assigned a fitness value, which
corresponds to the value of the objective function for that design. In the minimization case,
a higher fitness is assigned to designs with lower values of the objective function.
Next, the population members are selected for reproduction, based upon their fitness.

The selection operator is applied to each member of the population. The selection operator
chooses pairs of individuals from population who will mate and produce an offspring. In
the tournament selection scheme, random pairs are selected from the population and the
individual with the higher fitness of each pair is allowed to mate.
Once a mating pair is selected, the crossover operator is applied. The crossover operator

essentially produces new designs or offspring by combining the genes from the parent
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designs in a stochastic manner. In the uniform crossover scheme, it is possible to obtain any
combination of the two parent’s chromosomes. Each bit in each gene in the chromosome is
assigned a probability that crossover will occur (e.g., 50% for all genes). A random number
between 0 and 1 is generated for each bit in each gene. If a number greater than 0.5 is
generated, then that bit is replaced by the corresponding bit in the gene from the other
parent. If it is less than 0.5, the original bit in the gene remains unchanged. This process is
repeated for the entire chromosome for each of the parents. When complete, two offsprings
are generated, which may replace the parents in the population.
The mutation process follows next. When the crossover procedure is complete and a new

population is formed, the mutation operator is applied. Each bit in each gene in the design
is subjected to a chance for a change from 0 to 1, or vice versa. The chance is known as the
mutation probability, which is usually small. This introduces additional randomness into
the process, which helps to avoid local minima. Completion of the mutation process signals
the end of a design cycle. Many cycles may be needed before the method converges to an
optimum design.
For more details or for the numerical implementation of genetic algorithms, the reader is

referred to Goldberg (1989) and Deb (2002).

10.4.2 Differential Evolution

The differential evolution method (Storn and Price, 1996) is an evolutionary method based
on Darwin’s theory of evolution of the species (Darwin, 1859). This non-gradient-based
optimization method was created in 1995 (Storn and Price, 1996) as an alternative to the
genetic algorithm methods. Following Darwin’s theory, the strongest members of a popu-
lation will be more capable of surviving in a certain environmental condition. During the
mating process, the chromosomes of two individuals of the population are combined in a
process called crossover. During this process, mutations can occur, which can be good
(individual with a better objective function) or bad (individual with a worse objective
function). The mutations are used as a way to escape from local minima. However, their
excessive usage can lead to a non-convergence of the method.
The method starts with a randomly generated population in the domain of interest.

Thus, successive combinations of chromosomes and mutations are performed, creating
new generations until an optimum value is found.
The iterative process is given by (Figure 10.15)

Pkþ1
i ¼ d1Pk

i þ d2[aþ F(b� g)] (10:33)

where
Pi is the ith individual of the vector of parameters
a, b, and g are three members of population matrix P, randomly choosen
F is a weight constant, which defines the mutation (0.5< F< 1)
k is a counter for the generations
d1 and d2 are two functions that define the mutation

In this minimization process, if S(Pkþ1)< S(Pk), then Pkþ1 replaces Pk in the population
matrix P. Otherwise, Pk is kept in the population matrix.
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The binomial crossover is given as

d1 ¼ 0, if R < CR
1, if R > CR

(10:34a)

d2 ¼ 1, if R < CR
0, if R > CR

(10:34b)

where
CR is a factor that defines the crossover (0.5<CR< 1)
R is a random number with uniform distribution between 0 and 1

10.4.3 Particle Swarm

This non-gradient-based optimization method was created in 1995 by an electrical engineer
(Russel Eberhart) and a social psychologist (James Kennedy) (Kennedy and Eberhart, 1995;
Kennedy, 1999; Eberhart et al., 2001; Naka et al., 2001) as an alternative to the genetic
algorithm methods. This method is based on the social behavior of various species and tries
to equilibrate the individuality and sociability of the individuals in order to locate the
optimum of interest. The original idea of Kennedy and Eberhart came from the observation
of birds looking for a nesting place. When the individuality is increased, the search for
alternative places for nesting is also increased. However, if the individuality becomes too
high, the individual might never find the best place. In other words, when the sociability is
increased, the individual learns more from their neighbor’s experience. However, if the
sociability becomes too high, all the individuals might converge to the first place found
(possibly a local minima).
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FIGURE 10.15
Iterative procedure for the differential evolution method.
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In this method, the iterative procedure is given by

Pkþ1
i ¼ Pk

i þ vkþ1i (10:35a)

vkþ1i ¼ avki þ br1i pi � Pk
i

� �þ br2i pg � Pk
i

� �
(10:35b)

where
Pi is the ith individual of the vector of parameters
vi¼ 0, for k¼ 0
r1i and r2i are random numbers with uniform distribution between 0 and 1
pi is the best value found by the ith individual, Pi

pg is the best value found by the entire population
0<a< 1; 1<b< 2

In Equation 10.35b, the second term on the right-hand side represents the individuality and
the third term the sociability. The first term on the right-hand side represents the inertia of
the particles and, in general, must be decreased as the iterative process proceeds. In this
equation, the vector pi represents the best value ever found for the ith component vector of
parameters Pi during the iterative process. Thus, the individuality term involves the
comparison between the current value of the ith individual Pi and its best value in the
past. The vector pg is the best value ever found for the entire population of parameters (not
only the ith individual). Thus, the sociability term compares Pi with the best value of the
entire population in the past.
Figure 10.16 shows the iterative procedure for the particle swarm method.
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FIGURE 10.16
Iterative procedure for the particle swarm method.
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10.4.4 Simulated Annealing

The simulated annealing method (Goffet et al., 1994; Corana et al., 1987) is based on the
thermodynamics of the cooling of a material from a liquid to a solid phase. If a liquid
material (e.g., liquid metal) is slowly cooled and left for a sufficiently long time close to the
phase change temperature, a perfect crystal will be created, which has the lowest internal
energy state.
On the other hand, if the liquid material is not left for a sufficient long time close to the

phase change temperature, or, if the cooling process is not sufficiently slow, the final crystal
will have several defects and a high internal energy state. This phenomena is similar to the
quenching process used in metallurgical applications.
The gradient-based methods move in directions that successively lower the objective

function value when minimizing the value of a certain function or in directions that
successively raise the objective function value in the process of finding the maximum
value of a certain function. The simulated annealing method can move in any direction
at any point in the optimization process, thus escaping from possible local minimum or
local maximum values.
We can say that gradient-based methods ‘‘cool down too fast,’’ going rapidly to an

optimum location which, in most cases, is not the global, but a local one. As opposed to
gradient-based methods, nature works in a different way. Consider, for example, the
Boltzmann probability function given as

Prob(E) / e(�E=KT) (10:36)

This equation expresses the idea that a system in thermal equilibrium has its energy
distributed probabilistically among different energy states E, where K is the Boltzmann
constant. Equation 10.36 tells us that even at low temperatures, there is a chance, although
small, that the system is at a high energy level, as illustrated in Figure 10.17. Thus, there is a
chance that the system could get out of this local minimum and continue looking for
another one, possibly the global minimum.
Figure 10.18 shows the iterative procedure for the simulated annealing method. The

procedure starts generating a population of individuals of the same size as the number of
variables (n¼m), in such a way that the population matrix is a square matrix. Then, the
initial temperature (T), the reducing ratio (RT), the number of cycles (Ns), and the number
of iterations of the annealing process (Nit) are selected. After Ns*n function evaluations, each
element of the step length V is adjusted so that approximately half of all function evalu-
ations are accepted. The suggested value for the number of cycles is 20. After Nit*Ns*n

FIGURE 10.17
Schematic representation of Equation 10.36.E/KT
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function evaluations, the temperature (T) is changed by the factor RT. The value suggested
for the number of iterations by Corana et al. (1987) is MAX(100, 5*n).
The iterative process follows the equation

P1
i ¼ P0

i þ RVi (10:37)

Here, R is a random number with a uniform distribution between 0 and 1 and V is a step
size, which is continuously adjusted.
Initially, it randomly chooses a trial point within the step length V (a vector of length n)

of the user-selected starting point. The function is evaluated at this trial point P1
i

� �
and its

value is compared to its value at the initial point P0
i

� �
. In a minimization problem, all

downhill moves are accepted and the algorithm continues from that trial point. Uphill
moves may also be accepted; the decision is made by the Metropolis (Corana et al., 1987)
criteria. It uses T (temperature) and the size of the downhill move in a probabilistic manner

P ¼ e S P1
ið Þ�S P0

ið Þ½ �=T (10:38)

The smaller T and the size of the uphill move are, the more likely that move will be
accepted. If the trial is accepted, the algorithm moves on from that point. If it is rejected,
another point is chosen for a trial evaluation.
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FIGURE 10.18
Iterative procedure for the simulated annealing method.
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Each element of V is periodically adjusted, so that half of all function evaluations in that
direction are accepted. The number of accepted function evaluations is represented by the
variable Ni. Thus, the variable r represents the ratio of accepted over total function
evaluations for an entire cycle Ns and it is used to adjust the step length V.
A decrease in T is imposed upon the system with the RT variable by using

T(iþ 1) ¼ RT*T(i) (10:39)

where i is the ith iteration. Thus, as T declines, uphill moves are less likely to be accepted
and the percentage of rejections rises. Given the scheme for the selection for V, V falls.
Thus, as T declines, V falls and simulated annealing focuses upon the most promising area
for optimization.
The parameter T is crucial in using simulated annealing successfully. It influences V, the

step length over which the algorithm searches for optima. For a small initial T, the step
length may be too small; thus not enough function evaluations will be performed to find
the global optima. To determine the starting temperature that is consistent with optimizing
a function, it is worthwhile to run a trial run first. The user should set RT¼ 1.5 and T¼ 1.0.
With RT> 1.0, the temperature increases and V rises as well. Then, the value of T must be
selected, which produces a large enough V.

10.5 Hybrid Optimization Methods

The hybrid optimization methods (Dulikravich et al., 1999, 2003, 2004, 2008; Colaço and
Orlande, 2001a,b; Colaço et al., 2004, 2005b, 2006, 2008; Colaço and Dulikravich, 2006,
2007; Dulikravich and Colaço, 2006; Wellele et al., 2006; Silva et al., 2007; Padilha et al.,
2009) are not more than a combination of the deterministic and the evolutionary=stochastic
methods, in the sense that they try to use the advantages of each of these methods. The
hybrid optimization method usually employs an evolutionary=stochastic method to locate
a region where the global extreme point is located and then automatically switches to a
deterministic method to get to the exact point faster (Dulikravich et al., 1999).
One of the possible hybrid optimization methods encountered in the literature (Dulikra-

vich et al., 1999, 2003, 2004, 2008; Colaço and Orlande, 2001a,b; Colaço et al., 2004, 2005b,
2006, 2008; Colaço and Dulikravich, 2006, 2007; Dulikravich and Colaço, 2006; Wellele
et al., 2006; Silva et al., 2007; Padilha et al., 2009), called in this chapter H1, is illustrated in
Figure 10.19 (Colaço et al., 2005b). The driven module is very often the particle swarm
method, which performs most of the optimization task. When a certain percent of the
particles find a minima (let us say, some birds already found their best nesting place), the
algorithm switches automatically to the differential evolution method and the particles
(birds) are forced to breed. If there is an improvement in the objective function, the
algorithm returns to the particle swarm method, meaning that some other region is more
prone to having a global minimum. If there is no improvement on the objective function,
this can indicate that this region already contains the global value expected and the
algorithm automatically switches to the BFGS method in order to find its location more
precisely. In Figure 10.19, the algorithm returns to the particle swarm method in order to
check if there are no changes in this location and the entire procedure repeats itself. After
some maximum number of iterations is performed (e.g., five), the process stops.

A Survey of Basic Deterministic, Heuristic, and Hybrid Methods 381

  



In the particle swarm method, the probability test of the simulated annealing is per-
formed in order to allow the particles (birds) to escape from local minima, although this
procedure most often does not make any noticeable improvement in the method.

10.6 Response Surfaces

From the viewpoint of kernel interpolation=approximation techniques, many response
surface methods are based on linear and nonlinear regression and other variants of the
least square technique. This group of mesh-free methods has been successfully applied to
many practical, but difficult, problems in engineering that are to be solved by the trad-
itional mesh-based methods.
One of the most popular mesh-free kernel approximation techniques is the one that uses

radial basis functions (RBFs). Initially, RBFs were developed for multivariate data and
function interpolation. It was found that RBFs were able to construct an interpolation
scheme with favorable properties such as high efficiency, good quality, and capability of
dealing with scattered data, especially for higher dimension problems. A convincing
comparison (Colaço et al., 2007) of an RBF-based response surface method and a wave-
let-based artificial neural network method (Sahoo and Dulikravich, 2006) demonstrated
superiority of RBF-based methods especially for high-dimensionality response surfaces.
The use of RBFs followed by collocation, a technique first proposed by Kansa (1990),

after the work of Hardy (1971) on multivariate approximation, is now becoming an
established approach. Various applications to problems in mechanics have been made in
recent years—see, for example, Leitão (2001, 2004).
Kansa’s method (or asymmetric collocation) starts by building an approximation to the

field of interest (normally displacement components) from the superposition of RBFs
(globally or compactly supported) conveniently placed at points in the domain and=or at
the boundary.
The unknowns (which are the coefficients of each RBF) are obtained from the approximate

enforcement of the boundary conditions as well as the governing equations by means of
collocation. Usually, this approximation only considers regular RBFs, such as the globally
supportedmultiquadricsor thecompactly supportedWendlandfunctions (Wendland,1998).
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FIGURE 10.19
Global procedure for the hybrid optimization method H1.
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There are several other methods for automatically constructing multidimensional
response surfaces. Notably, a classical book by Lancaster and Salkauskas (1986) offers a
variety of methods for fitting hypersurfaces of a relatively small dimensionality. Kauffman
et al. (1996) obtained reasonably accurate fits of data by using second-order polynomials.
Ivakhnenko and his team in Ukraine (Madala and Ivakhnenko, 1994) have published an
exceptionally robust method for fitting non-smooth data points in multidimensional
spaces. Their method is based on a self-assembly approach where the analytical description
of a hypersurface is a multilevel graph of the type ‘‘polynomial-of-a-polynomial-of-a-
polynomial-of-a- . . . ’’ and the basis functions are very simple polynomials (Moral and
Dulikravich, 2008). This approach has been used in indirect optimization based upon
self-organization (IOSO) (IOSO, 2003) commercial optimization software that has been
known for its extraordinary speed and robustness.

10.6.1 RBF Model Used in This Chapter

Let us suppose that we have a function of L variables Pi, i¼ 1, . . . , L. The RBF model used in
this work has the following form:

S(P) ffi j(P) ¼
XN
j¼1

ajf(jP� Pjj)þ
XM
k¼1

XL
i¼1

bi, kqk(Pi)þ b0 (10:40)

where
P¼ (P1, . . . ,Pi, . . . ,PL)
S(P) is known for a series of points P

Here, qk(Pi) is one of the M terms of a given basis of polynomials (Buhmann, 2003). This
approximation j(P) is solved for the aj and bi,k unknowns from the system of N linear
equations, subject

XN
j¼1

ajqk(P1) ¼ 0

..

.

XN
j¼1

ajqk(PL) ¼ 0

(10:41)

XN
j¼1

aj ¼ 0 (10:42)

In this chapter, the polynomial part of Equation 10.40 was taken as

qk(Pi) ¼ Pk
i (10:43)

and the RBFs are selected among the following:

Multiquadrics: f(jPi � Pjj) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Pi � Pj)

2 þ c2j
q

(10:44a)

Gaussian: f(jPi � Pjj) ¼ exp �c2j (Pi � Pj)2
h i

(10:44b)
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Squared multiquadrics: f(jPi � Pjj) ¼ (Pi � Pj)2 þ c2j (10:44c)

Cubical multiquadrics: f(jPi � Pjj) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(Pi � Pj)2 þ c2j

qh i3
(10:44d)

with the shape parameter cj kept constant as 1=N. The shape parameter is used to control
the smoothness of the RBF. Figure 10.20 shows the influence on its choice for the multi-
quadrics RBF. From Equation 10.40, one can notice that a polynomial of order M is added
to the RBF.Mwas limited to an upper value of 6. After inspecting Equations 10.40 through
10.43, one can easily check that the final linear system has [(NþM*L)þ 1] equations. Some
tests were made using the cross product polynomials (Pi Pj Pk . . . ), but the improvements of
the results were irrelevant. Also, other types of RBFs were used, but no improvement of the
interpolation was observed.
The choice of which polynomial order and which RBF are the best to a specific function,

was made based on a cross-validation procedure. Let us suppose that we haveNTR training
points, which are the locations on the multidimensional space where the values of the
function are known. Such set of training points is equally subdivided into two subsets of
points, namedNTR1 andNTR2. Equations 10.40 through 10.42 are solved for a polynomial of
order zero and for the RBF expression given by Equations 10.44 using the subset NTR1.
Then, the value of the interpolated function is checked against the known value of the
function for the subset NTR2 and the error is recorded as

RMSNTR1,M¼0,RBF1 ¼
XNTR2

i¼1
[S(Pi)� j(Pi)]2 (10:45)

Then, the same procedure is made, using the subset NTR2 to solve Equations 10.40 through
10.42 and the subset NTR1 to calculate the error as

RMSNTR2,M¼0,RBF1 ¼
XNTR1

i¼1
[S(Pi)� j(Pi)]2 (10:46)

FIGURE 10.20
Influence of the shape parameter.
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Finally, the total error for the polynomial of order zero and the RBF expression given by
Equations 10.44 is obtained as

RMSM¼0,RBF1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
RMSNTR1,M¼0,RBF1 þ RMSNTR2,M¼0,RBF1

p
(10:47)

This procedure is repeated for all polynomial orders, up to M¼ 6 and for each one of the
RBF expressions given by Equations 10.44. The best combination is the one that returns the
lowest value of the RMS error. Although this cross-validation procedure is quite simple, it
worked very well for all test cases analyzed in this chapter.

10.6.2 Performance Measurements

In accordance with having multiple metamodeling criteria, the performance of each meta-
modeling technique is measured from the following aspects (Jin et al., 2000):

. Accuracy—The capability of predicting the system response over the design space
of interest.

. Robustness—The capability of achieving good accuracy for different problem
types and sample sizes.

. Efficiency—The computational effort required for constructing the metamodel and
for predicting the response for a set of new points by metamodels.

. Transparency—The capability of illustrating explicit relationships between input
variables and responses.

. Conceptual simplicity—Ease of implementation. Simple methods should require
minimum user input and be easily adapted to each problem.

For accuracy, the goodness of fit obtained from ‘‘training’’ data is not sufficient to
assess the accuracy of newly predicted points. For this reason, additional confirmation
samples are used to verify the accuracy of the metamodels. To provide a more complete
picture of metamodel accuracy, three different metrics are used: R square (R2), relative
average absolute error (RAAE), and relative maximum absolute error (RMAE) (Jin et al.,
2000).

10.6.2.1 R Square

R2 ¼ 1�
Pn

i¼1 (yi � ŷi)
2Pn

i¼1 (yi � �y)2
¼ 1� MSE

variance
(10:48)

where
ŷi is the corresponding predicted value for the observed value yi
�y is the mean of the observed values

While mean square error (MSE) represents the departure of the metamodel from the real
simulation model, the variance captures how irregular the problem is. The larger the value
of R2, the more accurate the metamodel.
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10.6.2.2 Relative Average Absolute Error

RAAE ¼
Pn

i¼1 jyi � ŷij
n*STD

(10:49)

where STD stands for standard deviation. The smaller the value of RAAE, the more
accurate the metamodel.

10.6.2.3 Relative Maximum Absolute Error

RMAE ¼ max (jy1 � ŷ1j, jy2 � ŷ2j, . . . , jyn � ŷnj)
STD

(10:50)

Large RMAE indicates large error in one region of the design space even though the overall
accuracy indicated by R2 and RAAE can be very good. Therefore, a small RMAE is
preferred. However, since this metric cannot show the overall performance in the design
space, it is not as important as R2 and RAAE.
Although the R2, RAAE, and RMAE are useful to ascertain the accuracy of the interpol-

ation, they can fail in some cases. For the R2 metric, for example, if one of the testing points
has a huge deviation of the exact value, such discrepancy might affect the entire sum
appearing on Equation 10.48 and, even if all the other testing points are accurately
interpolated. Similarly, the R2 result can be very bad. For this reason, we also calculate
the percentage deviation of the exact value of each testing point. Such deviations are
collected according to six ranges of errors: 0%–10%; 10%–20%; 20%–50%; 50%–100%;
100%–200%; >200%. Thus, an interpolation that has all testing points within the interval
of 0%–10% of relative error might be considered good in comparison to another one where
the points are all spread along the intervals from 10% to 200%.

10.6.3 Response Surface Test Cases

In order to show the accuracy of the RBF model presented, 296 test cases were used,
representing linear and nonlinear problems with up to 100 variables. Such problems were
selected from a collection of 395 problems (actually 296 test cases), proposed by Hock and
Schittkowski (1981) and Schittkowski (1987). Figure 10.21 shows the number of variables of
each one of the problems. Note that there are 395 problems, but some of them were not
used.
Three methodologies were used to solve the linear algebraic system resulting from

Equations 10.40 through 10.42: LU decomposition, singular value decomposition (SVD),
and the generalized minimum residual (GMRES) iterative solver. When the number of
equations was small (less than 40), the LU solver was used. However, when the number of
variables increased over 40, the resulting matrix becomes too ill-conditioned and the SVD
solver had to be used. For more than 80 variables, the SVD solver became too slow. Thus,
the GMRES iterative method with the Jacobi preconditioner was used for all test cases.
In order to verify the accuracy of the interpolation over a different number of training

points, three sets were defined. Also, the number of testing points varied, according to the
number of training points. Table 10.1 presents these three sets, based on the number of
dimensions (variables) L of the problem.
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Figure 10.22 shows the R2 metric for all test cases, using the scarce set of training points.
It can be noticed that the results are all spread from 0 (completely inadequate interpolation)
to 1 (very accurate interpolation). However, even for this very small number of training
points, most cases have an excellent interpolation, with R2¼ 1.
Figure 10.23 shows the CPU time required to interpolate each test function, using the

scarce set of training points. For most of the cases, the CPU time was less than 1 s, using
an AMD Opteron 1.6 GHz processor and 1GB registered ECC DDR PC-2700 RAM. In fact,
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FIGURE 10.21
Number of variables for each problem considered.

TABLE 10.1

Number of Training and Testing Points

Number of
Training Points

Number of
Testing Points

Scarce set 3L 300L

Small set 10L 1000L
Medium set 50L 5000L
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FIGURE 10.22
R2 metric for the scarce set of training points.
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the highest dimensional test cases, which had 100 variables, required only 100 s to
be interpolated.
Although the R2 might indicate some performance behavior of the interpolation function,

we decided to use a different measure of accuracy. Figure 10.24 shows the percentage of
testing points having errors less than 10%, against the percentage of all 296 test cases, for
the scarce set of testing points. Thus, from this figure, it can be noticed that for more than
40% of all test functions, the relative errors were less than 10%. This is a very good result,
considering the extremely small number of training points used in the scarce set.
Figure 10.25 shows the R2 metric for the small set of training points. Compared to Figure

10.22, it can be seen that the points move toward the value of R2¼ 1.0, showing that the
accuracy of the interpolation gets better when the number of training points increase.
Figure 10.26 shows the CPU time required for all test cases, when the small number of

training points is used. Although the test case with 100 variables requires almost 1000 s, in
almost all test cases, the CPU time is low.
Figure 10.27 shows the percentage of points having errors lower than 10%. Comparing

with Figure 10.24, one can see that increasing the number of training points from 3 L
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FIGURE 10.23
CPU time for the scarce set of training points.
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FIGURE 10.24
Testing points with less than 10% error, for the scarce set of training points.
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FIGURE 10.25
R2 metric for the small set of training points.
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FIGURE 10.26
CPU time for the small set of training points.
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FIGURE 10.27
Testing points with less than 10% error, for the small set of training points.

A Survey of Basic Deterministic, Heuristic, and Hybrid Methods 389

  



(scarce set) to 10 L (small set), the number of testing points having less than 10% of relative
error for all 296 test cases increases from approximately 45% to approximately 55%,
showing a very good interpolation, even for a not so large number of training points.
Finally, Figures 10.28 through 10.30 show the results when a medium set of training

points are used.
From Figure 10.28, one can notice that the majority of the test cases have the R2 metric

close to 1.0, indicating a very good interpolation, for a not so large CPU time, as it can be
verified at Figure 10.29. From Figure 10.30, the number of testing points having errors less
than 10% for all 296 test cases increases to approximately 75% when a medium (50 L)
number of training points is used. This indicates that such interpolation can be used as a
metamodel in an optimization task, where the objective function takes too long to be
calculated. Thus, instead of optimizing the original function, an interpolation can be
used, significantly reducing the computational time.
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FIGURE 10.28
R2 metric for the medium set of training points.
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CPU time for the medium set of training points.
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10.7 Hybrid Methods with Response Surfaces and Examples

Once the response surface methodology and the hybrid optimizer idea were presented, we
will combine both of the sections. This method, called hybrid optimizer H2 (Colaço and
Dulikravich, 2007), is quite similar to the H1 presented in Section 10.5, except for the fact
that it uses a response surface method at some point of the optimization task. The global
procedure is illustrated in Figure 10.31. It can be seen from this figure that after a certain
number of objective functions were calculated, all this information was used to obtain a
response surface. Such a response surface is then optimized using the same proposed
hybrid code defined in the H1 optimizer so that it fits the calculated values of the objective

FIGURE 10.31
Global procedure for the hybrid opti-
mization method H2.
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function as closely as possible. New values of the objective function are then obtained very
cheaply by interpolating their values from the response surface.
In Figure 10.31, if the BFGS cannot find any better solution, the algorithm uses an RBF

interpolation scheme to obtain a response surface and then optimizes such response
surface using the same hybrid algorithm proposed. When the minimum value of this
response surface is found, the algorithm checks to see if it is also a solution of the original
problem. Then, if there is no improvement of the objective function, the entire population is
eliminated and a new population is generated around the best value obtained so far. The
algorithm returns to the particle swarm method in order to check if there are no changes in
this location and the entire procedure repeats itself. After a specified maximum number of
iterations is performed (e.g., five), the process stops.
An even more efficient algorithm, which will be calledH3, is an extension of the previous

ones. The global procedure is enumerated in the following:

1. Generate an initial population, using the real function (not the interpolated one)
f(P). Call this population Preal.

2. Determine the individual that has the minimum value of the objective function,
over the entire population Preal and call this individual Pbest.

3. Determine the individual that is more distant from the Pbest, over the entire
population Preal. Call this individual Pfar.

4. Generate a response surface, with the methodology at Section 10.6, using the entire
population Preal as training points. Call this function g(P).

5. Optimize the interpolated function g(P) using the hybrid optimizer H1, defined in
Section 10.5, and call the optimum variable of the interpolated function as Pint.
During the generation of the internal population to be used in the H1 optimizer,
consider the upper and lower bounds limits as the minimum and maximum values
of the population Preal in order to not extrapolate the response surface.

6. If the real objective function f(Pint) is better than all objective functions of the
population Preal, replace Pfar by Pint. Otherwise, generate a new individual,
using Sobol’s pseudorandom number sequence generator (Sobol and Levitan,
1976) within the upper and lower bounds of the variables, and replace Pfar by
this new individual.

7. If the optimum is achieved, stop the procedure. Otherwise, return to step 2.

From the sequence above, one can notice that the number of times that the real objective
function f(P) is called is very small. Also, from step 6, one can see that the space of search is
reduced at each iteration. When the response surface g(P) is no longer capable to find a
minimum, anewcall to the real function f(P) ismade to generate a newpoint to be included in
the interpolation. Since the CPU time to calculate the interpolated function is very small, the
maximum number of iterations of the H1 optimizer can be very large (e.g., 1000 iterations).
The hybrid optimizer H3was compared against the optimizerH1, H2, and the commercial

code IOSO2.0 for some standard test functions. Thefirst test functionwas the Levy#9 function
(Sandgren, 1977), which has 625 local minima and 4 variables. Such function is defined as

S(P) ¼ sin2 (p� z1)þ
Xn�1
i¼1

(zi � 1)2 1þ 10 sin2 (p ziþ1)

 �þ (z4 � 1)2 (10:51)
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where

zi ¼ 1þ Pi � 1
4

(i ¼ 1, 4) (10:52)

The function is defined within the interval �10 � P � 10 and its minimum is S(P)¼ 0 for
P¼ 1. Figure 10.32 shows the optimization history of the IOSO, H1, H2, and H3 optimizers.
Since the H1, H2, and H3 optimizers are based on random number generators (because the
particle swarm module), we present the best and worst estimatives for these three optimi-
zers.
From Figure 10.32, it can be seen that the performance of the H3 optimizer is very close to

the IOSO commercial code. The H1 code is the worst and the H2 optimizer also has a
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Optimization history of the Levy #9 function for the (a) IOSO, (b) H1-best, (c) H2-best,
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reasonably good performance. It is interesting to note that the H1 code is the only one that
does not have a response surface model implemented.
The second function tested was the Griewank function (Sandgren, 1977), which is

defined as

S(P) ¼
Xn
i¼1

P2
i

4000
�
Yn
i�1

cos
Piffiffi
i
p
� �

þ 1; Pi 2 ]�600, 600[ (i ¼ 1, 2) (10:53)

The global minima for this function is located at P¼ 0 and is S(P)¼ 0. This function has an
extremely large number of local minima, making the optimization task quite difficult.
Figure 10.33 shows the optimization history of the IOSO, H1, H2, and H3 optimizers.

Again, the best and worst results for H1, H2, and H3 are presented.
From this figure, it is clear that the H1, H2, and H3 optimizers are much better than the

IOSO commercial code. The H1 code was the best, while the H2 sometimes stopped at
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FIGURE 10.32 (continued)
(d) H3-best, (e) H1-worst, (f) H2-worst, and (g) H3-worst optimizers.
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some local minima. The worst result of the H3 optimizer was, however, better than the
result obtained by IOSO. It is worth pointing out that, with more iterations, the H3 code
could reach the minimum of the objective function, even for the worst result.
The next test function implemented was the Rosenbrook function (More et al., 1981),

which is defined as

S(P1,P2) ¼ 100 P2 � P2
1

� �2þ (1� P1)2 (10:54)

The function is defined within the interval �10 � P � 10 and its minimum is S(P)¼ 0 for
P¼ 1. Figure 10.34 shows the optimization history of the IOSO, H1, H2, and H3 optimizers.
For this function, which is almost flat close to the global minima, the IOSO code was the

one with the best performance, followed by the H3 optimizer. The H2 performed very
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inadequately and the H1 was able to get close to the minimum, but with a huge number
of objective function calculations. When looking at the H3 results, the final value of the
objective function differed by some orders of magnitude. However, the optimum
solution obtained with this new optimizer was P1¼ 0.9996 and P2¼ 0.9992, while the
IOSO obtained P1¼ 1.0000 and P2¼ 1.0000. Thus, the relative error among the variables
was less than 0.01%, indicating that despite the discrepancy among the final value of
the objective function, the H3 code was able to recover the value of the optimum
variables with a neglectable relative error.
The last test function analyzed was the Mielle–Cantrel function (Miele and Cantrell,

1969), which is defined as

S(P) ¼ exp(P1�P2)

 �4þ 100(P2 � P3)6 þ arctan4 (P3 � P4)þ P2

1 (10:55)
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(d) H3-best, (e) H1-worst, (f) H2-worst, and (g) H3-worst optimizers.
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The function is defined within the interval �10 � P � 10 and its minimum is S(P)¼ 0
for P1¼ 0 and P2¼P3¼P4¼ 1. Figure 10.35 shows the optimization history of the IOSO,
H1, H2, and H3 optimizers. Again, the best and worst results for H1, H2, and H3 are
presented.
For this function, the IOSO code was the best, followed by the H3. The H2 code

performed very inadequately again. The H1 was able to get to the global minimum after
a huge number of objective function calculations. As occurred with the Rosenbrook
function, in spite of the fact that H3 results for the objective function differ from the
IOSO code, the final values of the variables were P1¼ 4.0981	 10�8, P2¼ 0.9864,
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P3¼ 0.9688, and P4¼ 0.9626 for the H3 optimizer and P1¼�0.1216	 10�5, P2¼ 1.002,
P3¼ 0.9957, and P4¼ 0.9962 for the IOSO code.

10.8 Conclusion

In this chapter, we presented some basic concepts related to deterministic and heuristic
methods, applied to single-objective optimization. Three different hybrid methods were
also presented, as well as a powerful response surface methodology. The combination of
the techniques presented here can be used in very complex engineering problems, which
demand thousands of objective function calculations.
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Nomenclature

A approximation of the Hessian
CR crossover constant
d direction of descent
E energy state
F weight constant which defines the mutation
G equality constraint
H approximation for the inverse of the Hessian
I uncertainty interval
I identity matrix
J matrix composed by the diagonal elements of A
k counter for the number of iterations
K Boltzmann constant

Number of function evaluations

1.0E–12
1.0E–11
1.0E–10

1.0E–9
1.0E–8
1.0E–7
1.0E–6
1.0E–5
1.0E–4
1.0E–3
1.0E–2
1.0E–1
1.0E+0

Be
st

 v
al

ue
 o

f t
he

 o
bj

ec
tiv

e f
un

ct
io

n

(d) Number of function evaluations

1.0E–12
1.0E–11
1.0E–10

1.0E–9
1.0E–8
1.0E–7
1.0E–6
1.0E–5
1.0E–4
1.0E–3
1.0E–2
1.0E–1
1.0E+0

Be
st

 v
al

ue
 o

f t
he

 o
bj

ec
tiv

e f
un

ct
io

n

Number of function evaluations

1.0E–12
1.0E–11
1.0E–10

1.0E–9
1.0E–8
1.0E–7
1.0E–6
1.0E–5
1.0E–4
1.0E–3
1.0E–2
1.0E–1
1.0E+0

Be
st

 v
al

ue
 o

f t
he

 o
bj

ec
tiv

e f
un

ct
io

n

0 400 800 1,200 0 10,000 15,0005,000 20,000 25,000

0 2,000 10,0008,0006,0004,000 0 400 800 1,200 1,600
Number of function evaluations

1.0E–12
1.0E–11
1.0E–10

1.0E–9
1.0E–8
1.0E–7
1.0E–6
1.0E–5
1.0E–4
1.0E–3
1.0E–2
1.0E–1
1.0E+0

Be
st

 v
al

ue
 o

f t
he

 o
bj

ec
tiv

e f
un

ct
io

n
(e)

(f ) (g)

FIGURE 10.35 (continued)
(d) H3-best, (e) H1-worst, (f) H2-worst, and (g) H3-worst optimizers.
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M,N auxiliary matrices for the quasi-Newton methods
N number of parameters (variables)
P vector of parameters (variables) of the objective function S
q iteration number for the restraint strategy in the Conjugate Gradient Method
Q inequality constraint
r1, r2 random number vectors
S objective function
T temperature
Y auxiliary vector for the quasi-Newton methods

Greeks

a search step size
a,b,g vectors of parameters used in the differential evolution method
d delta Dirac function
g,c conjugation coefficients
l auxiliary parameter for the Levenberg-Marquardt method
pI best value of some individual
pg best value of the population
P population matrix
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11.1 Introduction

The numerical solution of inverse heat transfer problems dealing with experimental data
processing for estimating unknown functions, like spatial distribution and=or time history
of heat sources, thermal properties versus temperature, etc., is known to be ill conditioned.
Regularization methods then have to be used for solving such problems, in order to build
numerical stable solutions and to avoid the amplification of data and=or model errors.
In this chapter, a general presentation of the conjugate gradient method (CGM), com-

bined with the Lagrange multiplier technique, is given for estimating unknown functions,
classically found in heat transfer modeling. The method is iterative, and the regularization
parameter is given in the form of the stopping criterion used to select the number of
iterations, which is chosen according to the discrepancy principle proposed by Morozov
(1984).
The presentation is organized as follows: First, a general formulation of inverse problems

is given and illustrated with two basic examples of inverse heat source problems. Then, the

407



principle of the CGM is developed in the simplest situation of linear model equations, and
the Lagrangian technique is briefly presented. The CGM is then applied to a nonlinear
estimation problem.

11.2 Formulation of Inverse Problems

To formulate an inverse problem of experimental data processing, two main components
are required, namely,

1. A set of equations (algebraic, differential, integral, etc.), the solution of which
describes the relationship between the unknown function to be estimated, denoted
by u, and the observable variables or model output, denoted by y

2. A set of experimental data, denoted by ~y, used to determine u by matching in some
sense with the output predicted through the model equations

A generic formulation for inverse problems thus consists in

1. Introducing the metric spaces U, Y for functions u and y, respectively

2. Considering the functional relation, denoted by X, which connects the input
u 2 Uad � U to the output y 2 Y through the model equations

3. Solving the equation ~y¼X(u)

In practice and more often, no exact solution u¼X�1(~y) exists for inverse problems, because
the inverse operator X�1 cannot be defined or because of its high sensitivity to measure-
ment and=or model errors. However, elements u 2 Uad for which the deviation between the
predicted output X(u) and the measured output ~y remains less than some tolerance e can be
acceptable. When the model is assumed to perfectly represent the physical problem under
analysis, this tolerance is specified only by the level of the measurement error, that is, the
variance of the random noise of the input signal.
Therefore, the solution of the inverse problem aims at selecting u 2 Uad such that

kX(u)� ~yk2Y � e2 (11:1)

The inverse problem is then formulated in the least square sense, that is, it consists in
finding u* 2 Uad, which minimizes the least square criterion

S(u) ¼kX(u)� ~yk2Y (11:2)

It can be shown that this approach overcomes the question of existence of a solution but
not that of uniqueness or stability under data perturbations.
We will see how a numerical solution can be computed iteratively by using the CGM in

order to minimize S(u) and we illustrate, according to the discrepancy principle (Morozov
1984), how the stopping rule S(unf)¼ e2 allows to get a regularized solution. The final
iteration number nf is then the regularizing parameter.
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11.3 Illustrative Examples: Linear Estimation

11.3.1 Inverse 1-D Boundary Heat Source Problem

A semi-infinite heat conducting body is submitted to a boundary heat flux density u(t),
which is to be determined from the observed output y(t) given by the temperature history
at the sensor location xs, on the time interval (0, tf). Hence, we can write the state and
output (observation) equations, respectively, as

State equations:

qT
qt

(x, t) ¼ a
q2T
qx2

(x, t), x > 0, 0 < t < tf (11:3a)

�k qT
qx

(0, t) ¼ u(t), 0 < t < tf (11:3b)

T(x, 0) ¼ 0, x > 0 (11:3c)

Output equation:

y(t) ¼ T(xs, t), 0 < t < tf (11:3d)

The problem may be put under the generic form by introducing the functional spaces
U¼Y¼ L2(0, tf), with the norm defined as

kukU ¼
ðtf
0

u2(t)dt

264
375
1=2

and k � � � kU ¼ k � � � kY (11:4)

and the linear operator X(.) is defined by the convolution integral

y(t) ¼ X* u(t) ¼
ðt
0

fs(t� t)u(t)dt, t 2 (0, tf ) (11:5)

where
fs(t) ¼ K(

ffiffiffiffiffiffiffiffi
tc=t

p
) exp (�tc=t) is the impulse response

tc ¼ x2s=4a is the characteristic time of the body at the sensor location
K ¼ 2=rcxs

ffiffiffiffi
p
p

A finite dimension approximation for Equation 11.5 is straightforward. The time interval
(0, tf) is divided into n¼m subintervals ]ti�1, ti[, of length Dt. The linear convolution operator
may be approximated by amatrix operator. In practice, this is not the usual way to solve the
inverse problem, but it is used here in order to illustrate its ill-posed character:

y(ti) ¼
X
j

fs(ti � tj)u(tj)Dt ¼
Xi
j¼1

Xijuj (11:6)

Xij ¼
Dtfs((i� jþ 1)Dt) for j ¼ 1 to i and i ¼ 1 to m

0 elsewhere



(11:7)
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The problem is then reformulated by introducing the new vector spacesU¼Y¼Rn and the
model output is now written as

y ¼ Xu (11:8)

The square matrix X is a Toeplitz matrix, lower triangular, and the components are given
by zi¼Dt fs(ti), i¼ 1, . . . ,n, which go to zero when Dt ! 0.

X ¼

z1 0
z2 z1 0 0
z3 z2 z1

z4 z3 z2 . .
.

0
. .
.

z1 0
zm zm�1 zm�2 z2 z1

266666664

377777775 (11:9)

This inverse boundary heat source problem is clearly a time deconvolution problem, and
the solution is known to be very sensitive to data errors. A numerical solution for this
problem, computed with the CGM, is presented in Section 11.4.
To illustrate the ill posedness of this problem, let us consider the solution given by

û ¼ X�1~y (11:10)

A numerical experiment is performed with the following numerical data, in the
time interval 0< t< tf¼ 20 s : k¼ 1 W m�1 K�1; xs¼ 2 mm; a¼ 10�6 m2 s�1; Dt¼ 1 s,
rc¼ 106 J m�3 K�1; K¼ 0.564	 10�3 K m2 J�1.
Figure 11.1a shows the exact applied heat flux and the corresponding output of the

problem, y. The solutions û(t) are presented in Figure 11.1b, computed with the time step
Dt¼ 0.5 s, for different levels of noise on the simulated measured data ~y(t). Figure 11.1b
shows that, as the standard deviation of the measurement errors (s¼ 0.0; 0.002 and
0.005 K) increases, the solution clearly becomes unstable.
It must be noted that by decreasing the time step Dt, the numerical inversion process

becomes more ill conditioned. In fact, although the accuracy of the direct problem solution
increases, the stability condition of the inverse problem solution decreases. There is thus a
question of selecting the solution between accuracy and stability.

11.3.2 Inverse 2-D Boundary Heat Source Problem

Let us consider the solution of a 2-D steady-state heat conduction process (see Figure
11.2a), described by the following set of equations:

Steady-state equations:

kDT ¼ 0, in V (11:11a)

TjG1
¼ T1 (11:11b)

qT
qn

����
G2[G3

¼ 0 (11:11c)

�k qT
qn

����
G4

¼ u (11:11d)
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Output equation:

y ¼ TjG3
(11:12)

Numerical results of the direct problem are presented in Figure 11.2b and c; they were
computed with the following input data:

T1 ¼ 0:5 (11:13a)

u ¼ q(j) ¼ q0[ sin (pj=2)� 1], 0 < j < 1 (11:13b)

where j denotes the coordinate along G4. The heat flux and the temperature at surface G4

are presented in Figure 11.2d, while Figure 11.2e presents the temperature at surface G3.
Now, suppose that the boundary heat flux u is unknown at G4 and that the output y is the

observed temperature at G3. This example of a 2-D inverse boundary heat source problem
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FIGURE 11.1
(a) Heat flux u(t) (dashed line) and temperature output y(t) (continuous line). (b) Solutions for different levels
of noise.
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412 Thermal Measurements and Inverse Techniques

  



aims at the determination of the boundary heat flux u. The problem may be formulated
after the discretization of the spatial variable within the spatial domain, which leads to the
following state and output equations, respectively:

AT ¼ Buþ bT1 (11:14a)

y ¼ CT (11:14b)

where
T is the state (temperature) vector
u 2 Rn is the heat source vector on G4

T1 is the fixed temperature on G1

y 2 Rm is the observed output vector
C is the output matrix

Finally, the linear operator between the inputs (the heat flux u and the fixed temperature
T1) and the observed output takes the form of the following single matrix equation:

y ¼ CA�1(Buþ bT1) (11:15)

The sensitivity analysis (see Chapter 7 for more details) is an important step for evaluating
the ill posedness of the inversion process. It is based on the sensitivity equations

dy ¼ CA�1Bdu (11:16)

X ¼ CA�1B (11:17)

where the elements of the sensitivity matrix are Xij¼ (@yi=@uj), i¼ 1, . . . ,n and j¼ 1, . . . ,m.
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FIGURE 11.2 (continued)
(e) Observed output on G3.
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This example illustrates how the formulation of a linear inverse heat source problem
leads to the construction of a (possible) large size matrix operator to be inverted, here the X
matrix. The size of the state vector, e.g., the number N of free nodes of the spatial grid,
(except the nodes on the boundary G1) defines the size of the square matrix A. It is clear in
this example that the solution of the inverse problem requires the inversion of the matrix X
and that the size of the matrices A and X are different. Generally, the matrix X is
rectangular, and its size depends on two variables—the size m of the observed output
data vector and the size n of the heat flux vector to be determined.

11.4 The Conjugate Gradient Algorithm

11.4.1 Gradient Methods

Iterative methods for computing the values of the minimum of the least square criterion
S(u), which are based on the computation of the first derivatives ru(S), are called gradient
methods. In these methods, an initial guess u0 is given and the new estimates uk are
computed with the following general expression:

ukþ1 ¼ uk þ rkwk (11:18)

until a termination condition is achieved. Here, rk is a positive scalar, and wk has the same
size of uk. Both rk and wk have to be determined at each iteration k. The modification rkwk is
chosen in order to decrease S(u). Different choices are available to determine rkwk (see, e.g.,
Chapter 10), but, in any case, such a choice is expected to satisfy

S(ukþ1)� S(uk) < 0, k ¼ 0, 1, . . . (11:19)

It is convenient to normalize the wk, that is, kwkk¼ 1. Then, the step size in the direction
wk is equal to the scalar rk¼kukþ1� ukk.
By using a linear approximation of the function S(ukþ1), one obtains

S(ukþ1)� S(uk) ¼ rk rSk, wk� �
U þ � � � (11:20)

Assuming that the scalar rk is positive, a necessary condition to decrease S, called the
descent condition, is

rSk,wk� �
U < 0 (11:21)

The directions given by wk that satisfy this condition are called descent directions.

11.4.2 The Conjugate Gradient Method

In the CGM, the descent direction is generally computed as

wk ¼ �rSk, k ¼ 0 (11:22a)

wk ¼ �rSk þ gkwk�1, k > 0 (11:22b)
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Different versions of the CGM can be found in the literature, depending on the form used
for the computation of the conjugation parameter gk (see Chapter 10). In the Fletcher–
Reeves (1964) version, g is given by

gk ¼ krS
kk2

krSk�1k2 (11:23)

In the Polak–Ribiere (Polak 1985) version of the CGM, the conjugation coefficient is given by

gk ¼ rSk �rSk�1,rSk� �
U

krSk�1k2 (11:24)

For the Hestenes–Stiefel (1952) version of the CGM, we have

gk ¼ rSk �rSk�1,rSk� �
U

rSk �rSk�1,wk�1h iU
(11:25)

At each iteration, a line search is then performed along the direction wk to determine the
optimal step size, rk. The line search consists in minimizing the single-variable function
with respect to rk, that is,

f(r) ¼ S(ukþ1) ¼ S(uk þ rkwk) (11:26)

Equating the derivative f0(r) to zero gives the optimal descent length rk, but it also leads to
the useful following property which holds at the termination of a line search

f0(r) ¼ rSkþ1,wk� �
U ¼ 0 (11:27)

The basic steps for the application of the CGM can be summarized as (Jarny 2002):

Step 1: Choose an initial guess u0 at k¼ 0.

Repeat steps 2 to 6 until a termination condition is satisfied.

Step 2: Compute the LS-criterion Sk.

Step 3: Compute the gradient rSk and determine the descent direction:

if k ¼ 0, w0 ¼ �rS0
else wk ¼ �rSk þ gkwk�1

Step 4: Perform a line search in the direction wk:

rk ¼ argmin
r>0

S(uk þ rwk)

Step 5: Compute the new iterate

ukþ1 ¼ uk þ rkwk

Step 6: Make k  kþ 1.
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A version of the CGM with the descent direction given by a more general form than that of
Equation 11.22b was proposed by Powell (1977) as

wk ¼ �rSk þ gkwk�1 þ Gkwq (11:28)

where gk and Gk are conjugation coefficients given by

gk ¼ rSk �rSk�1,rSk� �
U

rSk �rSk�1,wk�1h iU
with g0 ¼ 0 for k ¼ 0 (11:29a)

Gk ¼ rSqþ1 �rSq,rSk� �
U

rSqþ1 �rSq,wqh iU
with G0 ¼ 0 for k ¼ 0 (11:29b)

The superscript q in Equations 11.28 and 11.29 denotes the iteration number where a
restarting strategy is applied to the iterative procedure of the CGM. Restarting strategies
were suggested for the CGM of parameter estimation in order to improve its convergence
rate (Powell 1977). In accordance with Powell (1977), the application of the CGM with the
conjugation coefficients given by Equations 11.29 requires restarting when gradients at
successive iterations tend to be nonorthogonal (which is a measure of the local nonlinearity
of the problem) and when the direction of descent is not sufficiently downhill. Restarting is
performed by making Gk¼ 0 in Equation 11.28.
The nonorthogonality of gradients at successive iterations is tested by using

ABS
� rSk�1,rSk� �

U

� � 0:2 rSk,rSk� �
U (11:30a)

where ABS(�) denotes the absolute value.
A nonsufficiently downhill direction of descent (i.e., the angle between the direction of

descent and the negative gradient direction is too large) is identified if either of the
following inequalities are satisfied:

rSk,wk� �
U � �1:2 rSk,rSk

� �
U (11:30b)

or

rSk,wk� �
U � �0:8 rSk,rSk

� �
U (11:30c)

In Powell–Beale’s version of the CGM, the direction of descent given by Equation 11.28 is
computed in accordance with the following algorithm for k � 1:

Step 1: Test the inequality (11.30a). If it is true, set q¼ k� 1.

Step 2: Compute gk with Equation 11.29a.

Step 3: If k¼ qþ 1, set Gk¼ 0. If k 6¼ qþ 1 compute Gk with Equation 11.29b.

Step 4: Compute the search direction wk with Equation 11.28.

Step 5: If k 6¼ qþ 1 test the inequalities with Equations 11.30b and c. If either one of
them is satisfied, set q¼ k� 1 and Gk¼ 0. Then recompute the search direction with
Equation 11.28.
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11.4.3 Application of the CGM to the Solution of Linear Inverse Problems
under Matrix Form

For linear inverse problems like those introduced above in Section 11.3, the model equa-
tions can be put in the standard matrix form y¼Xu, where X is a rectangular matrix. Then
the least square criterion takes the generic quadratic form:

S(u) ¼ k~y� Xuk2Y (11:31)

When the elements of the matrix X (sensitivity matrix) have been computed, the applica-
tion of the conjugate gradient algorithm is straightforward. According to the gradient
equation

rS ¼ �2XT(~y� Xu) (11:32)

the descent directions wk are then easily computed, and the descent step

rk ¼ argmin
r>0

S(uk þ rwk) (11:33)

is determined without a line search, by minimizing the scalar function:

f(r) ¼ k~y� X(uk þ rwk)k2 ¼ k~y� Xukk2Y � 2r XT(~y� Xuk),wk� �
U þ r2kXwkk2Y (11:34)

It results in

f0(r) ¼ 0) rk ¼ � 1
2
rSk,wk
� �

U

kXwkk2Y
(11:35)

For such a quadratic minimization problem, it can be shown that the iterative process is
achieved under n iterations, with n¼ size(u). In practice, the iterative procedure is stopped
according to the discrepancy principle at the iteration nf such that S(unf)¼ e2.

11.4.4 The Lagrangian Technique to Compute the Gradient of the LS-Criterion

More often, the modeling equations are not explicit between the input u to be determined
and the output y, like in the linear examples above. Only an implicit relationship is
available. Then the Lagrangian technique can be used to compute the gradient of the
LS-criterion:

S(u) ¼ k~y� y(u)k2Y (11:36)

In this section, for simplicity, we consider a mathematical model defined by a set of n
algebraic equations, denoted by

R[y,u] ¼ 0 (11:37)
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When y is the solution of the modeling equations, it is noted as y(u). For both examples
of linear problems introduced in Section 11.3, we have obviously R[y,u]¼ y�Xu and
y(u)¼Xu. But the method is not restricted to linear equations. For nonlinear model
equations, it is assumed that the following linear approximation is valid:

[ryRT]Tdyþ [ruRT]Tdu ¼ 0) dy ¼ �{[ryRT]T}�1[ruRT]Tdu ¼ Xdu (11:38)

where the superscript T denotes transpose. In the next sections, other kinds of modeling
equations will be considered.
The Lagrange multiplier c and the Lagrangian L(y,u,c) are introduced as

L(y,u,c) ¼ k~y� yk2 � hc,R[y,u]iY (11:39)

If y¼ y(u), the Lagrangian is equal to the LS-criterion for any multiplier. It means that the
constraints are satisfied, that is,

L(y(u),u,c) ¼ k~y� y(u)k2 � hc,R[y(u),u]iY ¼ S(u) (11:40)

Assuming that c is fixed, independent of u, then the differential of the Lagrangian takes
the forms

dL ¼ hryS, dyi � c, [ryRT]Tdyþ [ruRT]Tdu
� �

Y (11:41a)

dL ¼ ryS� [ryRT]Tc, dy
� �

Y� [ruRT]Tc, du
� �

U (11:41b)

The choice of the Lagrange multiplier is not restricted. For convenience, let us choose c to
be the solution of the linear equation

ryS� [ryRT]Tc ¼ 0, or [ryRT]c ¼ �2(~y� y) (11:42)

Hence, when c is a solution of this last equation, the stationary condition of the
Lagrangian, dL¼ 0, reduces to

dL ¼ [ruRT]c, du
� �

U ¼ 0 (11:43)

And finally, by taking y¼ y(u), the gradient of the LS-criterion rS(u) can be deter-
mined by

rS(u) ¼ �[ruRT(y,u)]c (11:44)

One of the main advantages in introducing the Lagrange multiplier c is clearly to allow the
use of gradient algorithms to minimize the LS-criterion, when no explicit relationship is
available between the model output y and the variable u to be determined. It must be noted
that the Jacobian matrix X¼ [ruy

T]T is never used in the development above.
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The Lagrange multiplier c is also called the adjoint variable (Jarny et al. 1991; Alifanov
1994; Alifanov et al. 1995). Combined with the Fletcher–Reeves version of the CGM
(Fletcher and Reeves 1964), the Lagrangian technique leads to the following algorithm:

Step 1: Choose an initial guess u0, k¼ 0.

Repeat steps 2 to 7 until a termination condition is satisfied.

Step 2: Compute yk¼ y(uk) as a solution of R[y(u),u]¼ 0, and compute S(uk).

Step 3: Compute ck as a solution of [ryR
T]ck¼�2(~y� yk) and the gradient

rS(uk)¼�[ruR
T]ck.

Step 4: Determine the descent direction

if k ¼ 0, w0 ¼ �rS0

else gk ¼ krS
kk2

krSk�1k2 , and wk ¼ �rSk þ gkwk�1

Step 5: Perform a line search in the direction wk to compute rk¼ arg min fk(r), which
minimizes the scalar function fk(r)¼ S(ukþ rwk).

Step 6: Compute the new estimate: ukþ1¼ukþ rkwk.

Step 7: Make k  kþ 1.

This algorithm is now illustrated with the solution of the previous linear examples
discussed in Section 11.3.

11.4.5 Solution of the 1-D Boundary Heat Source Problem

The 1-D transient example presented in Section 11.3 is now revisited. When the surface
of a semi-infinite heat conducting body is submitted to a time varying heat flux u(t), the
resulting temperature response y(t; u) inside the body is modeled with the integral equation

y(t;u) ¼
ðt
0

fs(t� t)u(t)dt (11:45)

The function fs is Green’s function for the pulse at x¼ 0

fs(t) ¼ 1ffiffi
t
p exp � 1ffiffi

t
p

� �
(11:46)

where the constants t and K have been taken equal to one without loss of generality.
The model output y, computed for a triangular variation of the function u(t), is shown in

Figure 11.3a.
The inverse heat flux problem aims at determining the function u over the time interval

[0, tf ¼ 5], from the noisy output data ~y, knowing fs, and without computing the sensitivity
matrix X.
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(a) 1-D boundary heat source data. (b) 1-D inverse heat source problem: the LS criterion versus the iteration
number. (c) 1-D inverse heat source problem: exact heat flux (gray line) and estimated heat flux with
e2¼kdYk2¼ 2.12 (black line).
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(d) 1-D inverse heat source problem: predicted (black line) and measured (gray line) output with e2¼kdYk2¼ 2.12.
(Part figures b-d from Jarny, Y., 2003, Inverse Engineering Handbook, CRC Press, Boca Raton, FL. With permission.)
(e) 1-D inverse heat source problem: exact heat flux (gray line) and estimated heat flux with e2¼kdYk2¼ 53.3
(black line). (f) 1-D inverse heat source problem: predicted (black line) and measured output (gray line) with
e2¼kdYk2¼ 53.30.
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The LS-criterion is introduced as

S(u) ¼ 1
2

ðtf
0

[~y(t)� y(t;u)]2 dt ¼ 1
2
k~y� y(u)k2Y, with Y ¼ L2(0, tf ) (11:47)

The solution that minimizes the LS-criterion is computed according to the adjoint method
and the conjugate gradient algorithm. Notice that the modeling integral equation is linear,
hence the LS-criterion is a quadratic form.
The gradient rSu is computed by introducing the Lagrangian:

L(y,u,c) ¼ 1
2
k~y� yk2Y � hc, y� fs*uiY (11:48)

where
fs*u is the convolution product of the functions f and u
hc, giY ¼

Ð tf
0 c(t)g(t)dt is the scalar product of the function c with any function g over the

time interval (0, tf)

When the Lagrange multiplier c is fixed, the differential of the Lagrangian is

dL ¼ h~y� y, dyiY � hc, dyiY þ hc, fs*duiY (11:49a)

dL ¼ h~y� y� c, dyiY þ hc, fs*duiY (11:49b)

By choosing c as the solution of the (simplest) adjoint equation

c ¼ ~y� y (11:50)

the stationary condition of the Lagrangian reduces to

dL ¼ hc, fs*duiY ¼ 0, 8du (11:51)

Hence, the gradient equation is obtained from

hrS, duiU ¼ hc, fs*duiY, 8du (11:52)

To develop this gradient equation, if we start from the definitions of the scalar and
convolution products, we have

hrS,uiU ¼
ðtf
0

rS(x)u(x)dx (11:53)

hc, f *uiY ¼
ðtf
0

c(t)
ðt
0

f (t� x)u(x)dx dt (11:54)
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Using the property of Green’s function f

x > t) t� x < 0) f (t� x) ¼ 0 (11:55)

the last double integral becomes

hc, f *uiY ¼
ðtf
0

u(x)
ðtf
0

c(t)f (t� x)dt dx (11:56)

Then the first integral implies that

rS(x) ¼
ðtf
0

c(t)f (t� x)dt, 0 < x < tf (11:57a)

rS(x) ¼
ðtf
x

c(t)f (t� x)dt, 0 < x < tf (11:57b)

or, by denoting x as the dummy integration variable instead of t

rS(t) ¼
ðtf
t

c(x)f (x� t)dx, 0 < t < tf (11:58)

Finally, from the solution of the adjoint equation, a new integral equation for the gradient
rS(t;u) of the LS-criterion results:

rS(t; u) ¼
ðtf
t

[~y(j)� y(j;u)] f (j� t)dj, 0 < t < tf (11:59)

Then, the gradient can be computed, and the conjugate gradient algorithm can be
performed.
To compute y(t;u) and rS(t;u), the time variable is discretized as

tk ¼ kDt, Dt ¼ tf
nt

(11:60)

where nt is the number of time steps and the integral equations are put in standard
algebraic forms

yk ¼ y(tk) ¼
Xk
i¼1

fk�iui, k ¼ 1, . . . ,nt (11:61a)

rSk ¼ rS(tk) ¼
Xnf
i¼kþ1

fi�kci, k ¼ 1, . . . ,nt (11:61b)
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with

fn ¼ f (tn) ¼ f (nDt) ¼ 1ffiffiffiffi
tn
p exp � 1ffiffiffiffi

tn
p

� �
Dt, n ¼ 1, . . . ,nt (11:62)

The solution is computed over the time interval [0, tf¼ 5], with Dt¼ 0.1 and nf¼ 50. The
initial guess is taken equal to zero: u0i ¼ 0, i ¼ 1, . . . ,nt. A normally distributed noise is
added to the output vector data y, and the noise level is e2¼kdYk2¼ 2.12. The iterative
regularizing principle is adopted to stop the conjugate gradient algorithm, which produces
the results presented in Figure 11.3b through d.
After five iterations, the computed solution is compared to the exact solution in Figure

11.3c and d. The noise level is now amplified to e2¼kdYk2¼ 53.30 and the algorithm is
stopped after four iterations. The results obtained are presented in Figure 11.3e and f.
This example shows how to use the adjoint method to compute the solution of an inverse

input problem with the integral equation model. Due to the linearity of the modeling
equations, the LS criterion is quadratic, and the conjugate gradient algorithm is very well
adapted. The iterative regularization principle is an efficient way to avoid the amplification
of data errors and is easy to implement.
Note that the output model equation y(t) ¼ Ð t0 fs(t� t)u(t)dt admits the equivalent form

y(t) ¼ Ð t0 u(t� t)fs(t)dt.
The numerical solution of the inverse problem, which consists of the determination of the

parameter function fs(t) from the input and output measurements, could be performed
with the same algorithm.

11.4.6 Solution of the Inverse 2-D Boundary Heat Source Problem

The stationary inverse 2-D heat conduction problem considered in Section 11.3 is now
solved with the conjugate gradient algorithm presented above. The state variable T is the
solution of the stationary heat conduction equations

lDT ¼ 0, in V (11:63a)

TjG1
¼ T1 (11:63b)

qT
qn

����
G2[G3

¼ 0 (11:63c)

�l qT
qn

����
G4

¼ u (11:63d)

where
V is the spatial domain
u is the spatial heat flux distribution to be determined on the boundary G4 (see

Figure 11.2a)

When u is fixed, the solution is denoted as T(u).
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The output variable is related to the state T through the output operator C

y ¼ CT (11:64)

Here, we take as in Section 11.3, the observation on the boundary G3, y¼CT¼TjG3
.

The LS-criterion to be minimized is S(u) ¼ k~y� CT(u)k2G3
, where ~y is the noisy output

data and the norm of a general function g in G3 is given by kgk2G3
¼ ÐG3

g2(s)ds.
The Lagrangian takes the form

L(T, u,c) ¼ 1
2
k~y� CTk2G3

� hc,lDTiY (11:65)

where the adjoint variable c is a function of the space variable in V, as the state T, and the
scalar product

hc, viY ¼
ð
V

cvdV (11:66)

Integration by parts on the spatial domain V, givesð
V

cDT dV ¼
ð
V

TDc dVþ
ð
G

c
qT
qn
� T

qc
qn

� �
dG (11:67)

For any function T that satisfies the boundary conditions, we get

l

ð
G

c
qT
qn
� T

qc
qn

� �
dG ¼ l

ð
G1

c
qT
qn
� T1

qc
qn

� �
dGþ l

ð
G1[G3

c
qT
qn
� T

qc
qn

� �
dGþ

ð
G4

�cu� lT
qc
qn

� �
dG

(11:68)

When the adjoint variable c is fixed, the differential of the Lagrangian becomes

dL ¼ �hlDc, dTi þ l

ð
G1

qT
qn

dc dG� l

ð
G2[G4

qc
qn

dTdG

þ
ð
G3

�l qc
qn
þ (~y� CTjG3

)
� �

dT dG�
ð
G4

cdudG (11:69)

The choice of the adjoint variable c is not restricted. When c is taken as the solution of the
adjoint equations

lDc ¼ 0, in V (11:70a)

cjG1
¼ 0 (11:70b)

qc
qn

����
G2[G4

¼ 0 (11:70c)
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l
qc
qn

����
G3

¼ ~y� CTjG3
(11:70d)

the differential of the Lagrangian reduces to

dL ¼
ð
G4

cdu dG (11:71)

and the gradient equations takes the form

ruS(s) ¼ c(s), s 2 G4 (11:72)

11.4.7 A Nonlinear Problem

In this section, we illustrate the function estimation approach described above, as applied
to the solution of an inverse problem involving the following diffusion equation:

C*(r*)
qT*(r*, t*)

qt*
¼ r � [D*(r*)rT*]þ m*(r*)T* (11:73)

where
r* denotes the vector of coordinates
the superscript * denotes dimensional quantities

Equation 11.73 can be used for the modeling of several physical phenomena, such as heat
conduction, groundwater flow, and tomography. We focus our attention here to a 1-D
version of Equation 11.73 written in the dimensionless form as (Rodrigues et al. 2004):

qT
qt
¼ q

qx
D(x)

qT
qx

� �
þ m(x)T in 0 < x < 1 for t > 0 (11:74a)

and subject to the following boundary and initial conditions:

qT
qx
¼ 0 at x ¼ 0 for t > 0 (11:74b)

D(x)
qT
qx
¼ 1 at x ¼ 1 for t > 0 (11:74c)

T ¼ 0 for t ¼ 0 in 0 < x < 1 (11:74d)

Notice that in the direct problem, the diffusion coefficient function D(x) and the source term
distribution function m(x) are regarded as known quantities, so that a direct problem is
concerned with the computation of T(x, t).
For the inverse problem of interest here, the functions D(x) and m(x) are regarded as

unknown. Such functions will be simultaneously estimated by using measurements
of T(x, t) taken at appropriate locations in the medium or on its boundaries. These
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measurement errors are assumed to be uncorrelated, additive, normally distributed, with
zero mean, and with a known constant standard deviation.
Practical applications of this inverse problem include the identification of nonhomogene-

ities in the medium, such as inclusions, obstacles or cracks, the determination of thermal
diffusion coefficients, and the distribution of heat sources, groundwater flow, and tomog-
raphy physical problems, in which both D(x) and m(x) vary.
For the simultaneous estimation of the functions D(x) and m(x), with the adjoint problem

of the CGM (Jarny et al. 1991; Alifanov 1994; Alifanov et al. 1995; Ozisik and Orlande 2000;
Jarny 2002), we consider the minimization of the following objective functional:

S[D(x),m(x)] ¼ 1
2

ðtf
t¼0

XM
m¼1

{y[xm, t;D(x),m(x)]� ~ym(t)}
2dt (11:75)

where ~ym(t) are the transient measurements taken at the positions xm, m¼ 1, . . . , M. The
estimated dependent variable y[xm, t; D(x),m(x)] is obtained from the solution of the direct
problem (11.74a through 11.74d) at the measurement positions xm, m¼ 1, . . . ,M, with
estimates for D(x) and m(x). We note in Equation 11.75 that, for simplicity in the analytical
analysis developed below, the measurements ~ym(t) are assumed to be continuous in the
time domain.
We present below the use of the CGM for the minimization of the objective functional

(11.75), by using two auxiliary problems, known as sensitivity and adjoint problems, for the
computation of the step size and gradient directions, respectively.
The sensitivity function, the solution of the sensitivity problem, is defined as the direc-

tional derivative of y(x, t) in the direction of the perturbation of the unknown function
(Jarny et al. 1991; Alifanov 1994; Alifanov et al. 1995; Ozisik and Orlande 2000; Jarny 2002).
Since the present problem involves two unknown functions, two sensitivity problems are
required for the estimation procedure, resulting from perturbations in D(x) and m(x).
The sensitivity problem for DTD(x, t) is obtained by assuming that the dependent variable

T(x, t) is perturbed by eDTD(x, t) when the diffusion coefficient D(x) is perturbed by eDD(x),
where e is a real number. The sensitivity problem resulting from perturbations in D(x) is
then obtained by applying the following limiting process:

lim
e!0

Le(De)� L(D)
e

¼ 0 (11:76)

where Le(De) and L(D) are the direct problem formulations written in the operator form for
perturbed and unperturbed quantities, respectively. The application of the limiting process
given by Equation 11.76 results in the following sensitivity problem:

qDTD

qt
¼ q

qx
D(x)

qDTD

qx
þ DD(x)

qT
qx

� �
þ m(x)DTD for t > 0 in 0 < x < 1 (11:77a)

qDTD

qx
¼ 0 at x ¼ 0 for t > 0 (11:77b)

DD(x)
qT
qx
þD(x)

qDTD

qx
¼ 0 at x ¼ 1 for t > 0 (11:77c)

DTD ¼ 0 in 0 � x � 1 for t ¼ 0 (11:77d)
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A limiting process analogous to that given by Equation 11.76, obtained from the perturb-
ation eDm(x), results in the following sensitivity problem for DTm(x, t):

qDTm

qt
¼ q

qx
D(x)

qDTm

qx

� �
þ m(x)DTm þ Dm(x)T in 0 < x < 1 for t > 0 (11:78a)

qDTm

qx
¼ 0 at x ¼ 0 and x ¼ 1 for t > 0 (11:78b,c)

DTm ¼ 0 in 0 � x � 1; for t ¼ 0 (11:78d)

We note in Equations 11.77a through d and 11.78a through d that the sensitivity problems
depend on the unknown functions D(x) and m(x). Therefore, the present estimation prob-
lem is nonlinear and the objective functional nonquadratic, despite the fact that the direct
problem (11.74a through d) is linear.
A Lagrange multiplier c(x, t) is utilized in the minimization of the functional (11.75)

because the estimated dependent variable T[xm, t;D(x),m(x)] appearing in such functional
needs to satisfy a constraint, which is the solution of the direct problem. Such a Lagrange
multiplier, needed for the computation of the gradient equations (as will be apparent
below), is obtained through the solution of problems adjoint to the sensitivity problems,
given by Equations 11.77a through d and 11.78a through d (Jarny et al. 1991; Alifanov 1994;
Alifanov et al. 1995; Ozisik and Orlande 2000; Jarny 2002). Despite the fact that the present
inverse problem involves the estimation of two unknown functions, thus resulting in two
sensitivity problems as discussed above, one single problem, adjoint to problems (11.77a
through d) and (11.78a through d), is obtained.
In order to derive the adjoint problem, the governing equation of the direct problem,

Equation 11.74a, is multiplied by the Lagrange multiplier c(x, t), integrated in the space
and time domains of interest and added to the original functional (11.75). The following
Lagrangian is obtained:

L[D(x),m(x)] ¼ 1
2

ð1
x¼0

ðtf
t¼0

XM
m¼1

[y� ~y]2d(x� xm)dt dx

þ
ð1

x¼0

ðtf
t¼0

qT
qt
� q
qx

D(x)
qT
qx

� �
� m(x)T

� �
c(x, t)dt dx (11:79)

where d is the Dirac delta function.
The directional derivatives of L[D(x),m(x)], in the directions of perturbations in D(x) and

m(x), are, respectively, defined by

DLD[D,m] ¼ lim
e!0

L[De,m]� L[D,m]
e

(11:80a)

DLm[D,m] ¼ lim
e!0

L[D,me]� L[D,m]
e

(11:80b)

where L[De,m] and L[D,me] denote the Lagrangian (11.79) written for perturbed D(x) and
m(x), respectively.
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After letting the above directional derivatives of L[D(x),m(x)] go to zero, which is a
necessary condition for the minimization of the Lagrangian (11.79), and after performing
some lengthy but straightforward manipulations (Jarny et al. 1991; Alifanov 1994; Alifanov
et al. 1995; Ozisik and Orlande 2000; Jarny 2002), the following adjoint problem for the
Lagrange multiplier c(x, t) is obtained:

� qc
qt
� q
qx

D(x)
qc
qx

� �
� m(x)cþ

XM
m¼1

[T � Y]d(x� xm) ¼ 0 in 0 < x < 1, for t > 0

(11:81a)

qc
qx
¼ 0 at x ¼ 0 and x ¼ 1 for t > 0 (11:81b,c)

c ¼ 0 in 0 � x � 1 for t ¼ tf (11:81d)

During the limiting processes used to obtain the adjoint problem, applied to the directional
derivatives of L[D(x),m(x)] in the directions of perturbations in D(x) and m(x), the following
integral terms are, respectively, obtained:

DLD[D,m] ¼
ð1

x¼0

ðtf
t¼0

DD(x)
qT
qx

qc
qx

dt dx (11:82a)

DLm[D,m] ¼ �
ð1

x¼0

ðtf
t¼0

Dm(x)c(x, t)T(x, t)dt dx (11:82b)

By invoking the hypotheses that D(x) and m(x) belong to the Hilbert space of square
integrable functions in the domain 0< x< 1, it is possible to write (Jarny et al. 1991;
Alifanov 1994; Alifanov et al. 1995; Ozisik and Orlande 2000; Jarny 2002):

DLD[D,m] ¼
ð1

x¼0
rS[D(x)]DD(x)dx (11:83a)

DLm[D,m] ¼
ð1

x¼0
rS[m(x)]Dm(x)dx (11:83b)

Hence, by comparing Equations 11.83a and b and 11.82a and b, we obtain the gradient
components of S[D,m] with respect to D(x) and m(x), respectively, as

rS[D(x)] ¼
ðtf
t¼0

qT
qx

qc
qx

dt (11:84a)

rS[m(x)] ¼ �
ðtf
t¼0

c(x, t)T(x, t)dt (11:84b)
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An analysis of Equations 11.84a and 11.81b through 11.81c reveals that the gradient
component with respect to D(x) is null at x¼ 0 and at x¼ 1. As a result, the initial guess
used for D(x) is never changed by the iterative procedure of the CGM at such points, which
can create instabilities in the inverse problem solution in their neighborhoods.
For the simultaneous estimation of D(x) and m(x), the iterative procedure of the CGM is

written, respectively, as (Rodrigues et al. 2004):

Dkþ1(x) ¼ Dk(x)þ rkDw
k
D(x) (11:85a)

mkþ1(x) ¼ mk(x)þ rkmw
k
m(x) (11:85b)

where
wk

D(x) and wk
m(x) are the directions of descent for D(x) and m(x), respectively

rkD and rkm are the search step sizes for D(x) and m(x), respectively
k is the number of iterations

For the iterative procedure for each unknown function, the direction of descent is
obtained as a linear combination of the gradient direction with directions of descent of
previous iterations. The directions of descent for the CGM for D(x) and m(x) can be written
in a general form, respectively, as

dkD(x) ¼ �rS[Dk(x)]þ gkDw
k�1
D (x)þ Gk

Dw
qD
D (11:86a)

dkm(x) ¼ �rS[mk(x)]þ gkmw
k�1
m (x)þ Gk

mw
qm
m (11:86b)

where gkD, g
k
m,G

k
D, and Gk

m are the conjugation coefficients.
In this example, we use Powell–Beale’s version of the CGM because of its superior

robustness and convergence rate in nonlinear problems (Powell 1977). The conjugation
coefficients for this version of the CGM are given by

gkD ¼
Ð 1
x¼0 {rS[Dk(x)]�rS[Dk�1(x)]}rS[Dk(x)]dxÐ 1
x¼0 {rS[Dk(x)]�rS[Dk�1(x)]}wk�1

D (x)dx
(11:87a)

gkm ¼
Ð 1
x¼0 {rS[mk(x)]�rS[mk�1(x)]}rS[mk(x)]dxÐ 1
x¼0 {rS[mk(x)]�rS[mk�1(x)]}wk�1

m (x)dx
(11:87b)

Gk
D ¼

Ð 1
x¼0 {rS[DqDþ1(x)]�rS[DqD(x)]}rS[Dk(x)]dxÐ 1

x¼0 {rS[DqDþ1(x)]�rS[DqD(x)]}wqD
D (x)dx

(11:87c)

Gk
m ¼

Ð 1
x¼0 {rS[mqmþ1(x)]�rS[mqm(x)]}rS[mk(x)]dxÐ 1

x¼0 {rS[mqmþ1(x)]�rS[mqm(x)]}wqm
m (x)dx

(11:87d)

where gkD ¼ gkm ¼ Gk
D ¼ Gk

m ¼ 0, for k¼ 0.

The search step sizes rkD and rkm, appearing in the expressions of the iterative procedures for
the estimation of D(x) and m(x), Equations 11.86a and b, respectively, are obtained by
minimizing the objective functional at each iteration along the specified directions of descent.
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If the objective functional given by Equation 11.75 is linearized with respect to rkD and rkm,
closed form expressions can be obtained for such quantities as follows:

rkd ¼
F1A22 � F2A12

A11A22 � A2
12

(11:88a)

rkm ¼
F2A11 � F1A12

A11A22 � A2
12

(11:88b)

where

A11 ¼
ðtf
t¼0

XM
m¼1

[DTk
D(xm, t)]

2dt (11:89a)

A22 ¼
ðtf
t¼0

XM
m¼1

[DTk
m(xm, t)]

2dt (11:89b)

A12 ¼
ðtf
t¼0

XM
m¼1

DTk
D(xm, t)DT

k
m(xm, t)dt (11:89c)

F1 ¼
ðtf
t¼0

XM
m¼1

[Yk
m � Tk(xm, t)][DTk

D(xm, t)]dt (11:89d)

F2 ¼
ðtf
t¼0

XM
m¼1

[Yk
m � Tk(xm, t)][DTk

m(xm, t)]dt (11:89e)

In Equations 11.89a through e, DTk
D(x, t) and DTk

m(x, t) are the solutions of the sensitivity
problems given by Equations 11.77a through d and 11.78a through d, respectively,
obtained by setting DDk(x) ¼ wk

D(x) and Dmk(x) ¼ wk
m(x).

The test cases examined below in dimensionless form are physically associated with a
heat conduction problem in a homogeneous steel bar of length 0.050 m. The diffusion
coefficient and the spatial distribution of the source term are supposed to vary from the
base values of D(x)¼ 54 WmK�1 and m(x)¼ 105 Wm�3 K, respectively. The base values for
the diffusion coefficient and source term distribution are associated with solid–solid phase
transformations in steels. The final time is assumed to be 60 s, resulting in a dimensionless
value of tf¼ 0.36, and 50 measurements are supposed available per sensor.
Figure 11.4 shows the results obtained with the measurements of two nonintrusive

sensors, for a step variation of D(x) and for a constant m(x). The results presented in Figure
11.4 were obtained with Powell–Beale’s version of the CGM. The simulated measurements
in this case contained random errors with standard deviation s¼ 0.01ymax, where ymax is
the maximum absolute value of the measured variable. The initial guesses used for the
iterative procedure of the CGM were D(x)¼ 0.9 and m(x)¼ 4.5. We note in Figure 11.4 that
quite accurate results were obtained for such a strict test case, involving a discontinuous
variation for D(x), and only nonintrusive measurements. Although some blurring is
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observed near the discontinuity of D(x) at x¼ 0.25, the locations of the discontinuities and
the maximum value of the function are quite accurately estimated. Furthermore, the
estimated function for m(x) oscillates about the constant exact one with an amplitude
smaller than the original distance of the initial guess to the exact function. The accuracy
of the estimated functions improves when measurements of more sensors are used in the
inverse analysis, as illustrated in Figure 11.5, which was obtained with measurements
containing random errors (s¼ 0.01ymax) of 10 sensors evenly located inside the medium.
Figure 11.6 illustrates the results obtained for the simultaneous estimation of D(x) and

m(x), for a constant exact functional form for D(x) and a triangular variation for m(x). The
results presented in Figure 11.6 were obtained with measurements containing the random
errors (s¼ 0.01ymax) of 10 sensors evenly located inside the medium, by using Powell–
Beale’s version of the CGM. Differently from the results shown above in Figure 11.5, we
note in Figure 11.6 that the present solution approach fails to estimate the peak value of
the exact triangular function for m(x). The locations of the discontinuities on the first
derivative of the exact function, which characterize the change of m(x) from its base
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value, could not be accurately estimated. Furthermore, the function estimated for D(x) is
characterized by large oscillations. We note that, generally, results similar to those pre-
sented in Figure 11.6 were obtained whenever the exact function for m(x) was not constant.
This is due to the lower sensitivity of the measured variable with respect to m(x) as
compared to the sensitivity with respect to D(x).
Figure 11.7 presents the reduction of the objective functional with respect to the number

of iterations obtained with Powell–Beale’s, Polak–Ribiere’s, and Fletcher–Reeves’ versions
of the conjugate gradient. The results presented in Figure 11.7 correspond to the test case
shown in Figure 11.6, involving a constant functional form for D(x) and a triangular
variation for m(x). Figure 11.7 shows that the prescribed tolerance for the iterative proced-
ure of the CGM was reached only with Powell–Beale’s version; the other two versions did
not effectively reduce the objective functional, and the iterative procedure was stopped
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when the specified maximum number of iterations (100) was reached. The results
presented in Figure 11.7 are representative of the other test cases examined, that is,
Powell–Beale’s version of the CGM resulted in the largest rate of reduction of the objective
functional, so that the tolerance prescribed for the stopping criterion was reached in the
smallest number of iterations. However, for some test cases, the use of Polak–Ribiere’s
version of the CGM resulted in reduction rates for the functional comparable to those
obtained with Powell–Beale’s version, but unexpected oscillations were observed on the
values of the functional.

11.5 Conclusions

In this chapter, we introduced the adjoint method for the computation of the gradient of
the objective functional, thus avoiding the use of computationally expensive techniques
such as finite differences. The adjoint method is generally used together with the CGM and
the discrepancy principle in order to obtain regularized solutions for inverse problems.
This iterative regularization technique was illustrated with examples involving inverse
problems in vector and function spaces. Furthermore, linear and nonlinear inverse prob-
lems have been addressed.

Appendix 11.A: Conjugate Directions and Conjugation Parameter

The convergence of the CGM to the minimum of the quadratic form in a finite number n
iterations is due to the choice of the conjugate directions wk. Let us put the least square
criterion under the form:

S(u) ¼ hCu,uiU � 2 XT~y, u
� �

U þk~yk2

where C¼XT X is a symmetric matrix. Then by definition, two linear independent vectors
w1, w2 are said to be C-conjugate if hCw1, w2i ¼ 0.
Now let us prove that the following linear combination

w2 ¼ �rS(u2)þ gw1 with the scalar g ¼ krS
2k2

krS1k2

produces a direction w2 C-conjugate to w1.

Proof

1. The gradient satisfies the equation

rS2 �rS1 ¼ C(u2 � u1)
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2. The iteration prescription is

(u2 � u1) ¼ rw1

3. Then, the conjugation equation can be rewritten as

r Cw1,w2� � ¼ 0

C(u2 � u1),w2� � ¼ 0

(rS2 �rS1),w2� � ¼ 0

(rS2 �rS1),rS2 þ grS1)� � ¼ 0

4. Expansion produces

(rS2 �rS1),rS2� �þ g (rS2 �rS1),rS1)� � ¼ 0

5. The termination condition implies

rS1,rS2 ¼ 0i�
Then, finally we have

rS2,rS2� �� g rS1,rS1)� � ¼ 0

which completes the proof.

Nomenclature

S(u) objective function
Xij sensitivity coefficients
t time
u unknown function to be estimated
w direction of descent
X functional relation that connects the input to the output through the model

equations
y observable variables or model output
~y experimental data

Greek Variables

g, G conjugation coefficients
e tolerance for the stopping criterion
r search step size
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s standard deviation
c Lagrange multiplier
ru(S) gradient of the objective function

Superscripts

k iteration number
q iteration number where a restarting strategy is applied in Equations 11.28

and 11.29
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12.1 Introduction

Statistical inference is the process of drawing conclusions from statistical samples, and
there are a number of different ways to perform it. In this chapter, we present the Bayesian
approach to inference as an alternative to the more traditional approach (frequentist),
which was used in Chapters 7 and 9. Under the frequentist approach, the unknown
model parameters are considered to be fixed (cannot be represented probabilistically),
and they are estimated by appropriately chosen statistics (estimators, which are functions
of the observed data). Confidence intervals and hypothesis tests can be obtained through
the sample distribution of the estimators, and predictions can be made when considering
the estimated parameters as their true values. Note, however, that this kind of prediction
procedure does not take into consideration the uncertainty about the model parameters.
Under the Bayesian approach, all unknown quantities, including unknown parameters,

missing data, future observation, etc., can be represented through a probabilistic model—
the prior distribution. Our interest is to obtain the posterior distribution of these unknown
quantities, which is the conditional distribution of the parameter after observing a related
data set. Once the posterior distributions are obtained, any desired inference about the
unknown quantities can be performed, as all the information available is described

437



through these distributions. The greatest advantage of the Bayesian approach to inference
is that it takes into consideration all the uncertainty about the unknown quantities in a
model, unlike the frequentist approach.
Analytically obtaining the posterior distribution can, however, be a hard task (or even

impossible), when dealing with complicated models. Numerical methods have been pro-
posed to sample these distributions and solve this problem, and, with the rapid advance of
computers in recent years, they have gained a lot of popularity. In the last decade, the most
popular among all the methods to estimate Bayesian models was the Markov chain Monte
Carlo (MCMC). As a consequence, Bayesian inference has also gained popularity, and it is
being extensively used nowadays to solve statistical problems in a wide range of applica-
tions. O’Hagan (2003) gives an overview on the subject and mentions a few applications in
which he was involved, such as cost-effectiveness of medicines, terrestrial carbon dynam-
ics, auditing, radiocarbon dating, setting water quality standards, and monitoring envir-
onmental pollution.

12.2 Bayesian Inference

In the Bayesian approach to inference, all the information available about the unknown
parameters before the observation of a data set must be represented by a prior distribution.
The prior distribution should be specified either through subjective knowledge about the
parameter or through the use of information obtained from previous experiments. An
indirect procedure is the specification through functional forms of parametric densities.
The parameters of these densities, known as hyper-parameters, are chosen in a subjective
way, according to the information available.
A systematic procedure involves choosing the functional form of the prior distribution

such that the prior and posterior distributions belong to the same family of distributions,
which are the so-called conjugate families. The advantage of conjugacy is that it makes
the analysis easier and also permits exploiting the sequential aspect of the Bayesian
paradigm.
When no information is available about the unknown parameters, noninformative priors

or reference priors can be assigned. A noninformative prior can be obtained through a
conjugate prior when setting the variance of this distribution to a relatively high value.
Suppose u is a vector of the unknown parameters in a given model and p(u) represents its

prior distribution. Once a data set Y is observed from that model, this prior distribution
must be combined to the information given by the likelihood function p(Yju). This com-
bination results in the posterior distribution of u, represented by p(ujY), which can be
obtained via the Bayes theorem, given by

p(ujY) ¼ p(Yju)p(u)
p(Y)

, (12:1)

with

p(Y) ¼
ð
p(Yju)p(u)du: (12:2)
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The more informative the prior information, the more it influences the posterior. The
bigger the number of observations in the data set, the more the likelihood that it will
influence the posterior.
All the information available about the parameters u is contained in their posterior

distribution. When the posterior distribution of u is known, all kinds of inferences can be
performed, such as the punctual estimation (such as mean, median, and mode) and the
construction of credibility intervals.
Note that any unknown quantity can be seen as a parameter under the Bayesian

approach to inference. That way, performing prediction for the future (in time series)
or interpolation (in spatial models), for example, can be easily performed under this
approach. A good review on Bayesian statistics can be found in Migon and Gamerman
(1999).

12.3 MCMC Methods

The posterior density p(ujY) can be too complex and impossible to be obtained directly.
With the use of the MCMC methods it is possible to sample from a Markov chain, which
has the desired posterior as an equilibrium distribution. That way, after the chain con-
verges to the equilibrium, the sampled values form a sample from this distribution, which
can be used for Monte Carlo calculations. In this section, we present two MCMC algo-
rithms to sample from the posterior of a set of parameters u¼ (u1, . . . , ud): Gibbs sampling
andMetropolis–Hastings. These and other methods can be seen in detail in Gamerman and
Lopes (2006).

12.3.1 Gibbs Sampling

With the objective of obtaining a sample from the posterior p(u1, . . . , udjY), Gibbs sampling
(Gelfand and Smith 1990) samples from the full conditional distributions of each parameter
given the other parameters of the model, or in other words, it samples values of ui from
p(uiju�i,Y), i, . . . , d, where u�i¼ (u1, . . . , ui�1, uiþ1, . . . , ud)0. It is assumed that these distribu-
tions are known explicitly, and samples from them can be obtained through simple
algorithms.
The steps of this sampling scheme are

1. Do j¼ 1 and give initial values to the parameters u(0) ¼ (u(0)1 , . . . , u(0)d )0

2. Obtain a new value u( j ) ¼ (u( j )1 , . . . , u( j )d )0 through the successive sampling of values

u
( j )
1 � p(u1ju( j�1)2 , . . . , u( j�1)d ,Y),

u
( j )
2 � p(u2ju( j )1 , u( j�1)3 , . . . , u( j�1)d ,Y),

..

.

u
( j )
d � p(udju( j )1 , . . . , u( j )d�1,Y);

(12:3)

3. Do j¼ jþ 1 and return to step 2 until convergence is achieved
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As the number of interactions increase, the chain gets closer to its equilibrium state. For
inference purposes, the period before convergence (called the ‘‘burn-in’’) must be dis-
carded. The sample obtained after the ‘‘burn-in’’ period can be seen as a sample from the
posterior distribution of u.
In many cases, the sampled Markov chains present an autocorrelation structure and

therefore we do not observe an independent sample of values from the posterior. Working
with this autocorrelated chain can lead to the underestimation of the variance. To reduce
this problem, it is advised to work with a systematic subsample of the sampled values
(after convergence), for example, at every k> 1 iteration.

12.3.2 Metropolis–Hastings

The idea behind the Metropolis–Hastings algorithm (Metropolis et al. 1953; Hastings 1970)
is to sample candidate values for u from a proposal density q(xjy). The proposal density
depends on the current state y to generate a new proposed sample x, which can be accepted
or not, according to a certain probability specified in a way to preserve the equilibrium
distribution of interest.
The steps of this sampling scheme are

1. Do j¼ 1 and give initial values to the parameters u(0) ¼ (u(0)1 , . . . , u(0)d )0.
2. Sample a new proposed value f for u from the distribution q(fju( j�1)).
3. Accept this new value with probability:

a(u( j�1),f) ¼ min 1,
p(fjY)q(u( j�1)jf)

p(u( j�1)jY)q(fju( j�1))

( )
: (12:4)

If the new value is accepted, u( j)¼f; otherwise, u( j)¼ u( j�1).

4. Do jþ 1 and return to step 2 until convergence is achieved.

After the chain converges to its equilibrium state, say, in iteration J, the values u( J), . . . , u(M)

form a sample from the posterior distribution of u. As in the Gibbs sampling scheme, the
obtained sample can be autocorrelated.
In general, the acceptance rate of the new values is adjusted to be around 50%. This

adjustment can normally be made by altering the variance of the proposal density.

12.3.3 Convergence of the Chain

In theory, the Markov chain will eventually converge to the equilibrium distribution if we
perform a sufficiently large number of iterations. This number, however, will vary accord-
ing to the application in consideration, and therefore it is necessary to verify if and when
the convergence was reached in every particular case.
An informal way of verifying the convergence is by analyzing the trajectory of at

least two independently generated chains (starting at different points of the parametric
space) and visually verifying if they all converge to the same place. Formal methods
were also proposed to verify the convergence of the chains. The convergence diagnostics
of Geweke (1992), Gelman and Rubin (1992), and Raftery and Lewis (1992) are the most
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popular among the statistical community, and a brief description of these methods are
as follows:

. Geweke (1992): The idea behind this criteria is that after reaching convergence,
if we take nonoverlapping parts (say the first n1 iterations and the last n2
iterations) of the Markov chain, both should constitute samples of the stationary
distribution. The means of both parts are then compared through a difference of a
means test.

. Gelman and Rubin (1992): To calculate the Gelman and Rubin statistic, k � two
chains must be run in parallel starting at different points in the parametric space.
The idea is that after convergence, all chains will reach the stationary distribution,
and therefore, the within-chain and the between-chain variances should be similar.
The statistic R is calculated as a rate of the estimated variance (which is a weighted
average of these two variances) and the within-chain variance. Once convergence
is reached, R should be approximately equal to one.

. Raftery and Lewis (1992): This method is intended both to detect convergence to
the stationary distribution and to provide a way of bounding the variance of
estimates of quantiles of functions of parameters. If we define some acceptable
tolerance for the desired quantile and a probability of being within that tolerance,
the Raftery and Lewis diagnostic will calculate the minimum number of iterations
n and the number of burn-ins m that would be needed to estimate the specified
quantile to the desired precision if the samples in the chain were independent.
Positive autocorrelation will increase the required sample size above these min-
imum values. An estimate I (the ‘‘dependence factor’’) of the extent to which
autocorrelation inflates the required sample size is provided. Values of I larger
than 5 are worrisome and can indicate influential starting values, high correlations
between coefficients, or poor mixing.

Details about these methods can be found in Gamerman and Lopes (2006) and Cowles and
Carlin (1996). Cowles and Carlin (1996) also provide an expository review of 10 other
convergence diagnostics, describing the theoretical basis and practical implementation
of each.

12.4 Applications in Different Statistical Problems

In this section, different applications of statistical models will be presented with the use of
MCMC methods to obtain samples of the desired posterior distributions. The first appli-
cation presents a normal hierarchical model for the weights of rats, and it was implemen-
ted in the user-friendly software WinBugs (Bayesian Using Gibbs Sampling for Windows;
Thomas et al. 1992); the second application concerns a Poisson count change point problem
to model the number of accidents in coal mines in Great Britain, and it was implemented in
the software R (R Development Core Team 2005); in the third application, a space-time
model is presented to model a pollutant set measured in the metropolitan region of Rio de
Janeiro, and it was also implemented in the software WinBugs.
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12.4.1 Rats: A Normal Hierarchical Model

This example is taken from Gelfand et al. (1990) and presented in the WinBugs user manual
(Spiegelhalter et al. 2000). It concerns 30 young rats whose weights were measured weekly
for 5 weeks. We denote by Yij the weight of the ith rat measured at age xj.
A plot of the 30 growth curves suggests some evidence of downward curvature, and the

proposed model is essentially a random effects linear growth curve given by

Yij � N(ai þ bi(xj � x), t�1c ),

ai � N(ac, t�1a ),

bi � N(bc, t
�1
b ) for i, j ¼ 1, . . . , 30,

(12:5)

whereN(m, s2) denotes the normal distribution with mean m and variance s2, and therefore,
tc, ta, and tb represent precisions. x¼ 22 is the mean weight of the rats, and x

0
js were

standardized around their mean to reduce dependence between ai and bi in their likelihood.
The unknown quantities in this model are ai, bi, i¼ 1, . . . , 30, and tc, and the hyper-

parameters ac, ta, bc, and tb. The prior distributions of the parameters are set to be
independent noninformative conjugate priors.
This application was implemented in the software WinBugs, which is a user friendly

software that permits the specification of various types of models, and estimates param-
eters via MCMC. The model, including the priors, must be specified by the user, as well as
the number of chains and iterations. As a result, the sampled values can be displayed, as
well as various different graphics, showing, for example, the trajectory of the chains or
histograms of the posterior distributions. When the model is simple enough, the user can
design a doodle representation of the model and the code is automatically generated by the
program. For this example, a doodle representation is provided in Figure 12.1.
Two chains starting at different points of the parametric space were obtained with 500

iterations each. Convergence was achieved very fast, and Figure 12.2 shows, as an
example, the trajectory of the two chains obtained for ta and tb. The ‘‘burn-in’’was chosen
to be of 100 observations.

alpha.c alpha0 beta.c tau.betatau.alpha

tau.c

sigma

mu[i, j]

Y [i, j]

for(i IN 1:N )
for(j IN 1:1)

x[ j]

beta[i]alpha[i]

FIGURE 12.1
Graphical model for the example of rats.
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One important aspect that must be observed is the autocorrelation in the chains. Figure
12.3 shows the autocorrelation graphics obtained for the parameters ta and tb. It can be
seen that there is significant autocorrelation until leg 5 for the tb chain. The autocorrelation
in the chains for the other parameters was also investigated, and it was found reasonable to
select values at every five iterations in order to obtain independent samples.
Table 12.1 presents descriptive statistics of the sampled values from the posterior distri-

butions of tc and the hyper-parameters ac, ta, bc, and tb.

0.0125

0.01

0.0075

0.005

0.0025

0.0

500

15.0

10.0

5.0

0.0

600 800
Iteration

1000

500 600 800
Iteration

1000

tau.alpha chains 1:2

tau.beta chains 1:2

FIGURE 12.2
Trajectory of the two chains obtained for ta and tb.

1.0

0.5

0.0

0 20
Lag

40 0 20
Lag

40

–0.5

–1.0

1.0

0.5

0.0

–0.5

–1.0

tau.alpha chains 1:2 tau.beta chains 1:2

FIGURE 12.3
Autocorrelation in the chains for ta and tb.

Bayesian Approaches for the Solution of Inverse Problems 443

  

http://www.crcnetbase.com/action/showImage?doi=10.1201/b10918-15&iName=master.img-000.jpg&w=250&h=57
http://www.crcnetbase.com/action/showImage?doi=10.1201/b10918-15&iName=master.img-001.jpg&w=249&h=62


Gelfand et al. (1990) also consider the problem of missing data, and delete the last
observations of some of the rats. The appropriate data file is obtained by simply replacing
data values by NA. The model specification is unchanged, since the distinction between
observed and unobserved quantities is made in the data file and not in the model
specification. These unobserved data are seen as parameters of the model and their
posterior (predictive) distributions can be automatically obtained by the program.

12.4.2 Poisson Count Change Point Problem

This example was presented by Dellaportas and Roberts (2001), and it was originally taken
from Carlin and Louis (2000, p. 185). The data set consists of a series relating to the number
of British coal mining disasters per year, from 1851 to 1962. The total number of observed
years is T¼ 112.
It is clear from Figure 12.4, which shows a plot of the data, that the rate of disasters has

reduced over the years.
Carlin and Louis (2000) propose that the number of disasters per year follow a Poisson

distribution, but the rate of the Poisson changes at a certain (unknown) year. The model
can be written as

Yt � Poisson(u), t ¼ 1, . . . , k,

Yt � Poisson(l), t ¼ k þ 1, . . . ,T,
(12:6)

TABLE 12.1

Descriptive Statistics of the Posterior Samples for ac, ta, bc, tb, and tc

Parameter Mean S.D. MC Error 2.5% Median 97.5%

ac 242.5 2.638 0.1733 236.8 242.6 247.4

ta 0.004867 0.001391 1.171E�4 0.002611 0.004646 0.008008
bc 6.173 0.1009 0.007608 5.97 6.182 6.396

tb 3.951 1.38 0.07741 1.861 3.685 7.429

tc 0.02743 0.004608 3.985E�4 0.01945 0.02736 0.03704

FIGURE 12.4
Counts of coal mining disasters in Great
Britain.
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where
Yt is the number of disasters in year t
u is the rate up to the kth year
l is the rate thereafter

The Bayesian specification of the model is completed with a hierarchical framework: u �
Gamma(a1, b1), l � Gamma(a2, b2), k follows a discrete uniform over {1, . . . ,T}, each
independent of one another, and finally b1 � Gamma(c1, d1) and b2 � Gamma(c2, d2).
Defining Y¼ {Y1, . . . , YT}, this choice of specification leads to the following full condi-

tional distributions:

ujY, l, b1, b2, k � Gamma a1 þ
Xk
i¼1

Yi, k þ b1

 !
,

ljY, u, b1, b2, k � Gamma a2 þ
XT
i¼kþ1

Yi,T � k þ b2

 !
,

b1jY, u,l, b2, k � Gamma(a1 þ c1, uþ d1),

b2jY, u,l, b1, k � Gamma(a2 þ c2,lþ d2),

(12:7)

and

p(kjY, u,l, b1, b2) ¼ p(Yjk, u, l)PT
j¼1 p(Yjj, u, l)

, (12:8)

where

p( yjk, u,l) ¼ exp {k(l� u)}
u

l

� �Xk
i¼1

Yi: (12:9)

Note that as all the full conditional distributions could be obtained, the Gibbs sampling
algorithm can be used to sample the posterior distributions of the parameters u, l, b1, b2,
and k. The hyper-parameters a1, a2, c1, c2, d1, and d2 are set to be equal to 0.001, such that
prior distributions of b1 and b2 are flat with mean 1 and variance 1000. The computation
was programmed in R, which is a free software environment for statistical computing and
graphics.
Figure 12.5 shows the histograms of the samples obtained from the posterior distribu-

tions for the rate up to the kth year (u), the rate after the kth year (l), and the change point k.
It is clear by these results that u is significantly higher than l. The higher posterior
probability for k is when k¼ 41, which corresponds to the year 1891.

12.4.3 Atmospheric Pollution in Rio de Janeiro

In this example, we present a data set consisting of measurements of pollutants with less
than 10 mg=m3 of diameter (PM10). This data set was obtained from a monitoring campaign
in 1999, where concentrations of PM10 were observed in 16 monitoring stations spread over
the metropolitan region of Rio de Janeiro. The observations were made from January to
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December, every 6 days, but there is a great amount of missing data. A more detailed
description of this example can be found in Paez and Gamerman (2003).
Figure 12.6 shows the map of the metropolitan region of Rio de Janeiro with the

location of the monitoring stations. The rectangle defines the area with more informa-
tion regarding the PM10 concentrations, and where 15 of the 16 monitoring stations are
located.
Figure 12.7 shows the 16 time series, each one corresponding to a monitoring station. It

can be observed that the series tend to have similar behavior through time. That clearly
shows the dependence of the PM10 concentrations to the day they are measured. The big
amount of missing data is also evident by looking at Figure 12.7.
Other important question is how the location of observation influences the observed

concentration of pollution. To have a preliminary idea about this, Figure 12.8 presents the
means of PM10 concentrations per monitoring station. Lower concentrations are observed
in the south and east of the area of study, which can be explained by the fact that this
region is mostly residential, and suffers less with emissions from industries.
A preliminary analysis performed by Paez and Gamerman (2003) shows that the max-

imum daily temperature observed in the region of study and indicators of the day of the
week can be used to explain part of the variation of the PM10 concentrations. Besides that,
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FIGURE 12.5
Posterior distribution of the parameters u, l, and k.
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Concentration of PM10 through time.
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it is suggested that the effects of the maximum temperature could be varying in space. The
model specified by Paez et al. (2005) is given by

Y t(si) � N(mt(si),s
2
e),

mt(si) ¼ u0(si)þ u1(si)TEMPt þ X
0
tuþ ft,

uj(�) � GP(gj,s
2
j rj(�;lj)), j ¼ 0, 1,

(12:10)

where
Yt(si) is the square root of the PM10 concentration levels, si 2 S, i¼ 1, . . . , 16 and period of

time t¼ 1, . . . , 59
TEMPt is the maximum temperature in day t
Xt¼ (Monday, Tuesday, Wednesday, Thursday, Friday, Saturday)0t are indicators of the

day of the week

It is assumed that {uj(si), si 2 S}, j¼ 1, 2 are Gaussian processes (GP) (multivariate normal
distribution) with mean gj 2 R and covariance function s2

j rj(s,u;lj),s
2
j > 0, lj 2 Lj � Rþ.

The correlation functions rj(�; lj), j¼ 1, 2 are specified as independent exponential correl-
ation functions. f is modeled through an AR(1) process given by

ft ¼ dft�1 þ vt, vtjs2
f �ind N(0,s2

f), (12:11)

with d 2 [0, 1),s2
f > 0 and t 2 Z.

To complete the Bayesian specification, the prior distributions for the unknown param-
eters in the model need to be specified. Paez et al. (2005) specify noninformative priors for
u2, . . . , u7,s�2f , g0,g1, and d; and informative priors for s�2e ,s�20 ,s�21 ,l1 and l0, with param-
eters chosen by preliminary analysis.
Samples from the posterior distributions were obtained via WinBugs. A summary of the

results is presented in Table 12.2. It is interesting to note that the concentrations of PM10

tend to be higher on Thursdays and Fridays than during the rest of the week. The
estimated precision ŝ�20 of the intercept process is lower than the estimated precisions
from the error and temporal component ŝ�2e and ŝ�2f , showing that the variation in the
intercept is important to explain the variability of the PM10 concentrations. The estimated
precision ŝ�21 is also a lot higher than ŝ�20 .

FIGURE 12.8
Means of PM10 concentrations by the
monitoring station.
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Figure 12.9 shows the histograms of the posterior distribution of the parameters
s�2e ,s�20 ,s�21 , and l1. All the parameters are highly concentrated in small intervals with
the exception of s�20 .
One of the main interests in this kind of application is to be able to do interpolation in

space and prediction for the future. In this application, Paez et al. (2005) perform interpol-
ation in a 50	 50 rectangular grid of points, covering part of the metropolitan region of Rio
de Janeiro, which corresponds to the rectangle in Figure 12.6.
Once a sample of the posterior of Y59(�) is obtained, a sample in the original scale of the

PM10 concentrations can be obtained applying the quadratic transformation to every
sampled value. Figure 12.10 shows the interpolated surface of the response process
(Yt(�))2 for time t¼ 59, showing that the levels of PM10 tend to be lower in the region that
corresponds to the south zone of the city of Rio de Janeiro.

12.5 Bayesian Inference for the Solution of Inverse Problems

Collecting data is a way of obtaining information about a physical system or phenomenon
of interest. In many situations, however, the quantities that we are able to measure are
different from the ones we actually wish to determine, and the measurements can only give
us some information about the desired quantities. The problem of trying to reconstruct the
quantities that we really want is called an inverse problem. Typical inverse problems
include, among others, inverse heat transfer problems, computer axial tomography,
model fitting, image analysis, numerical analysis, and geophysics. In this chapter, we
emphasize the solution of inverse heat transfer problems.

TABLE 12.2

Descriptive Statistics from the Posterior Samples
of the Model Parameters

Parameter 2.5% 97.5% Mean S.D.

uMON �0.140 1.827 0.901 0.501

uTUE �0.959 1.261 0.157 0.583

uWED �0.477 2.224 0.907 0.688

uTHU 0.526 3.378 1.876 0.720
uFRI 0.605 2.953 1.824 0.604

uSAT �0.537 1.300 0.382 0.477

g0 1.413 9.345 5.860 2.040

g1 0.065 0.152 0.112 0.023

l0 0.0178 0.596 0.224 0.131

l1 0.0111 1.468 0.318 0.409

s�20 0.0567 0.532 0.234 0.124

s�21 109.5 1196.0 495.1 279.0
D 0.289 0.927 0.636 0.169

s�2f 0.441 1.246 0.770 0.204

s�2e 0.638 0.831 0.731 0.035
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With the fast advance in computational power and with the growth of interest in
robustness and reliability, optimization under uncertainty has become the center of current
engineering identification, design, and control research. Very recently, a sequence of
methods have been proposed to solve stochastic inverse heat transfer problems, including
sensitivity analysis, the extended maximum likelihood estimator approach, the spectral
stochastic method, and the Bayesian inference method.
More specifically, the Bayesian statistical inference method has many advantages over

other methods of solving inverse heat transfer problems. It provides not only point
estimates but also the probability distribution of unknown quantities conditional on
available data. Also, it explores uncertainty in the polluted data, which is rather critical
because solutions to inverse problems are extremely sensitive to data errors. Applications
of Bayesian inference to inverse heat transfer problems can be found, for example, in Wang
and Zabaras (2004, 2005a, 2005b, 2006).
In this section, we present an example of the application of Bayesian statistics and

MCMC methods for the solution of an inverse heat transfer problem, presented in Naveira
et al. (2008). In this application, a simulated data set is obtained based on an experiment
where one side of a flat surface, which has an initial temperature of T0, is suddenly
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FIGURE 12.9
Histograms of the posterior distribution of the parameters s�2e ,s�20 ,s�21 , l0, and l1.
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submitted to a temperature of 08C. The considered problem was modeled considering the
following hypothesis:

. The surface was treated as a half-infinite and its thermal diffusivity was assumed
unknown and independent from the temperature.

. The heat transfer was considered to be 1D.

. The initial temperature T0 was considered uniform and unknown.

That way, the mathematical formulation of the considered physical model is given by

qT(x, t)
qt

¼ a
q2T(x, t)

qx2
, 0 < x <1, t > 0,

T(x, 0) ¼ T0, 0 < x <1,

T(0, t) ¼ 0, t > 0:

(12:12)

The partial differential equation given above can be solved analytically leading to the
following solution:

T(x, t) ¼ T0 erf
xffiffiffiffiffiffiffi
4at
p
� �

, (12:13)
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FIGURE 12.10
Interpolated surface of the response process (Yt(�))2 for time t¼ 59.
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where
T(x, t) is the temperature at a location x of the surface in time t
a is its thermal diffusivity
erf(�) is the error function defined by erf(x) ¼ (1=

ffiffiffiffi
p
p

)
Ð x
0 exp {�t2} dt

A simulation of the problem described above was performed to obtain temperatures in a
fixed location of the surface. After that, an exercise was made to simultaneously estimate
the parameters of the initial temperature (T0) and the thermal diffusivity (a) of the surface
using MCMC methods.
Temperatures y1, y2, . . . , yT were simulated, independently, for a set of T¼ 250 different

periods of time t1, t2, . . . , t250 for a given position xsensor¼ 0.01 m of the surface. They were
simulated from a normal distribution with their mean given by the direct solution given
above and variance given by s2¼ 2, which will be considered known.

yi �indN T0 erf
xsensorffiffiffiffiffiffiffiffiffi
4ati
p
� �

,s2
� �

, i ¼ 1, . . . ,T: (12:14)

Note that the mean of yi depends on the time it was measured ti. The parameters were set
to T0¼ 508C and a¼ 4.9	 10�7m2=s for the simulation.
Given the temperatures, our aim in this application is to obtain posterior distributions for

the model parameters, T0 and a, and compare these distributions to their real values.
Assuming that the measurements are independent, the likelihood is given by

p(Yju) ¼ 1

(2ps2)n=2
exp

�(Y � E[Yju])T(Y � E[Yju])
2s2

( )
, (12:15)

where
u is the set of unknown parameters u¼ {T0, a}
Y is the vector of measured temperatures Y¼ {y1, y2, . . . , y250}
E(Yju) denotes the expectation of Y given the model parameters u

For a given temperature yi, i¼ 1, . . . , 250, E( yiju)¼T(xsensor, ti).
We adopt uniform distributions as prior distributions for the parameters T0 and a in

the intervals [458C, 608C] and [10�7, 10�5 m2=s], respectively.
Three different MCMC algorithms were proposed for the estimation of the model param-

eters.Note that in theory, allMCMCalgorithmsshouldgiveequal results, as theymustprovide
samples from the posterior distribution of the unknown parameters of the model. Different
algorithms can, however, have different convergence speeds and different computational
running times, and therefore this kind of comparison is of interest. The three different cases are

. Case 1: a and T0 are sampled through Metropolis–Hastings steps. The proposal
distribution for each parameter is normally centered on its previous value in the
Markov chain, and with a conveniently chosen variance. The acceptance of the
move is tested jointly for the two parameters.

. Case 2: a and T0 are sampled through Metropolis–Hastings steps. The proposal
distribution for each parameter is normally centered on its previous value in the
Markov chain, and with a conveniently chosen variance. The acceptance of the
move is tested separately for each parameter.
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. Case 3: a is sampled through Metropolis–Hastings steps and T0 is sampled by
Gibbs sampling. The proposal distribution for a is normally centered on its
previous value in the Markov chain, and with a conveniently chosen variance.

Note that it is not possible to obtain a closed form for the full conditional of a. However, it
is possible to obtain a closed form for the full conditional of T0, which is easy to sample
from. It is a normal distribution given by

T0jY,a � N

P
i yi erf �1=

ffiffiffiffiffiffiffiffiffi
4ati
p� �P

i erf �1=
ffiffiffiffiffiffiffiffiffi
4ati
p� �2 ,

s2P
i erf �1=

ffiffiffiffiffiffiffiffiffi
4ati
p� �2

 !
: (12:16)

That way, it is possible to use Gibbs Sampling to sample from T0 (as in case 3) but not
from a.
The algorithms were implemented in the software MATLAB1, a numerical computing

environment and a fourth-generation programming language developed by The Math-
Works (see Gilat [2004] for an introduction to the software). Convergence is achieved after
around 1000 iterations for the algorithms in cases 2 and 3, and it takes around 2000
iterations for the chains to converge in the algorithm in case 1, showing a possible
disadvantage in updating T0 and a jointly. The burn-in period was set to 10,000 iterations
for case 1 and 5000 to cases 2 and 3. After the burn-in period, 50,000 iterations were
sampled for each case. Computational times were 178, 316, and 188 s under cases 1, 2,
and 3 respectively. That way, even though it took longer to converge, the algorithm in case
1 was faster than the other algorithms, making its use worthwhile.
The results obtained under the three algorithms were similar, as expected. Tables 12.3

and 12.4 show the posterior mean, median, standard deviation, and 95% credibility
intervals for T0 and a, respectively. Both parameters were well estimated, with their
posterior means being very close to their real values.

TABLE 12.3

Posterior Results for the Parameter T0

Case Mean Median S.D. 95% CI

1 50.5146 50.4907 0.249757 [50.0582, 51.0544]

2 49.9987 50.005 0.274711 [49.4564, 50.5368]

3 50.0935 50.0916 0.208832 [49.6887, 50.5323]

TABLE 12.4

Posterior Results for the Parameter a

Case Mean Median S.D. 95% CI

1 5.026	 10�7 5.019	 10�7 8.269	 10�9 [4.872, 5.199]	 10�7

2 4.935	 10�7 4.938	 10�7 8.781	 10�9 [4.767, 5.112]	 10�7

3 4.950	 10�7 4.948	 10�7 8.653	 10�9 [4.803, 5.122]	 10�7
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12.6 Final Remarks

In this chapter, we presented a review on Bayesian statistics and MCMC methods to solve
statistical problems. The methodology described here can have many advantages over
other methods of solving inverse problems. An application was made to solve a simple
inverse heat transfer problem where we compared the performance of different MCMC
algorithms. It is important to note that Bayesian statistics and MCMC methods can also be
applied to more complex inverse problems.

Nomenclature

E[�] expected value
exp exponential function
Gamma(a, b) Gamma distribution with mean a=b and variance a=b2

GP(m, s2r(u)) Gaussian process with mean m, variance s2, and correlation function r(u)
N(m, s2) normal distribution with mean m and variance s2

p(u) density function of the prior distribution of u
p(ujY) density function of the posterior distribution of u
p(Yju) likelihood function of u
Poisson(l) Poisson distribution with mean l
Y vector of observations

Greek Variables

u scalar parameter
u vector of parameters

Superscripts
^ estimated value
– mean value
T transpose of a matrix or a vector
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13.1 Introduction

Thermal and fluid mechanics problems are governed by partial differential equations. The
numerical resolution of such systems usually requires a fine spatial discretization of the
corresponding domain. This yields to a large number N of degrees of freedom and
consequently to a high CPU time consumption. When the objective of the modeling is
the inversion of experimental data or the real-time control of a process, this drawback may
become an impossible task to accomplish. In order to circumvent this issue, a helpful
approach is to find another model that reproduces accurately enough the behavior of the
system, but with a much lower number of degrees of freedom n(n� N). Model reduction
methods provide interesting solutions to obtain such low-order models.

13.2 Main Ideas of Model Reduction

Model reduction may be understood in at least two different ways:
The first one, that may be obvious, is to model the physical behavior of the system with a

very few number of parameters, as low as possible: this is the principle of parsimony,
which realizes a good compromise between required accuracy and model complexity.
The second one is a ‘‘mathematical point of view’’ where the user reduces, in his

modeling, the number of equations to solve. Indeed, as soon as a spatial discretization is
chosen in a domain, it corresponds to a model reduction from an infinite dimension to a
finite one. But the resulting number of degrees of freedom is usually large. Among ways to
reduce it, one consists in splitting an original boundary value problem into smaller ones
on different subdomains. This approach is particularly suitable for parallel computing
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(Han and Yin 2003, Langer et al. 2008). Another approach to reduce the size of the system is
the use of the boundary element method (BEM) (Wrobel 2002): in this method, thanks to
Green’s functions analytically pre-calculated according to the PDE under consideration,
only a boundary mesh of the domain is needed. That allows to replace a 3D (or 2D)
problem with a 2D (1D) formulation, and it decreases strongly the size of the final system
of equations to solve.
A widely used approach consists in writing down the model in a specific basis, different

of the original physical basis of state variables, and operating a truncation or a selection of
dominant modes to obtain a reduced set of equations able to adequately reproduce the
systems dynamics. Some modal reduction methods are developed in Chapter 14. One may
cite the approaches developed for linear systems by Marshall (Marshall 1966), Litz (Litz
1981), or Moore (Moore 1981), for example. A comparison between some reduction
methods has been proposed in Ben Jaafar et al. (1990). The state space representation
presented in the next section is frequently the starting point for such an approach.

13.3 State Space Representation of a Linear System
and Its Modal Formulation

13.3.1 General Formulation

The state space representation (Rowell 2002), introduced in automatics for control theory,
is also very much used in model reduction methods. The main characteristic of this
dynamical representation is to underline the relationship between an input vector U(t)
and an output vector Y(t) through a state vector X(t), as shown in Figure 13.1.
The linear form of the state equations is the following:

_X(t) ¼ AX(t)þ BU(t) (13:1)

Y(t) ¼ CX(t) (13:2)

where
X(t) and _X(t) 2 R

N are the state vector and its derivative with respect to time
U(t) 2 R

p is the input vector
Y(t) 2 R

q is the output vector
A 2 R

N	N is the state matrix
B 2 R

N	p is the input matrix
C 2 R

q	N is the output matrix that allows to select some components that interest more
specially the user

FIGURE 13.1
Principle of the state representation.

Input vector
U(t) (size p)

Output vector
Y(t) (size q)

State vector
X(t) (size N )
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Note that another output equation can be found in literature:

Y(t) ¼ CX(t)þDU(t)

where D 2 R
q	p is called the feedforward matrix.

If necessary, the change of variables Y0(t) ¼ Y(t)�DU(t) can be written to keep formu-
lation (13.2).
The analytical solution of Equation 13.1 is as follows:

X(t) ¼ eA(t�t0)X(t0)þ
ðt
t0

eA(t�t) BU(t) dt (13:3)

where
X(t0) is the initial state vector
eA(t�t0) 2 R

N	N is a matrix exponential

The matrix exponential is defined as follows:

eM ¼
X1
k¼1

Mk

k!

where M 2 R
N	N . Of course, most of the time, this matrix is not easy to compute and a

discrete time formulation (see Section 13.3.3) is needed.
The first part in the solution (13.3) is the free response to the initial state X(t0); the second

part is the forced response due to the input vector U(t) applied from time t0 to time t.

13.3.2 State Space Representation for the Linear Heat Conduction Problem

The aim is here to show how a partial differential equation is transformed into a state space
formulation ready to be reduced. A linear thermal system on a domain V is governed by
the energy equation

rCp
qT
qt
¼ kr2T þ qn (13:4)

where
qn is the volumetric heat source (W m�3)
k is the thermal conductivity (W m�1 K�1)
Cp is the specific heat (J kg�1 K�1)
r is the density (kg m�3)

This equation is associated to the boundary conditions and the initial condition. What-
ever the dimension of the problem, its geometry and the spatial discretization method,
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which is used (finite differences, finite volumes, finite elements, . . . ), this energy equation
and associated boundary conditions can be written under the matrix form

Ca _T(t) ¼ KT(t)þ P(t) (13:5)

where
T(t) 2 R

N is the vector function of temperatures at the N discretization nodes
_T(t) is its derivative with respect to time t
Ca 2 R

N	N is the matrix of thermal capacities
K 2 R

N	N is the matrix of thermal conductances
P(t) 2 R

N is the vector function containing thermal inputs (boundary conditions and=or
internal heat sources) for each node of discretization

Writing A ¼ C�1a K and BU(t) ¼ C�1a P(t), Equation 13.5 becomes

_T(t) ¼ AT(t)þ BU(t) (13:6)

This equation is the same as Equation 13.1 with T¼X: the state matrix A links temperature
values at discretization nodes, and the input matrix B links discretization nodes to thermal
inputs gathered in vector U. An output matrix C 2 R

q	N allows to select q temperatures in
the whole temperature field T and to store them in vector Y:

Y(t) ¼ CT(t) (13:7)

An application of such a model and its reduction is given in Section 13.8.

13.3.3 Example of Time Discretization of State Equations

Let us call Dt the time step. Assuming that the input vector U(t) is constant between time tk
and time tkþ1 and equal to U(tkþ1)¼Ukþ1 and using a fully implicit Euler scheme, Equation
13.1 for tkþ1 is written as follows:

_X ¼ Xkþ1 � Xk

Dt
¼ AXkþ1 þ BUkþ1

which leads to

[I�ADt]Xkþ1 ¼ Xk þ BDtUkþ1 (13:8)

Equation 13.2 for tkþ1 is written as follows:

Ykþ1 ¼ CXkþ1 (13:9)

From these equations, we can obtain an example of the state representation under a
discrete form

Xkþ1 ¼ AXk þ BUkþ1 (13:10)

Ykþ1 ¼ CXkþ1 (13:11)

with A ¼ [I�ADt]�1 and B ¼ [I�ADt]�1BDt ¼ ABDt.

Identification of Low-Order Models 461

  



These equations allow computing the forward problem. They can also be used in an
inverse problem consisting in the sequential estimation of the input vector Ukþ1 from the
knowledge of the output vector Ykþ1 (see Section 13.7).
Another discrete formulation, more accurate but with exponential diagonal matrices, is

given in Section 13.6.

13.3.4 Principle of Model Reduction Using the State Space Equations

Using a similar representation, the aim of model reduction with a state space representa-
tion is then to find an equivalent form such as

_Xr(t) ¼ ArXr(t)þ BrU(t) (13:12)

YRM(t) ¼ CrXr(t) (13:13)

where
Xr(t) and _Xr(t) 2 R

n are the reduced state vector and its derivative, with n� N
matrices Ar 2 R

n	n, Br 2 R
n	p, and Cr 2 R

q	n are the new state, input, and output
matrices, respectively

Of course, the output vector YRM(t) of the reduced model (RM) must be as close as possible
to the output Y(t) of the original model for any U(t).
In several methods, a feedforward matrix Dr 2 R

q	p arises in the RM output equation
whereas it did not exist in the original model:

YRM(t) ¼ CrXr(t)þDrU(t) (13:14)

Most of the time, the role of this matrix is to preserve the stationary states between both
models (see Section 13.4.2).
Figure 13.2 summarizes the principle of reduced state space representation.

13.3.5 State Space Representation in Modal Form

The state space representation is not unique. Some changes of variables are particularly
interesting. From the original Equation 13.1, suppose now that A has N distinct eigen-
values (l1, l2, . . . , lN). They are calculated through the resolution of the spectral problem:

AV ¼ lV (13:15)

where V 2 R
N .

FIGURE 13.2
Principle of the reduced state repre-
sentation.

U(t) (size p)

Y(t) (size q)

YRM (t) ≈ Y(t)
(size q)

X(t) (size N)
A, B, C

Xr(t) (size n << N)
Ar , Br , Cr , (Dr)
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That leads to the resolution of

det [A� lI] ¼ 0

These eigenvalues generate N eigenvectors Vi linearly independent that can be stored in
the modal matrix M:

M ¼ [V1 V2 � � � VN] (13:16)

Let us call ~F the diagonal matrix containing the eigenvalues of matrix A. One has therefore
~F ¼M�1AM.
We call ~G ¼M�1B and ~H ¼ CM.
The change of variable ~X ¼MX in Equation 13.1 then yields

_~X(t) ¼ ~F~X(t)þ ~GU(t) (13:17)

Y(t) ¼ ~H~X(t) (13:18)

~X(t) 2 R
N is the new state vector.

Several advantages appear in this formulation:

. As the differential equation is diagonal, all the state variables in Equation 13.17 are
uncoupled, then easy to integrate.

. If the system is supposed to be stable, all the real part of the eigenvalues ~Fi are real
negative.

. If the input matrix ~G has no null line, all the components of ~X can be reached: the
system is fully controllable.

. If the output matrix ~H has no null column, all the components of ~X can be seen: the
system is fully observable.

. Many reduction methods use a truncation of this modal form (see Section 13.4).

13.4 Truncation of a State Space Representation in Modal Form

13.4.1 Principle

Among reduction methods, truncation and selection through the modal base of the state
equation has been used quite a lot with several approaches. We just explain the principle of
these methods. The matter is to split Equations 13.17 and 13.18 into two parts under the
following form:

_~X1(t)
_~X2(t)

�����
����� ¼ ~F1 0

0 ~F2

���� ���� ~X1(t)
~X2(t)

���� ����þ ~G1
~G2

���� ����U(t) (13:19)

Y(t) ¼ [ ~H1 ~H2]
~X1(t)
~X2(t)

� �
(13:20)
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To make this partition, n ‘‘dominant eigenmodes’’ are selected among the N original eigen-
values of ~F (n� N). They are stored in ~F1. The RMconsists in keeping in the system ofODE to
solve, only the part relative to ~F1. Therefore, the RMhas the formof Equations 13.12 and 13.14:

_~X1(t) ¼ ~F1~X1(t)þ ~G1U(t) (13:21)

YRM(t) ¼ Hr ~X1(t)þDrU(t) (13:22)

The differences between the methods appear

. In the criterion used to select the modes in ~F1

. In the way to obtain matrices Hr and Dr

The main advantages of an RM under a modal form are as follows:

. The system of ODE (13.21) is low dimensioned and uncoupled. Its integration is
easy and very fast.

. The size q of the output vector YRM is independent of the order n of the RM.

13.4.2 Simple Classical Truncation: The Marshall Method

As an example, Marshall, a pioneer researcher in that field, proposed to retain only then
greatest eigenvalues in ~F1 (Marshall 1966). As they are all with a real negative part (the
system is supposed to be stable), the truncation corresponds to the n greatest time con-
stants of the system. The contribution of the remaining (N – n) eigenmodes is therefore
assumed to be negligible. In this former approach, Hr ¼ ~H1 and Dr¼ 0 in Equation 13.22.
However, such a practice usually leads to errors in static solutions. A way to circumvent

this shortcoming is to search for a matrixDr. This can be made by writing that the RM with
n modes should have exactly the same static outputs as the original detailed model (DM)
with N modes. According to Equations 13.19 and 13.20, static outputs of DM are

Ys ¼ ~H1~Xs
1 þ ~H2~Xs

2 where ~Xs
1 ¼ �~F�11

~G1Us� _~Xs
1 ¼ 0

�
and ~Xs

2 ¼ �~F�12
~G2Us� _~Xs

2 ¼ 0
�
. Accord-

ing to Equations 13.21 and 13.22, static outputs of RM are Ys
RM ¼ Hr ~Xs

1 þDrUs. Hence, we
write

Ys
RM ¼ �Hr~F�11

~G1Us þDrUs ¼ Ys ¼ � ~H1~F�11
~G1Us � ~H2~F�12

~G2Us (13:23)

By identification of terms in both Ys
RM and Ys, matrices Hr and Dr are then Hr ¼ ~H1 and

Dr ¼ � ~H2~F�12
~G2, respectively.

Remark

According to Equation 13.22, the dynamical outputs of RM are now
YRM(t) ¼ ~H1X1(t)� ~H2~F�12

~G2U(t). By comparing with Equation 13.20 of the DM, this
means that dynamical modes ~X2(t) are such as ~X2(t) ¼ �~F�12

~G2U(t), that is,
~F2~X2(t)þ ~G2U(t) ¼ 0. According to Equation 13.19, this means that modes ~X2(t) do satisfy
_~X2(t) ¼ 0. The nondominant (N – n) eigenmodes are therefore supposed to reach instant-
aneously their asymptotic values.
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The main drawback of the Marshall method is that a mode associated to a short time
constant can be eliminated whereas it may be associated to a high energy level (in the
signal sense).
Numerous other methods, more competitive, originate from the Marshall method. They

use other criteria for selecting modes, taking into account the level of controllability and
observability of the mode (see, e.g., [Litz 1981]). The balanced representation (Moore 1981)
also takes into account both controllability and observability, but the truncation is made in
a specific basis, different of the modal basis of the heat transfer operator.

13.5 Modal Identification Method for Linear Systems

In this section, we will develop the principles and some applications of the modal
identification method (MIM) in the linear case. The handling of nonlinearities will be
presented in Sections 13.9 and 13.10. The MIM has been developed for many years: its
use to solve inverse problems has already been tested in several cases, showing the
benefits obtained: 2D and 3D heat conduction (Videcoq and Petit 2001, Girault et al.
2003), 2D forced convection (Girault and Petit 2004), and 3D forced convection (Girault
et al. 2006, 2008).
The main principle is to obtain a modal form as Equations 13.21 and 13.22 but without

having any spectral problem to solve. Indeed, all the parameters of the model are identified
through an optimization problem.

13.5.1 General Form of the Reduced Model in MIM

We have mentioned in Section 13.3.2 that the linear conduction Equation 13.4:

rCp
qT
qt
¼ kr2T þ qv

and associated boundary conditions can be written under the discrete form on a spatial
mesh involving N nodes.
As seen in Section 13.3.5, this discrete formulation may be transformed to a modal form

with N modes, as defined by Equations 13.17 and 13.18.
The MIM aims at building a low-order model with the same structure as Equations 13.17

and 13.18 but containing only n� N eigenmodes that reproduce the essentials of the
system dynamics. RMs that will be identified through MIM hence write

_X(t) ¼ FX(t)þGU(t) (13:24)

Y(t) ¼ HX(t) (13:25)

X 2 R
n is the RM state vector. U 2 R

p is the command vector, the same as in the DM, under
the classic from (Equation 13.1) or under the modal form (Equation 13.17), taking into
account boundary conditions and heat sources. F ¼ diag(Fi) 2 R

n	n contains n� N
eigenvalues, G 2 R

n	p is the RM command matrix, H 2 R
q	n is the RM output matrix,
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and Y 2 R
q is the RM output vector, which we want to be close to the DM output

vector YDM 2 R
q.

Note: From now on, as reduced models will be used more frequently than detailed ones, we
will call the RM output vector Y instead of YRM and the DM output vector YDM instead of
Y. Moreover, the subscript r of the RM matrices and vectors will be omitted to lighten
notations. As a consequence, X will now denote the RM state vector of size n rather than
the original state vector of size N, which will be denoted according to the original variables
(for instance, T for discrete temperature vector, V for discrete velocity vector).

13.5.2 Methodology for a Single Input

The analysis is made now for a single input: U(t) is restricted to a single scalar u(t). The
shape of the RM is then the same as Equations 13.24 and 13.25 with Gu(t) instead of GU(t)
and G 2 R

n instead of G 2 R
n	p.

If the order n of RM is fixed, the aim is then to identify thematrices F,G, andH. It is easy to
prove that the productGH is constantwhen a change of variableX0 ¼PX ismade (P is square
and regular). Hence, as the matrices are going to be identified, we can fix vectorG and then
identify the corresponding matrix H. For instance, we may choose G ¼ 1 where 1 is the
vector of size n whose all components are equal to 1. The model is then written as follows:

_X(t) ¼ FX(t)þ 1u(t) (13:26)

Y(t) ¼ HX(t) (13:27)

In the MIM, the reduction procedure is cast in a parameter estimation problem. Unknown
components of matrices F and H are identified through the minimization of a quadratic
criterion J red built on an output error:

J red(F,H) ¼kY(t;F,H)� Ydata(t)k2L2 (13:28)

where
Y(t; F, H) is the RM output vector depending on F and H
Ydata(t) is a data output vector, which is either an output vector Y*DM(t) of simulations

made with the DM or the output vector Ym*(t) of in situ measurements recorded on the
real system

Both Y(t; F, H) and Ydata(t) correspond to the same known input signal u(t) applied to both
the RM and the DM (or the real system). As the system is linear, we will apply a Heaviside
signal on u(t).

Important remark: As matrices F and H are identified, there is no spectral problem to solve
as opposed to the approach presented in Section 13.4. The reduction is not obtained from
the matrices of the DM under the modal form.
Practically, data Ydata used for the RM identification are recorded for a discrete number

of time steps Nid
t , so that

J (n)
red((F)n	n, (H)q	n) ¼

Xq
i¼1

XNid
t

j¼1
Yi(tj; (F)n	n, (H)q	n)� Ydata

i (tj)
� 	2

(13:29)
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Let us define s
id, (n)
Y as the mean quadratic discrepancy (i.e., root mean square [rms] of the

residues) between data Ydata to be fitted and RM outputs Y(F, H):

s
id, (n)
Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J (n)

red((F)n	n, (H)q	n)

q	Nid
t

vuut
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

i¼1
XNid

t

j¼1 Yi(tj; (F)n	n, (H)q	n)� Ydata
i (tj)

� 	2.
q	Nid

t

� �r
(13:30)

The objective functional J (n)
red is first minimized for n¼ 1, corresponding to the identifica-

tion of components of diagonal matrix F of size (1, 1) (a single scalar) and matrix H of size
(q, 1). Then, the minimization is performed for n¼ 2 so that new matrices F of size (2, 2) and
H of size (q, 2) are identified. This procedure is repeated until a stopping criterion is
satisfied:

1. n  1

2. Minimization of J (1)
red((F)1	1, (H)q	1)) identification of (F)1	1 and (H)q	1

3. n  nþ 1

4. Minimization of J (n)
red((F)n	n, (H)q	n)) identification of (F)n	n and (H)q	n

5. Test of stopping criterion: three possibilities:

a. If sid,(nþ1)
Y 
 s

id,(n)
Y , then STOP else go to 3 (mainly for numerical applications)

b. If sid,(nþ1)
Y � sm

Y where sm
Y is the standard deviation of measurement errors, then

STOP else go to 3 (in the case of experimental data)

c. If sid,(nþ1)
Y � sa

Y where sa
Y is the standard deviation corresponding to the accur-

acy wished by the user, then STOP else go to 3

According to Equations 13.26 and 13.27, Y(t) is nonlinear with respect to F whereas
Equation 13.27 shows that Y(t) is linear with respect to H. As a consequence, two types
of optimization methods are used for the minimization of J (n)

red((F)n	n, (H)q	n):

1. A nonlinear iterative method is employed for the estimation of F. It may be a
deterministic method such as a conjugate gradient (Press et al. 2007) or quasi-
Newton method (Gill et al. 1992), for instance, or a stochastic method (particle
swarm optimization (Clerc 2005), genetic algorithm, etc). An initial guess for F is,
therefore, required.

2. Ordinary (linear) least squares (OLS) are used for the estimation of H at each
iteration of the above mentioned nonlinear iterative algorithm. In fact, at each
iteration, the reduced state vector X is computed at all times tj, j ¼ 1, . . . ,Nid

t by
solving Equation 13.26 with the current matrix F, the input signal u(t) being
known. A matrix X 2 R

n	Nid
t is then formed:

X ¼ X(t1) � � � X(tNid
t
)

h i
(13:31)

Similarly, a matrix Y
data 2 R

q	Nid
t is formed with data output vector Ydata at all times:

Y
data ¼ Ydata(t1) � � � Ydata(tNid

t
)

h i
(13:32)
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As Equation 13.27 may be written for each time tj, j ¼ 1, . . . ,Nid
t , one has searches H

verifying:

Y
data ¼ HX (13:33)

which also writes

X
THT ¼ Y

dataT (13:34)

Matrices X and Y
data being known, and under the condition Nid

t � n (easily obtained in
practice since n is ranging from 1 to about 10), matrix HT may be estimated using OLS:

HT 
 ĤT ¼ [X X
T]�1X Y

dataT (13:35)

No initial guess is hence needed for the estimation of H. This is a good feature since H
depends on the size q of the chosen output vector, Y and may therefore be of large size if
q is large.
Note that the OLS approach is widely discussed in Chapter 7.
The n components of diagonal matrix (F)n	n obtained by minimizing J (n)

red are used as
initial guesses for the n first components of diagonal matrix (F)nþ1	nþ1, which is identified
through the minimization of J (nþ1)

red .

13.5.3 General Case of Several Independent Inputs

Up to now, this analysis has been made for a scalar input u(t). We now consider the general
case of an input vector U(t) with p components, Uk(t), k ¼ 1, . . . , p. According to the
linearity of the system, an elementary reduced model (ERM) can be built for each inde-
pendent input Uk, k ¼ 1, . . . , p, the p� 1 other inputs Uj6¼k being inactive (Uj6¼k¼ 0) for the
considered ERM. The global RM for U(t) can then be formed by assembling ERMs with
respect to the superposition principle. Using the above presented algorithm, an ERM of
order n(k) can be identified for Uk:

_X(k)(t) ¼ F(k)X(k)(t)þ 1(k)U(k)(t) (13:36)

Y(k)(t) ¼ H(k)X(k)(t) (13:37)

where
X(k) 2 R

n(k) is the state vector
F(k) 2 R

n(k)	n(k) is diagonal
H(k) 2 R

q	n(k)
1(k) 2 R

n(k) has all its components equal to 1
Y(k) 2 R

q is the contribution of input component Uk to the global output vector Y

The general scheme of the MIM is shown in Figure 13.3.
Once built, the p ERMs defined by Equations 13.36 and 13.37, k ¼ 1, . . . , p, may be

assembled.
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The superposition principle is thus applied:

Y(t) ¼
Xp
k¼1

Y(k)(t) ¼
Xp
k¼1

H(k)X(k)(t) (13:38)

Matrices and vectors of the global RM (Equations 13.24 and 13.25) are therefore defined as
follows:
The global state vector X(t) of size n ¼

Xp

k¼1 n(k) is

X(t) ¼ [X(1)(t) � � � X(k)(t) � � � X(p)(t)]
T (13:39)

The global output matrix H of size (q, n) is

H ¼ [H(1) � � � H(k) � � � H(p)] (13:40)

The global diagonal state matrix F of size (n, n) is

F ¼

F(1)
. .
.

F(k)
. .
.

F(p)

26666664

37777775 (13:41)

Detailed
model

real
system

Output
vector

Quadratic function to be minimized:

Y(k)(t)
data

Y(k)(t)
data

or(order N)

Known input Uk(t):

Linearity Elementary reduced model (ERM) associated
with each component Uk of input vector U

Other components of U:

0 t = 0
0 t ≥ 0

Iterative procedure

Output
vector

Minimization algorithms:
Nonlinear optimization method
(Quasi-Newton, PSO, ...) for F(k)

Linear least squares for H(k)

Y(k)(t)

t

t

ERM (order nk << N)

n(k) << N
Y(k)(t) = H(k) X(k)(t)

.
X(k)(t) = F(k) X(k)(t) + 1(k)Uk(t)–

(Y(k)i(tj) – Y(k) i(tj))2dataq

i=1
Σ

j=1

Nt
id

Σred(F(k), H(k))=

FIGURE 13.3
General scheme of MIM for the identification of an ERM relative to an independent input.
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The global input matrix G of size (n, p) is

G ¼

1(1)
. .
.

1(k)
. .
.

1( p)

266666664

377777775 (13:42)

which multiplies the global input vector U(t) ¼ [U1(t) � � � Uk(t) � � � Up(t)]T.

For example:
We consider a thermal system, submitted to p ¼ 3 independent thermal loads:

U(t) ¼ [U1(t) U2(t) U3(t)]T

The spatial domain is discretized with N¼ 1000 nodes.
The whole temperature vector is hence T(t) ¼ [T1(t) � � � TN¼1000(t)]T.
We are interested in q¼ 20 output temperatures at distinct locations.
For instance,

Y(t) ¼ [Y1(t) � � � Yq¼20(t)]T ¼ [T6(t) � � � T82(t) � � � T324(t) � � � T857(t)]
T

Suppose that p¼ 3 ERMs have been built and that the final order of each ERM has been
found to be

. n(1)¼ 3 for the ERM relative to U1, so that the number of identified parameters was
n(1)¼ 3 components of F(1) through the nonlinear optimization algorithm and
q	 n(1)¼ 60 components of H(1) through OLS.

. n(2)¼ 4 for the ERM relative to U2, so that the number of identified parameters was
n(2)¼ 4 components of F(2) and q	 n(2)¼ 80 components of H(2).

. n(3)¼ 2 for the ERM relative to U3, so that the number of identified parameters was
n(3)¼ 2 components of F(3) and q	 n(3)¼ 40 components of H(3).

The order of the global RM is therefore n¼ 9, which is also the size of the global state
vector:

X ¼ [X(1)1 X(1)2 X(1)3 X(2)1 X(2)2 X(2)3 X(2)4 X(3)1 X(3)2 ]
T

Matrices F, G, and H are respectively of size (9, 9), (9, 3), and (20, 9).
One has

F ¼

F(1)1
F(1)2

F(1)3
F(2)1

F(2)2
F(2)3

F(2)4
F(3)1

F(3)2

26666666666664

37777777777775
, G ¼

1 0 0
1 0 0
1 0 0
0 1 0
0 1 0
0 1 0
0 1 0
0 0 1
0 0 1

26666666666664

37777777777775
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and

H ¼
H(1)1, 1 H(1)1, 2 H(1)1, 3 H(2)1, 1 H(2)1, 2 H(2)1, 3 H(2)1, 4 H(3)1, 1 H(3)1, 2

..

. ..
. ..

. ..
. ..

. ..
. ..

. ..
. ..

.

H(1)q, 1 H(1)q, 2 H(1)q, 3 H(2)q, 1 H(2)q, 2 H(2)q, 3 H(2)q, 4 H(3)q, 1 H(3)q, 2

264
375

with q¼ 20.

Remark

. The method allows building the RM only on the outputs that are interesting for the
user. If the whole field is necessary, we have of course q¼N.

. The knowledge of the DM matrices is not required to identify the RM. Only
simulation results or measurements are needed to produce data included in
Ydata. This is the main advantage of the MIM compared to other methods for
which matrices of the DM have to be computed and transformed (e.g., modal
form) before performing the reduction by selection or truncation in the modes
spectrum. With the MIM, an RM can be built from any simulation made by a
commercial software, for example (Girault et al. 2006). Experimental data may also
be used to identify a low-order model without DM simulations (Videcoq et al.
2003, Girault et al. 2008). This corresponds to an ‘‘experimental modeling.’’ Of
course, in the identification phase, it is needed to measure the outputs and the
inputs. It is hence a kind of empirical calibration between inputs and outputs.

13.6 Time Discretization of the Reduced Model under the Modal Form

The time discretization of the RM under modal form defined by Equations 13.24 and 13.25,
using an Euler implicit scheme such as in Section 13.3.3, leads to

Xkþ1 ¼ FXk þ GUkþ1 (13:43)

Ykþ1 ¼ HXkþ1 (13:44)

with

F ¼ [I� FDt]�1 (13:45)

G ¼ [I� FDt]�1 GDt ¼ FGDt (13:46)

Note that as matrix [I� FDt] is a low rank (n) diagonal matrix, it is straightforward to
invert it and obtain F .
We propose also another time discretization: We take benefit of the modal form of RM

where the matrix exponential of the state matrix is easy to compute because it is diagonal.
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It is easy to prove, by using the analytical solution (13.3) between time tk and time tkþ1, that
the discretization of the modal form (13.24) gives

Xkþ1 ¼ F 0Xk þ G0Ukþ1 (13:47)

with F 0 ¼ eFDt and G0 ¼ �F�1[I� eFDt]G.

13.7 Inverse Problem Using a Low-Order Model under the Modal Form

13.7.1 Sequential Formulation of the Inverse Problem

We now consider the following inverse problem: finding an estimation Û of the input
vector U from the knowledge of measured temperatures Yme corresponding to the output
vector Y of the RM defined by Equations 13.24 and 13.25. In the following, we will write Uk

for U(tk), Xk for X(tk), Yk for Y(tk), etc. We adopt a sequential estimation method: from the
knowledge of a vector of measured temperatures Yme

kþ1 and an estimate Ûk of Uk, one looks
for an estimate Ûkþ1 at time tkþ1. The inverse problem aims at finding Ûkþ1, minimizing the
squared norm of the residual vector ekþ1 between the measured data Yme

kþ1 and the output
vector Ykþ1 of the model

kekþ1k2L2¼ Ykþ1 � Yme
kþ1

�� ��2
L2
¼
Xq
i¼1

(ei(tkþ1))
2 ¼

Xq
i¼1

Yi(tkþ1)� Yme
i (tkþ1)

2� �
(13:48)

Let us start from Equation 13.43:

Xkþ1 ¼ FXk þ GUkþ1 ¼ F [Xk þGDtUkþ1] (13:49)

Then, according to Equation 13.44:

Ykþ1 ¼ HF [Xk þGDtUkþ1] (13:50)

Inserting Equation 13.50 in Equation 13.48 and letting

S ¼ HFGDt (13:51)

and

bk ¼ HFXk (13:52)

The squared norm to be minimized becomes

kekþ1k2L2¼ SUkþ1 � Yme
kþ1 � bk

� ��� ��2
L2

(13:53)
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meaning that a solution Ûkþ1 is sought for the system:

SUkþ1 ¼ Yme
kþ1 � bk (13:54)

Equation 13.54 is a linear system where S is a dynamic sensitivity matrix, which does not
vary with time, but depends on the time step Dt. High values for Dt make matrix S closer
to the static sensitivity matrix �HF�1G, making inversion easier.
Assuming that we have at least as many sensors as unknowns, that is, q � p, the solution

is given by OLS:

Ûkþ1 ¼ [STS]�1ST Yme
kþ1 � b̂k

� 	
(13:55)

where b̂k ¼ HF X̂k is the estimation of bk at the previous time step k, obtained from
Equation 13.52 written for X̂k, where X̂k is computed with Equation 13.49 written for Ûk

and X̂k�1 (both those vectors are known at time step kþ 1).
Two main advantages provided by the use of the RM under the modal form should be

underlined here:

1. F 2 R
n	n being a low rank diagonal matrix, it is easy to compute F ¼ [I� FDt]�1

and hence to obtain S (Equation 13.51) and b̂k ¼ HF X̂k (Equation 13.52 for X̂k). In
contrast, when using a DM, it would be needed to calculate the inverse of the non-
diagonal matrix A ¼ [I�ADt]�1 2 R

N	N .
2. At each time step, only the estimated reduced state vector X̂k 2 R

n has to be
computed, instead of the estimated whole field T̂ 2 R

N of the original state vari-
able (here temperature for instance) with a DM.

13.7.2 Use of Future Time Steps with Beck’s Function Specification Method

In thermal diffusion, a variation of the input vector at time tkþ1 does not instantaneously
affect the sensors, because of the lagging and damping effects of diffusion. Thus, if Ukþ1
does not affect Ykþ1, but Ykþ2 or Ykþ3, for instance, it is illusory to hope that Ukþ1 could be
estimated from the knowledge of Yme

kþ1 only. In order to take into account lagging and
damping effects, it is useful to employ data measured at posterior times or future time
steps (FTS) (Beck et al. 1996, Osman et al. 1997, Blanc et al. 1998), that is, to use sensors
information Yme

kþ2,Y
me
kþ3, . . ., at times tkþ2, tkþ3, . . . , to correctly estimate Ukþ1. Moreover,

data Yme are usually affected by measurement errors. FTS allow using information (vari-
ation of temperature) higher than the noise level. Thus, the extra information acts as a
regularization procedure, which stabilizes the solution. If nf is the number of FTS to be
used, then for 0 � f � nf, Equation 13.54 is written for Ukþ1þf and Yme

kþ1þf . A temporary
approximation of Ukþ1þf is needed to search an estimate for Ukþ1. The function specification
method proposed by Beck gives, for constant specification,

Ukþ1þf ¼ Ukþ1, 1 � f � nf (13:56)

Under the temporary assumption (13.56) (i.e., used for the current time tkþ1 only), it is
possible to rearrange the nfþ1 Equation 13.54 to obtain

SUkþ1 ¼ Y
me � Bk (13:57)

Identification of Low-Order Models 473

  



with

S ¼

HFGDt

H(F þF 2)GDt

..

.

H
Pfþ1

j¼1 F
j

� 	
GDt

..

.

H
Pnfþ1

j¼1 F j
� 	

GDt

266666666666664

377777777777775
2 R

q:(nfþ1)	p, Y
me ¼

Y
me
kþ1

Y
me
kþ2

..

.

Y
me
kþ1þf

..

.

Y
me
kþ1þnf

266666666666664

377777777777775
2 R

q:(nfþ1)

and

Bk ¼

HFXk

HF 2Xk

..

.

HF fþ1Xk

..

.

HF nfþ1Xk

26666666666664

37777777777775
2 R

q:(nfþ1)

The estimate Ûkþ1 given by OLS is then

Ûkþ1 ¼ [STS]�1ST Y
me � B̂k

� �
(13:58)

where B̂k is the estimation of Bk at the previous time step k, hence computed with X̂k.

13.8 Simple Numerical 2D Transient Heat Transfer Problem

13.8.1 Description of the System and Its Modeling

The system under investigation is a square slab ABCD (AB¼ 0.1 m) composed of stainless
steel. Figure 13.4 shows the geometry with its boundary conditions. Heat transfer is gov-
erned by Equation 13.4 with qn ¼ 0. The properties of the sample are k¼ 16 W m�1 K�1,
Cp¼ 510 J kg�1 K�1, and r¼ 7900 kg m�3. The spatial discretization is made with the
control volume method using a regular mesh of N¼ 121 nodes (11	 11). Temperatures at
these 121 nodes form the temperature vector T and the corresponding detailed model is
written under the formulation of Equation 13.6.
In the first step, an RM (Equations 13.24 and 13.25) is identified through the MIM. The

second stage consists in using this RM to estimate heat flux densities w1(t) and w2(t)
gathered in U(t) (p¼ 2) with only two sensors: one located in the middle of side BC and the
other in the middle of side CD. These temperatures are stored in the output vector Y(t) (q¼ 2).
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13.8.2 Identification and Validation of RM

An RM relative to both outputs is built following the method described in Section 13.5.
This global RM is formed of two identified ERMs, each one relative to one of both heat flux
densities. ERMs of order 3 have been found to be accurate enough, so that a global RM
made of n¼ 6 dynamical uncoupled linear state equations is going to be used. This low
number of degrees of freedom is very small compared to the original size of the DM
(N¼ 121 equations).

13.8.3 Simulated Temperature Measurements and Mean Quadratic Errors

In order to simulate measurement errors, temperatures Yexact computed with DM using
wexact as test heat flux densities are altered with an additive Gaussian noise. The simulated
noisy data Ysim are expressed as

Ysim ¼ Yexact þ vs

where
s is the standard deviation of the measurement errors that is supposed to be the same for

all measurements
v is a random variable such as �2.576�v� 2.576 that corresponds to the 99% confi-

dence bounds for the temperature measurement

For all test cases analyzed here, we consider s¼ 08C (errorless measurements), s¼ 0.18C
and s¼ 0.28C (noisy data).
Let us define sY as the mean quadratic discrepancy between simulated data for inversion

Ysim
i , i ¼ 1, 2 and corresponding outputs Ŷi computed by the RM with the estimated inputs

ŵi, i ¼ 1, 2:

sY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

i¼1
XNt�nf

j¼1 Ŷi(tj)� Ysim
i (tj)

� 	2.
(q	 (Nt � nf ))

r
(13:59)

where
Nt is the number of time steps
nf is the number of FTS

FIGURE 13.4
2D linear thermal system.
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Here we have q¼ 2 output data for inversion. Note that sY is the rms of the residues
between the model Ŷi and the data Ysim

i .
In this numerical example, the exact applied heat flux densities wexact

i , i ¼ 1, 2, used as test
signals to be retrieved, are of course perfectly known. In order to assess the quality of the
inversion results, we may define sU as the mean quadratic discrepancy between exact
inputs wexact

i , i ¼ 1, 2, and estimated ones ŵi:

sU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

i¼1
XNt�nf

j¼1 ŵi(tj)� wexact
i (tj)

� �2
=(p	 (Nt � nf ))

r
(13:60)

Here we have p¼ 2 inputs. Note that sU is the rms of the residues between identified
values ŵi and exact values wexact

i . Of course, in real applications, sU is not known and sY is
the only available quantity.

13.8.4 Inversion Results

The RM of order 6 is used for the inversion. The heat flux densities wexact
i , i ¼ 1, 2, used as

test functions for the inverse problem, are shown in Figure 13.5. Temperatures computed
by DM are depicted in Figure 13.6.

FIGURE 13.5
Heat flux densities used as test signals
to be retrieved in the inverse problem.
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When no noise is added to computed temperatures (s¼ 08C), one future time step is
needed (nf¼ 1) to take into account lagging and damping effects of heat diffusion and to
obtain physical results: sY¼ 2.04	 10�38C and sU¼ 452 W m�2.
The effect of noise on data is then studied. Temperatures computed with DM are altered

with an additive noise (s¼ 0.18C). Table 13.1 shows values of sY and sU for various values
of nf. For nf ¼ 0, sY¼1, meaning that the sensors sensitivities are not large enough to
obtain physical results. Adding 1 future time step leads to sY 
 10�28C. One should not be
misled by such an apparently good result: sY � s in fact means that the noise on data
signals has been fitted through the inversion process, which is not desirable. By increasing
nf to 2 and then 3, sY grows but stays lower than the noise level s. With nf¼ 4, one obtains
sY¼ 0.1048C 
 s, which is the goal we have to reach in order to get estimations in
accordance with the noise level. This is the so-called discrepancy principle. Using nf¼ 5
gives sY¼ 0.1548C>s, which is not the best we can aim for. The optimal value nf¼ 4 is
confirmed by the value of sU¼ 609 W m�2, which is the lowest. Estimated heat flux
densities for s¼ 0.18C and nf¼ 4 are shown in Figure 13.7, along with the exact signals.
Results are indeed quite satisfying. Thanks to the RM, the contribution of each input to the
sensor temperature has been restored, although the time-dependent heat flux densities
vary in a very different manner.

TABLE 13.1

Inversion Results for Various Values of nf

nf 0 1 2 3 4 5

sY (8C) 1 1.12	 10�2 3.94	 10�2 6.68	 10�2 0.104 0.154

sU (W �m�2) 1 1520 741 613 609 645
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FIGURE 13.7
Exact and estimated heat flux densities. s¼ 0.18C, nf¼ 4.
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13.9 Modal Identification Method for Nonlinear Problems

13.9.1 Some Reduction Methods for Nonlinear Problems

Although some thermal systems may be described by a linear model, at least for a range of
temperatures, many of them are governed by nonlinear equations. Model reduction tech-
niques that can be applied to nonlinear problems are not as numerous as those developed for
linear problems.
Among them, a commonly used approach in fluid mechanics is the proper orthogonal

decomposition method coupled with a Galerkin projection of the partial differential equa-
tions (POD-G). POD is a powerful method, also known as Karhunen–Loève decompos-
ition, and was introduced in fluid mechanics by Lumley in 1967 for the identification of
coherent structures in turbulent flows. So far, the method has been widely used in fluid
mechanics and heat transfer ((Holmes et al. 1997, Bergmann and Cordier 2008, Alonso et al.
2009), for instance, to cite but a few). The principle of the method consists in obtaining
some orthogonal modes from the analysis of covariance matrices built with some data
covering space and time domains. The data signal is then expanded on a truncation of the
basis formed by these spatial POD modes. The time-varying coefficients of this decompos-
ition carry the system dynamics. Classically, POD requires solving an eigenvalue problem
relative to a two-point spatial correlation matrix, with time averaging (under the assump-
tion of ergodic processes). However, for applications involving a large number of degrees
of freedom, the spatial correlation matrix may become very large, and, hence, the compu-
tation of POD modes may become infeasible. To avoid this difficulty, Sirovich introduced
the method of ‘‘snapshots,’’which has proved to be a powerful tool for the computation of
the eigenmodes. The snapshot POD consists in solving an eigenvalue problem relative to a
two-point temporal correlation matrix, with space averaging, before computing the spatial
eigenmodes. For more details, the reader can see Sirovich (1987). Other approaches exist
like the balanced POD (Willcox and Pereire 2002), which combines the POD with concepts
from balanced realization. Note that a comparison of RMs built with the POD-Galerkin
method and the MIM in the case of a 3D academic nonlinear diffusive system has been
made in Balima et al. (2006).
Note: Chapter 14 is devoted to Karhunen–Loève decomposition methods.
The reduced basis approximation method based on Galerkin projection onto a Lagrange

space (Rozza et al. 2008) relies on an underlying large-sized (N degrees of freedom) finite
element model, which is an approximation to the considered infinite-dimensional PDEs,
and on samples of solutions of this reference model for different occurrences of parameters
of interest, such as boundary conditions, loads, physical properties, etc. A Galerkin pro-
jection onto an n-dimensional (n � N) Lagrange space associated with sampling param-
eters leads to an RM with n degrees of freedom.
The branch eigenmodes reduction method also uses a change of basis. It consists of

solving a specific spectral problem called Branch problem, which concerns the advection–
diffusion operator along with a Steklov boundary condition. This particular boundary
condition allows to obtain a basis adequate to handle nonlinearities. The reduced basis is
then obtained by performing a selection and=or an amalgam of the most dominant modes
according to a particular criterion (temporal, energetic, . . . ). The branch reduction method
has notably been used in nonlinear heat diffusion, especially for solving inverse heat
transfer problems (Videcoq et al. 2008) and also for building low-order models for
advection–diffusion problems (Joly et al. 2008).
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A goal-oriented, model-constrained optimization approach for model reduction that is
able to target a particular output functional, span an applicable range of dynamic and
parametric inputs, and respect the underlying governing equations of the system has been
proposed in Bui-Thanh et al. (2007). The approach has therefore similarities with the MIM
whose extension to nonlinear problems is presented in Section 13.9.2.

13.9.2 Extension of Modal Identification Method to Nonlinear Problems

The main idea is to work with RMs under the state space representation, as in the case of
linear problems, but with extra nonlinear terms able to reproduce the nonlinearities in the
local equations assumed to describe the behavior of the system. Hence, low-order models
that will be identified take the following general form:

_X(t) ¼ FX(t)þ CþVC(X(t))þGU(t) (13:61)

Y(t) ¼ HX(t) (13:62)

where

. X(t) 2 R
n is a low-dimensioned state vector (typically,nwill be ranging from1 to 10).

. FX(t) is a linear term. F 2 R
n	n is a diagonal matrix, as the model is expressed

under the modal form.
. C 2 R

n is a constant vector.
. VC(X(t)) is a nonlinear termC(X(t))2RnC is the vector of nonlinearities, composed of

nonlinear combinations of states Xi(t), 1 � i � n. The form ofC(X(t)) depends on the
type of nonlinearities in the original equations assumed to be governing heat transfer
in the actual system. The size nC ofC(X(t)) depends on both the kind of nonlinearities
and the size n of state vector X(t), that is, the RM order. Matrix V 2 R

n	nC allows to
distribute the contribution ofC on each one of the n state equations.

. GU(t) is an input term, gathering the action of all thermal loads on the system:
boundary conditions and internal heat sources. The input vector U(t) 2 R

p gathers
thermal loads: prescribed heat flux densities (Neumann BCs), prescribed temperat-
ures (Dirichlet BCs), ambient temperature, or temperature of external sources or sinks
(convective or radiative exchanges), volumetric heat power of internal heat sources,
whereas commandmatrixG 2 R

n	p links these thermal loads to the state vector X(t).
. Matrix H 2 R

q	p is an observation or output matrix allowing to link the outputs of
interest, stored in vector Y(t) 2 R

q, to the state vector X(t).

As for linear problems, the MIM for nonlinear problems aims at identifying low-order
models through optimization techniques. Unknown components of matrices and vectors
F, C, V, G, H are estimated by solving a parameter estimation problem defined by an
objective functionalJ red based on the discrepancy between an output vector Ydata (t) of the
system on the one hand and the corresponding output vector Y(t) of RM defined by
Equations 13.61 and 13.62 on the other hand, when a specific input vector U*(t) is applied:

J red(F,C,V,G,H) ¼kY(t;F,C,V,G,H)� Ydata(t)k2L2 (13:63)

The objective functional J red may take several different forms according to the involved
heat transfer modes (diffusion, forced or natural convection, presence of radiative effects),
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the time-dependency of the problem (steady or unsteady heat transfer), and the number of
independent thermal inputs. In the next section, we present the issues that arise in the
general case of unsteady thermal diffusion with several independent inputs.
The input signals used to generate data for RM identification, gathered in vector U*(t),

must allow the system to react in large ranges of temperature levels and frequencies, in
order, for RM, to adequately reproduce the system’s nonlinearities when any other input
signal U(t) is applied.
A good way to proceed is to use successive steps covering the considered working

range, each one allowing reaching a steady state, in order to be able to identify the static
characteristics of the system. For each steady state, a zeromeanGaussianwhite noise is added
to ensure the data dynamical richness. Such signals have been used in numerical studies such
as Balima et al. (2006) to identify an RM of 3D academic nonlinear diffusive system.
Such kind of signal is easy to use in a numerical framework; it may however be difficult

to apply it from a practical point of view. In order to keep the main features discussed
above, it is possible to replace random parts by sinusoidal functions with different mag-
nitudes and frequencies (Girault et al. 2010).
Moreover, the RM must be able to return the proper resulting temperatures when both

sources are heating simultaneously and independently, whatever the respective evolution
of their intensities. It has been underlined in Section 13.5.3 that in the case of linear systems,
the linear relationship between inputs and outputs allows to build an ERM for each input
separately and then to use the superposition principle to get a global RM for the whole set
of inputs (Videcoq and Petit 2001, Girault et al. 2003, 2006, 2008, Videcoq et al. 2003, Girault
and Petit 2004). It is no longer possible in the case of nonlinear systems. The RM related to
all inputs has to be built in a single step. A possible way to handle this issue is to use, in the
case of p independent inputs, at least pþ 1 data sets, the first p ones corresponding to each
input acting separately, the others remaining inactive, and the last one relative to all inputs
acting simultaneously (Girault et al. 2010). The functional J red defined in Equation 13.63
therefore writes

J red(F,C,V,G,H) ¼
Xpþ1
k¼1

Xq
i¼1

XNid
t, k

j¼1
Yik(tj;F,C,V,G,H)� Ydata

ik (tj)
� �2

(13:64)

where the pþ 1 data sets are thus defined as mentioned above:

If k ¼ 1, . . . , p: Uk, k ¼ U*
k, k 6¼ 0

U‘, k ¼ 0, ‘ 6¼ k



If k ¼ pþ 1:U‘, pþ1 ¼ U*

‘, pþ1 6¼ 0 8‘ ¼ 1, . . . , p

Nid
t, k is the number of time steps in the kth data set, the tj are the discretization times, and

the U*
‘, k are specific input signals such as those proposed previously, for the ‘¼ 1, . . . , p

independent inputs and for the k¼ 1, . . . , pþ 1, data sets. Figure 13.8 summarizes the MIM
for nonlinear problems when the objective functional is defined by Equation 13.64.
As in the MIM for linear problems, the objective functional J red is first minimized for

n¼ 1, leading to the identification of an RM of order 1. The value of n is then increased, and
the minimization of J red, involving more unknown parameters, leads to RMs of higher
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order. As in the linear case, two optimization techniques are used for the minimization of
J red. Y(t) being nonlinear with respect to F, C, V, G, an iterative method (conjugate
gradient, quasi-Newton method, particle swarm optimization, genetic algorithm, . . . ) is
required to identify their components. Y(t) being linear with respect to matrix H, compon-
ents of H are obtained using OLS at each iteration.

13.10 Examples of MIM for Nonlinear Problems

13.10.1 Heat Diffusion with Radiative and Convective Boundary Conditions:
Experimental Example

13.10.1.1 Local Governing Equations

The local equation governing heat diffusion with internal heat sources can be written as

r(M)Cp(M)
qT
qt

(M, t) ¼~r � (k(M)~rT(M, t))þ
XnQ
j¼1

Qj(t)
Volj

xj(M) (13:65)

Detailed
Model

p+1 excitations with
known input vector U(t):

if  k = p + 1: Uj ≠ 0 

if  k=1, ... , p: Uk ≠ 0
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data
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FIGURE 13.8
General scheme of MIM for nonlinear problems.
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where T(M, t) is the temperature. The summation term corresponds to a number nQ of heat
sources. The jth source is uniformly distributed over a domain Vj whose volume is Volj
and has a time-varying strengthQj(t). xj(M) is defined as xj(M)¼ 1 ifM 2Vj and xj(M)¼ 0 if
M =2 Vj. The thermal conductivity k(M), the density r(M), and the specific heat Cp(M) are
assumed to be independent of temperature.
We consider that both convective and radiative boundary conditions occur on

some parts GCR
i of the boundary and that prescribed heat flux densities occur on some

other parts GF
i .

For each part GCR
i of the boundary and for any point M on GCR

i ,

k(M)
qT
qn

(M, t) ¼ hi(Ta(t)� T(M, t))þ eis T4
a (t)� T4(M, t)

� �
(13:66)

where
hi is the convective exchange coefficient
ei is the emissivity

both related to GCR
i . Ta is the ambient temperature, which can a priori vary with time.

For each part GF
i of the boundary and for any point M on GF

i ,

k(M)
qT
qn

(M, t) ¼ Fi(M, t) (13:67)

Equations 13.66 and 13.67 allow us to keep generality in the boundary conditions and
hence in the following formulation of the low-order model. The boundary conditions for
the presented example will be given in Section 13.10.1.4.

13.10.1.2 State Space Representation

A formulation for a DM will be given here, from which the RM structure will then be
defined.
Whatever the dimension of the problem, its geometry and the spatial discretization

method (finite differences, finite volumes, finite elements, . . . ), the energy Equation 13.65,
and the associated boundary conditions (13.66) and (13.67) can be written as a set of
nonlinear equations with constant coefficients matrices:

_T(t) ¼ AT(t)þ BcTa(t)þ R[T4](t)þ BrT4
a (t)þ BFF(t)þ BQQ(t) (13:68)

. T(t) 2 R
N is the vector of temperatures, function of time t, at the N discretization

nodes, _T(t) 2 R
N its derivative with respect to time t.

. Matrix A 2 R
N	N is the non-diagonal state matrix that connects temperatures at

discretization nodes and contains diffusion terms as well as terms related to
convective boundary conditions.

. Vector Bc 2 R
N is associated with convective boundary conditions and links dis-

cretization nodes to the ambient temperature Ta.
. Matrix R 2 R

N	N is associated with radiative boundary conditions and multiplies
the vector [T4](t) 2 R

N gathering temperatures at fourth power.
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. Vector Br 2 R
N is associated with radiative boundary conditions and links dis-

cretization nodes to the ambient temperature Ta at fourth power.
. Matrix BF 2 R

N	nF links discretization nodes to prescribed heat flux densities
gathered in vector function F(t) ¼ [F1(t) � � � FnF (t)]

T 2 R
nF .

. Matrix BQ 2 R
N	nQ links discretization nodes to the internal heat sources gathered

in vector function Q(t) ¼ [Q1(t) � � � QnQ (t)]
T 2 R

nQ .
. An output or observation matrix Cobs 2 R

qo	N allows to select qo temperatures in
the whole temperature field T(t) and to store them in vector function YDM

o (t) 2 R
qo :

YDM
o (t) ¼ CobsT(t) (13:69)

Let us call p¼ nFþ nQ the total number of thermal inputs.
Let be U(t) ¼ [F(t) Q(t)]T. Vector U 2 R

p is the input or command vector.
Let also be B¼ [BF BQ]. Matrix B 2 R

N	p is called the input or command matrix.
In the following, we will consider constant ambient temperature Ta. We define the

constant vector Vc 2 R
N such as Vc ¼ BcTa þ BrT4

a . Then, the state space representation
takes the following form:

_T(t) ¼ AT(t)þVc þ R[T4](t)þ BU(t) (13:70)

YDM
o (t) ¼ CobsT(t) (13:71)

Equations 13.70 and 13.71 constitute the structure of a DM of the system, called state space
representation.
Note that the previous form is given for a better understanding of the following devel-

opments, but no DM or no solution of a DM has been used in the example described in
Section 13.10.1.

13.10.1.3 Structure of Low-Order Model Equations

Let us consider the eigenvalue problem associated with matrix A of Equation 13.70. Let us
call ~F 2 R

N	N the diagonal matrix whose components are the N eigenvalues of A, and
M 2 R

N	N the matrix whose columns are eigenvectors of A.
Let us suppose that we operate a change of variables:

T(t) ¼M~X(t) (13:72)

Then,

R[T4](t) ¼ R T4
1(t) � � � T4

N(t)

 �T¼ R

XN
j¼1

M1j ~Xj(t)

0@ 1A4

� � �
XN
j¼1

MNj ~Xj(t)

0@ 1A424 35T

¼ REC(~X(t))

where

. E 2 R
N	NC is a matrix.

. C(~X(t)) 2 R
NC is a vector gathering nonlinear terms ~Xi(t)	 ~Xj(t)	 ~Xk(t)	 ~Xl(t),

1 � i � j � k � l � N and whose dimension is NC ¼ N(N þ 1)(N þ 2)(N þ 3)=24.
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One has ~F ¼M�1AM. In addition, let us call ~C ¼M�1Vc, ~V ¼M�1RE, ~G ¼M�1B, and
~Ho ¼ CobsM. We get

_~X(t) ¼ ~F~X(t)þ ~Cþ ~VC(~X(t))þ ~GU(t) (13:73)

YDM
o (t) ¼ ~Ho~X(t) (13:74)

Of course, such a model is not convenient at all because of the size (N 	NC) of matrix ~V.
The idea is now to keep the same structure and to search for a model with reduced state

vector X of size n�N and reduced associated matrices, so that the low-order model will be
written as

_X(t) ¼ FX(t)þ CþVC(X(t))þGU(t) (13:75)

Yo(t) ¼ HoX(t) (13:76)

where matrix F 2 R
n	n is a diagonal matrix, vector C 2 R

n, matrix V 2 R
n	nC , vector

C(X(t)) 2 R
nC gathering nonlinear terms Xi(t)	Xj(t)	Xk(t)	Xl(t) 1 � i � j � k � l � n, is

of size nC¼ n(nþ 1)(nþ 2)(nþ 3)=24, command matrix G 2 R
n	p, and observation matrix

Ho 2 R
qo	n.

Of course,Yo(t)2Rq should be as close as possible toYDM
o (t) whatever the input vectorU(t).

13.10.1.4 Experimental Apparatus

The aim of the setup is to show the ability of RMs built by MIM to be used in a practical
application involving two heat sources and many industrial constraints: nonlinear behav-
ior, 3D configuration, high cooling (Girault et al. 2010).
The heterogeneous studied system is a parallelepiped block of steel (0.164 m	 0.098 m	

0.098 m). The block is drilled in its length by two circular ducts (0.016 m in diameter) as
shown in Figure 13.9. The external surfaces of the block are insulated with ceramic sheets
(0.024 m thick), except the largest vertical face G1, painted in black in order to increase the

FIGURE 13.9
Thermal system.
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radiation heat transfer. Two cylindrical heat sources (20 mm in diameter and 60 mm long)
are placed in the block. The heat sources are driven by a power modulator, and the heat
extraction is realized with a high-rate oil flow in a closed circuit with a water=oil heat
exchanger (cf. Figure 13.10). The two circular ducts, acting as coolers, are made of copper.
Hence, the four annular cross sections corresponding to their inlet and outlet are forming
thermal bridges.
Boundary conditions are described in the following:

. On the black painted surface G1, which is not insulated, both radiative and
convective exchanges do occur.

. The five other sides are theoretically insulated, but in practice, there are convective
heat losses.

In fact, heat transfer in the steel block can be modeled by local Equation 13.65, and all
boundary conditions can be cast in the form of Equation 13.66. When building a classical
model based on the discretization of heat transfer balance equations, an important issue is
to estimate proper values of heat exchange coefficients, contact resistances, and emissivities
appearing in (13.66). One of the main interesting features of ‘‘experimental modeling’’ is to
embed such quantities in the model without requiring the definition of proper values. In
fact, when looking at terms of the right hand side of boundary Equation 13.66 and their
counterparts in the DM state Equation 13.70 and RM state Equation 13.75, it appears that
for each boundary,

. All terms of the form hiTa þ eisT4
a , which would appear explicitly in constant

vector Vc of Equation 13.70, will be embedded in the constant vector C of Equation
13.75.

. All terms of the form hiT(M, t) that would appear in AT(t) will be embedded in the
linear term FX(t).

. All terms of the form eisT
4(M, t) that would appear in R(T4)(t) will be embedded in

the nonlinear term VC(X(t)).

FIGURE 13.10
Schematic view of the experiment.
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Moreover, thermal conductivities and contact resistances (between copper and steel, for
instance) are also embedded in the RM. Note that the nonlinear term VC(X(t)) also takes
into account minor nonlinearities in such quantities.
Surface temperatures T1 to T9, whose location is shown in Figure 13.11, are measured

using an infrared camera positioned 1 m away from G1. Thanks to preliminary steady-state
experiments, the standard deviation of the measurement errors has been estimated at sm 

0.1 K for the range 273–773 K. The nine pixels corresponding to T1�T9 are extracted from
the infrared picture at each time step. Three K-type thermocouples are placed inside the
block at 10 mm from the boundary G6 for the measurement of three internal temperatures
T10, T11, and T12 as depicted in Figure 13.12. We wish to build a low-order model for the
temperature vector Yo ¼ [T1 � � �T12]T(qo ¼ 12).

13.10.1.5 Low-Order Model Identification

Three input–output data sets are used in the RM identification procedure:

a. Source 1 is the only active source.

b. Source 2 is the only active source.

c. Both sources are active.

The input signals used as heating powers are typically those shown in Figure 13.8.
Resulting temperatures at points 1–12 are recorded by the infrared camera. The number
of time steps Nid

t, k, k¼ 1, 2, 3, is equal to 1078, 1075, and 1171 for data set (a), (b), and (c),
respectively. The time step is Dtid¼ 20 s.
A series of RMs (from order n¼ 1 to 4) has been constructed using MIM.

FIGURE 13.11
Temperature data on boundary surface G1.
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FIGURE 13.12
Temperature data inside the block.
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We define sid
Y as the mean quadratic discrepancy (i.e., rms of the residues) between

measured temperatures Y*o and those computed with the identified RM of order n, Yo:

sid
Y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J red qo 	

Xpþ1
k¼1 N

id
t, k

� 	.r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXpþ1
k¼1

Xqo

i¼1
XNid

t, k

j¼1 Yo, i, k(tj)� Y*o, i, k(ti)
� 	2

qo 	
Xpþ1

k¼1 N
id
t, k

� 	.r
(13:77)

Figure 13.13 shows that sid
Y decreases with the RM order n. RMs of order 3 and 4 are almost

equivalent. The mean quadratic value (i.e., rms value) of the temperature variation in the
data is

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXpþ1
k¼1

Xqo

i¼1
XNid

t, k

j¼1 Y*o, i, k(tj)� Y*o, i, k(tj)
� 	2

qo 	
Xpþ1

k¼1 N
id
t, k

� 	.r

This quantity is here equal to about 101 K.
The value sid

Y 
 0:8K obtained with RMs of order 3 and 4 is very small compared to it.

13.10.2 Coupling of Reduced Models in Forced Heat Convection: Numerical Example

13.10.2.1 Problem Description

In this section, an advection–diffusion problem is studied: forced heat convection is
considered with an incompressible, stationary, laminar 2D flow over a backward-facing
step with a time-varying heat flux density applied upstream of the step (Rouizi et al. 2010),
as shown in Figure 13.14. The upstream height is h¼ 1 cm, and the step height is also
h¼ 1 cm. The fluid, assumed to be Newtonian, is air with the following constant properties:
dynamic viscosity m¼ 1.81	 10�5 kg (ms)�1, density r¼ 1.205 kg m�3, specific heat
Cp¼ 1005 J (kg K)�1, and thermal conductivity k¼ 0.0262 W (mK)�1. u1 and u2 are respect-
ively the streamwise and transverse velocity components.
The Reynolds number Re is defined as Re ¼ U12h=nwhere U1 is the inlet mean velocity

and v ¼ m=r is the kinematic viscosity of the fluid. The Reynolds number is based upon the
hydraulic diameter 2h of the inlet channel. The flow entering the channel is assumed to be

FIGURE 13.13
MIM results: sid

Y function of RM order n.
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laminar, fully developed, and is given by a parabola for the u1 velocity component.
An outflow boundary condition is used, assuming that the flow is fully developed at the
outlet section. On all other boundaries, a null velocity is prescribed. At the entrance of the
pipe, the fluid temperature is T1 ¼ 300K. A uniform heat flux varying in time w(t) is
located at x1 2 [�2h; 0] and x2¼ h, while the other walls are treated as adiabatic surfaces.
The thermal initial condition is T(t¼ 0)¼ 300 K. The range [100;800] for the Reynolds
number has been chosen to make sure the flow remains stable (Rouizi et al. 2010). The
computational fluid dynamics (CFD) software (Fluent1 6.3.26) has been used to carry out
computations. This is our DM. Grid independence tests have been performed using several
grid densities, and the reattachment location on the stepped wall has been used as the
criterion. In the present study, 144,247 nodes have been used for the computations.
References may be found in Rouizi et al. (2010), especially those concerning the validation
of our Fluent model against experimental and numerical studies. For all Reynolds numbers
used, there is a main recirculation region, whose length L1 increases with the Reynolds
number. For a Reynolds number equal to 400, a second recirculation bubble appears
attached to the upper wall of the channel between L2 and L3. The required CPU time for
flow simulations was about 2 h on a dual-core bi-processor AMD Opteron 2.2 GHz with
3 GB of RAM on a HP DL 145G2 data processing server.

13.10.2.2 Local Equations and State Space Representation

The governing equations of the problem are the continuity, momentum, and energy
equations:

r~ �~V ¼ 0 (13:78)

q~V
qt
þ (~V � r~)~V ¼ r

~p
r
þ nD~V (13:79)

qT
qt
þ ~V �r~T ¼ aDT (13:80)

where
~V is the velocity vector
p is the pressure
T is the temperature
a ¼ k=rCp is the thermal diffusivity

Inlet
Outlet

h

h

4 h L1 x/h = 6 30 h

L3
L2

e2

0

C

D Ee1(t)

FIGURE 13.14
Backward-facing step.
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We now present a matrix formulation of the discrete problem arising from Equations 13.78,
13.79, 13.80 and associated boundary conditions. We consider spatial meshes for velocity
components, temperature and pressure, and call:

. V ¼ [(Vi), i ¼ 1, . . . , 2NV]T ¼ [(u1i u2i), i ¼ 1, . . . ,NV]T the vector of size 2NV con-
taining the velocity components u1 and u2 at the discretization points

. T ¼ [(Ti), i ¼ 1, . . . ,NT]T, the vector of size NT containing the temperature value at
the discretization points

. P ¼ [(Pi), i ¼ 1, . . . ,NP]T, the vector of size NP containing the pressure value at the
discretization points

where NV, NT, and NP depend on the chosen discretization method and on the mesh used.
Let us consider the case of a spatial discretization scheme involving, for any equation

written for a specific node, all the other nodes in the domain. In such case, the discrete form
of the nonlinear term (~V � r~)~V uses all possible products Vi Vj, 1 � i � j � 2NV . The state
space equation relative to Equations 13.78 and 13.79 will write

_V ¼ AVVþQVC(V)þ BVRe (13:81)

where

. AV 2 R
2NV	2NV . AVV is the discrete form of the linear diffusion term nD~V of

Equation 13.79.
. C(V) 2 R

NC is a vector of size NC ¼ 2NV(2NV þ 1)=2 gathering all possible prod-
ucts Vi Vj, 1 � i � j � 2NV .

. QV 2 R
2NV	NC .

InQVC(V) are included the discrete form of the nonlinear advection term (~V � r~)~V,
which uses all possible quadratic terms of the velocity components products
Vi Vj, 1 � i � j � 2NV . The discrete form of the pressure term �r~p=r in Equation
13.79, taking into account the continuity Equation 13.78, may also be expressed as a
quadratic function of velocity components and is also included in the termQVC(V).

. BV 2 R
2NV . BVRe is the discrete form of the flow boundary condition.

Although the components of matrices AV, QV, and BV depend on the chosen discretiza-
tion method and mesh, only the structure of Equation 13.81 is of interest for our low-order
model identification method.
In a same manner, the space discretization of the energy Equation 13.80 with associated

boundary conditions leads to the following state space equation:

_T ¼ ATTþQTP(V,T)þ BTw(t) (13:82)

where

. AT 2 R
NT	NT . ATT corresponds to the discrete form of the diffusion term aDT.

. P(V,T) 2 R
NP where NP ¼ 2NVNT gathers all possible products Vi Tj,

1 � i � 2NV , 1 � j � NT.
. QT 2 R

NT	NP : QTP(V,T) contains the discrete form of the transport term ~V � r~T of
Equation 13.80.

. BT 2 R
NT is the input vector that allows to apply the heat flux density w(t).
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Two kinds of RMs are developed in the following:

. The fluid reduced model (FRM) relative to steady fluid mechanics only, dedicated
to the computation of the velocity field, for any constant Reynolds number Re in
the range [100; 800].

. The thermal coupled reduced model (TCRM) designed to calculate temperature
for a time-varying flux w(t) and for different values of Re 2 [300; 800]. The TCRM is
therefore weakly coupled to the FRM.

13.10.2.3 Form of the Fluid Reduced Model

We consider qV points among the NV ones of the velocity mesh. An output vector
YDM
V 2 R

2qV is introduced, allowing us to observe the velocity components u1 and u2 at
each one of the qV selected points:

YDM
V ¼ CVV (13:83)

where CV 2 R
2qV	2NV is an output matrix.

Let us consider the eigenvalue problem associated with matrix AV. We call
~FV 2 R

2NV	2NV the diagonal matrix containing the eigenvalues of AV and MV 2 R
2NV	2NV

the matrix whose columns are eigenvectors of AV. Hence, ~FV ¼M�1
V AVMV. We now

introduce in (13.81) and (13.83) the change of basis:

V ¼MV~Z (13:84)

Then C(V) ¼C(MV~Z) ¼ LVC(~Z) where LV 2 R
NC	NC . Defining ~GV ¼M�1

V QVLV,
~GV ¼M�1

V BV, ~HV ¼ CVMV, we get

_~Z ¼ ~FV~Zþ ~GVC(~Z)þ ~GVRe (13:85)

YDM
V ¼ ~HV~Z (13:86)

The FRM that we are going to identify has a similar form, but with a new state vector Z,
whose size nV is much lower than the one in the original model (nV � 2NV). Hence, the
FRM has the following structure, where the steady flow is considered (F�1V can then be
embedded in both GV and GV):

0 ¼ Zþ GVC(Z)þGVRe (13:87)

YV ¼ HVZ (13:88)

C(Z) 2 R
nC where nC ¼ nV(nV þ 1)=2 gathers all possible products Zi Zj, 1 � i � j � nV.

YV is the FRM output vector, which we want to be a good approximation of the DM output
vector YDM

V . Low-order matrices and vectors GV 2 R
nV	nC , GV 2 R

nV , and HV 2 R
2qV	nV

will be then identified.
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13.10.2.4 Form of the Thermal Coupled Reduced Model

Forced convection is now considered, Equation 13.82 being weakly coupled to the
Equation 13.81.
An output vector YDM

T 2 R
qT allows the selection of some temperatures among the NT

contained in T:

YDM
T ¼ CTT (13:89)

where CT 2 R
qT	NT is the output matrix.

In addition to the change of basis (13.84) introduced in both (13.81) and (13.82), we
consider the eigenvalue problem associated with matrix AT. We call ~FT 2 R

NT	NT the
diagonal matrix containing the eigenvalues of AT and MT 2 R

NT	NT the matrix whose
columns are eigenvectors of AT. Hence, ~FT ¼M�1

T ATMT.
We now introduce in (13.82) and (13.89) the change of basis:

T ¼MT~X (13:90)

ThenP(V,T) ¼ P(MV~Z,MT~X) ¼ LTP(~Z, ~X) where LT 2 R
NP	NP . Defining ~GT ¼M�1

T QTLT,
~GT ¼M�1

T BT, ~HT ¼ CTMT, we get

_~X ¼ ~FT~Xþ ~GTP(~Z, ~X)þ ~GTw(t) (13:91)

YDM
T ¼ ~HT~X (13:92)

The TCRM that we are going to identify has a similar form, but with a thermal state vector
X whose size nT is much lower than the one in the original model (nT � NT), and a fluid
state vector Z of size nV � 2NV:

_X ¼ FTXþ GTP(Z,X)þGTw(t) (13:93)

YT ¼ HTX (13:94)

P(Z,X) 2 R
nP where nP ¼ nVnT gathers all possible products Zi Xj, 1 � i � nV, 1 � j � nT.

YT is the TCRM output vector, which we want to be a good approximation of the DM
output vector YDM

T . Low-order matrices and vectors FT 2 R
nT	nT (diagonal), GT 2 R

nT	nP ,
GT 2 R

nT , and HT 2 R
qT	nT will be then identified.

Because of the one-way coupling between temperature and velocity, the identification
procedure of the TCRM is performed through two stages:

. One first identifies the FRM defined by Equations 13.87 and 13.88 and character-
ized by the matrices GV, GV, and HV. This enables to compute the reduced fluid
state vector Z for a given Reynolds number.

. In the second stage, one identifies the matrices FT, GT, GT, and HT of the TCRM
(Equations 13.93 and 13.94). The TCRM also depends on the reduced fluid state
vector Z of size nV (and not on the velocity field of size 2NV).
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13.10.2.5 RM Identification

In Table 13.2 are given, for each kind of RM, the matrices whose components form the
vector u of parameters to be identified as well as the expressions of the objective functional
J (u), the mean quadratic error s associated with J (u), and the maximum error e. Nt and
NR are respectively the number of time steps and Reynolds numbers used in the identifi-
cation. The particle swarm optimization method (Clerc 2005) has been used for solving the
minimization problems.

13.10.2.5.1 Fluid Reduced Model
In the present work, as we consider having no prior information on the effect of the
Reynolds number on flow patterns, the intuitive choice is to use data velocity fields
corresponding to a regular partition of the interval [100;800]. Therefore, eight velocity
fields are computed for Reynolds numbers from 100 to 800 by steps of 100 using the
DM, involving 144,247 mesh points. All nodes whose x1 coordinate is included in the range
[�2h; 30h] are included in the reduction process. This gives a total of 139,677 nodes. Using
these fields as data, a series of seven FRM of orders nV¼ 1 to 7 can be obtained through the
identification procedure. Identification results are summarized in Figures 13.15 and 13.16,
showing, respectively, J V(u) and su‘ , ‘ ¼ 1, 2 with respect to the FRM order nV. The FRM
of order nV¼ 7 is going to be tested for other values of Re in the following.
The aim is now to validate the FRM of order nV¼ 7, finding out if it is able to reproduce

with accuracy the outputs of the DM, for test Reynolds numbers 150, 250, . . . , 750 that have
not been used in the identification procedure. Table 13.3 presents the validation results,
which assess the FRM ability to reproduce the DM results with accuracy, as shown by the
values of mean quadratic errors su‘ , ‘ ¼ 1, 2, maximum errors eu‘ , ‘ ¼ 1, 2, as well as by the
length L1=h of the main recirculating region and the locations of detachment L2=h and
reattachment L3=h of the recirculation bubble on the upper wall for Re � 400.
Figures 13.17 and 13.18 show respectively the fields of velocity components u1 and u2,

computed by the DM and the FRM of order 7 in the Re¼ 550 case. We note a good
agreement on the velocity fields given by both models.

13.10.2.5.2 Thermal Coupled Reduced Model
The aim is now to identify a TCRM able to give the temperatures whatever the value of
the Reynolds number in the range [300;800] and whatever the heat flux density w(t) applied
at the heater. The reduced fluid state Z that depends on the Reynolds number is the solution
of the state equation of the order 7 FRM previously identified. The TCRM is weakly coupled
to the FRM through this reduced fluid state Z. In order to form a set of representative data

TABLE 13.2

Matrices to Be Identified, Functional J (u) to Be Minimized, Mean Quadratic Error s,
and Maximum Error e for Both FRM and TCRM

Model u J (u) s «

FRM GV,GV,HV J V(u) ¼
P2qV

i¼1
PNR

k¼1 YV ik � YDM
V ik

� �2
su‘ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J u‘ (u)
qV 	NR

s
, eu‘ ¼ max

i, k
YV ik � YDM

V ik

�� ��
u‘

¼P2
‘¼1 J u‘ (u) ‘ ¼ 1, 2 ‘ ¼ 1, 2

TCRM FT, GT, GT, HT J T(u) ¼
PqT

i¼1
PNt

j¼1
PNR

k¼1 YT ijk � YDM
T ijk

� 	2
sT ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
J T(u)

qT 	Nt 	NR

s
eT ¼ max

i, j, k
YT ijk � YDM

T ijk

��� ���
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of the dynamics of our system, the temperature field is calculatedwith the DM (qT¼ 144,247)
for six Reynolds numbers from 300 to 800 by steps of 100. A step of heatfluxdensityw(t) from
0 at t¼ 0 to 300 W m�2 for t> 0 is applied during 300 time steps of 0.1 s for each Reynolds
number. The obtained temperature fields, from which is subtracted the inlet temperature
T1¼ 300 K, are then used as data for the identification. The zone of 213 points indicated by
dashed lines in Figure 13.14 (�2� x1=h� 6) is considered as the output set of temperatures.
Identification results are summarized in Figure 13.19, showingJ T(u) and sT, with respect to
the TCRM order nT. The TCRM of order nT¼ 10 has been retained.
Wenowwant to verify that the TCRM is able to reproduce the behavior of theDMwhen it is

subject to any heat flux density w(t) and for a value of Reynolds number different than those
used in the identification process. Here, this test has been performed for Re¼ 550 and for the
test heatfluxdensityw(t) shown in Figure 13.20. Figure 13.21 shows the temperature evolution
computed with the DM and the TCRM of order 10, for three points C, D, and E defined in
Figure 13.14. In Figures 13.22 and 13.23 are respectively plotted the temperature profiles at
x1=h¼ {�2; �1; 0} and x1=h¼ {1; 2; 3; 4; 5; 6}, for time t¼ 30 s. It can be seen that the profiles
computed with both the DM and the TCRM are in very good agreement. These results are
confirmed by the values of both the mean quadratic error (sT¼ 7.27	 10�3 K) andmaximum
error (eT¼ 3.85	 10�2 K).

FIGURE 13.15
Objective functional J V(u) with respect to the
FRM order nV.
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FIGURE 13.16
Mean quadratic errors su1 and su2 with
respect to the FRM order nV.
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TABLE 13.3

Validation of FRM of Order 7: Values of su‘ , ‘ ¼ 1, 2, eu‘ , ‘ ¼ 1, 2 and Li=h, i ¼ 1, 3, for Re Test Values

L1=h L2=h L3=h

Re su1 (m s�1) su2 (m s�1) «u1 (m s�1) «u2 (m s�1) DM FRM Error (%) DM FRM Error (%) DM FRM Error (%)

150 4.0	 10�4 2.2	 10�4 2.3	 10�3 1.4	 10�3 3.96 4.04 1.92 — — — — — —

250 2.1	 10�4 1.2	 10�4 1.0	 10�3 7.1	 10�4 5.87 5.84 0.51 — — — — — —

350 1.2	 10�4 7.5	 10�5 5.3	 10�4 3.8	 10�4 7.51 7.45 0.75 — — — — — —

450 5.8	 10�5 3.5	 10�5 2.8	 10�4 1.8	 10�4 8.84 8.77 0.82 7.77 8.21 5.73 11.63 11.29 2.95

550 5.8	 10�5 2.7	 10�5 2.6	 10�4 1.5	 10�4 9.88 9.81 0.77 8.19 8.50 3.82 14.48 14.28 1.36

650 1.3	 10�4 6.8	 10�5 5.0	 10�4 3.2	 10�4 10.71 10.67 0.44 8.66 8.98 3.68 17.01 16.73 1.67
750 2.6	 10�4 1.3	 10�4 1.0	 10�3 6.1	 10�4 11.44 11.39 0.46 9.14 9.42 3.03 19.36 19.07 1.51
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FIGURE 13.18
Vertical velocity component u2 field (m s�1) for both the DM (top) and the order 7 RM (bottom) in the
Re¼ 550 case.
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FIGURE 13.17
Horizontal velocity component u1 field (m s�1) for both the DM (top) and the order 7 RM (bottom) in the
Re¼ 550 case.
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FIGURE 13.19
Objective functional J T(u) and mean
quadratic error sT with respect to the
TCRM order nT.
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FIGURE 13.20
Heat flux density w(t) for RM validation.

350

300

250

200

150

100
0 5 10 15

Time (s)

Fl
ux

 d
en

sit
y (

W
 m

–2
)

20 25 30

FIGURE 13.21
Temperatures computed by DM and
TCRM of order 10 at points C, D, E.
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FIGURE 13.23
Temperature profile at x1=h ¼ {1; 2; 3; 4; 5; 6} and
t¼ 30 s for DM and order 10 TCRM.

FIGURE 13.22
Temperature profile at x1=h ¼ {� 2; � 1; 0} and
t¼ 30 s for DM and order 10 TCRM.
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13.11 Transient Nonlinear Inverse Problem Solved
with an RM Built by MIM

The RM of order 3 built in Section 13.10.1 is here used for solving a transient nonlinear
inverse problem: time-varying strengths of both heat sources are estimated simultaneously
from the knowledge of temperature measurements (Girault et al. 2010).

13.11.1 Inverse Problem Resolution

The inverse problem aims at finding an estimation Û of the input vector U from the
knowledge of measured temperatures Yme, corresponding to a part Y of the output vector
Yo of the model. Y contains a selection of q � qo outputs, and an output matrix H 2 R

q	n is
formed with the corresponding lines of matrix Ho 2 R

qo	n. In the following, we will write
Uk for U(tk), Xk for X(tk), Yk for Y(tk), etc. We adopt a sequential estimation method: From
the knowledge of a vector of measured temperatures Yme

kþ1 and an estimate Ûk of Uk, one
looks for an estimate Ûkþ1 at time tkþ1. The inverse problem aims at finding Ûkþ1,
minimizing the squared norm of the residual vector ekþ1 between the measured data
Yme
kþ1 and the output vector Ykþ1 of the model:

kekþ1 k2L2 ¼ Ykþ1 � Yme
kþ1

�� ��2
L2
¼
Xq
i¼1

(ei(tkþ1))
2 ¼

Xq
i¼1

Yi(tkþ1)� Yme
i (tkþ1)

� �2 (13:95)

From Equation 13.75, one can write with Dt ¼ tkþ1 � tk the time step and an Euler implicit
scheme:

_X ¼ Xkþ1 � Xk

Dt
¼ FXkþ1 þ CþGUkþ1 þVC(Xkþ1)

Then,

Xkþ1 ¼ [I� FDt]�1[Xk þ CDtþGDtUkþ1 þVDtC(Xkþ1)] (13:96)

Hence, according to Equation 13.76 written for the part Y of Yo:

Ykþ1 ¼ H[I� FDt]�1[Xk þ CDtþGDtUkþ1 þVDtC(Xkþ1)] (13:97)

Inserting Equation 13.97 in Equation 13.95 and letting

S ¼ H[I� FDt]�1GDt (13:98)

and

Ykþ1 ¼ Yme
kþ1 �H[I� FDt]�1[Xk þ CDtþVDtC(Xkþ1)] (13:99)

the squared norm to be minimized becomes

kekþ1 k2L2¼kSUkþ1 � Ykþ1k2L2 (13:100)
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meaning that a solution Ûkþ1 is sought for the system:

SUkþ1 ¼ Ykþ1 (13:101)

According to Equation 13.99, Ykþ1 depends on Xkþ1, which is unknown at time tkþ1, but if
an estimate of Xkþ1 is available, Equation 13.101 is a linear system where S 2 R

q	p is a
dynamic sensitivity matrix, which does not vary with time, but depends on the time step
Dt. High values for Dt make matrix S closer to the static sensitivity matrix �HF�1G,
making inversion easier.
Assuming that we have at least as many sensors as unknowns, that is, q � p, the solution

is given by linear least squares: Ûkþ1¼ [STS]�1 STYkþ1.
Iterations are thus performed on the following equation:

Ûitþ1
kþ1 ¼ [STS]�1STYit

kþ1 (13:102)

with

Yit
kþ1 ¼ Yme

kþ1 �H[I� FDt]�1 X̂k þ CDtþVDtC X̂it
kþ1

� 	h i
(13:103)

where
X̂k is the estimate of Xk obtained with Ûk estimated at the previous time step k
X̂it
kþ1 is the estimate of Xkþ1 at iteration it

For the first iteration, we set X̂it¼0
kþ1 ¼ X̂k as initial guess for the time step. If the system is in

steady state at t¼ t0, then for the first time step, we set X̂0 ¼ X̂cv
s obtained with Û0 ¼ Ûcv

s
estimated in steady state after convergence, and we also set X̂it¼0

1 ¼ X̂0.
Once Ûitþ1

kþ1 obtained, we can compute X̂itþ1
kþ1 :

X̂itþ1
kþ1 ¼ [I� FDt]�1 X̂k þ CDtþGDtÛitþ1

kþ1 þVDtC X̂it
kþ1

� 	h i
(13:104)

This sequence is performed until convergence is obtained, that is, Ûcv
kþ1 ¼ Ûitþ1

kþ1 ffi Ûit
kþ1.

The estimated output vector is then computed using state vector X̂cv
kþ1 estimated after

convergence: Ŷcv
kþ1 ¼ HX̂cv

kþ1.
The introduction of FTS with Beck’s function specification method is described in Girault

et al. (2010).

13.11.2 Test Case and Sensors Choice

First, it should be noted that whereas the estimation of a single heat source is rather easy,
the case of two sources is trickier because each measurement point is influenced by both
sources. The set of nine temperatures recordings at points 1–9 is considered as possible
data set. Figure 13.24 shows the two signals used for testing the identified RM.

13.11.2.1 Sensors Choice

We have to choose which data sets can be used among the whole set of temperatures at
points 1–9. Looking at sensitivities will be of great interest for making such a choice. Let us
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look at the sensitivity matrix S defined in Section 13.11.1. When no FTS are used (nf¼ 0),
S is a q	 2 matrix defined by Equation 13.98, depending on the outputs of RM used for
inversion. In the present paper, as q temperatures among those at points 1–9 may be used
as data, S will be formed using the q corresponding lines of matrix H. When nf> 0, nf	 q
additional lines are included in S.
Note that because the inverse problem is nonlinear, S contains sensitivities of

Ykþ1 �H[I� FDt]�1VDtC(Xkþ1) with respect to Ukþ1, according to Equation 13.97, rather
than sensitivities of Ykþ1. Figure 13.25 shows the components of the sensitivity matrix S for
the nine possible data points when nf¼ 0 and those added when using nf¼ 1 and nf¼ 2
FTS. As expected, it can be seen that points 1, 2, and 3 are more sensitive to source 1 than to
source 2. Conversely, points 7, 8, and 9 are more sensitive to source 2 than to source 1.
Points 4, 5, and 6 have almost the same sensitivities to both sources. Hence, if we use only

FIGURE 13.24
Heat source strengths to be retrieved.
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FIGURE 13.25
Dynamic sensitivities S1 and S2 of each possible data point to sources 1 and 2, respectively.
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points 4, 5, and 6, we should not be able to correctly discriminate the sources. If two points
only are to be used, the best choice would be to use points 3 and 9. These deductions are
confirmed by the condition number of matrix STS, which is equal to approximately 2 for
the couple (3,9) whereas it reaches 6000 for the couple (4,5). Figure 13.25 also shows that
adding FTS allows us to include additional higher sensitivities in S.

13.11.2.2 Definition of Mean Quadratic Errors

In a similar way as for the RM identification phase, we define sY as the rms of the residues
between the measured temperatures Yme and those computed by the RM with the esti-
mated set of heat sources strengths, Ŷ:

sY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXq

i¼1
XNt�nf

j¼1 Ŷi(tj)� Yme
i (tj)

� 	2.
(q	 (Nt � nf ))

r
(13:105)

We recall that q is the number of data points used for inversion (q � qo is here equal to 2),
and Nt is the number of time steps of the inverse problem (360 here).
In order to assess the accuracy of the estimations for the present test case, we also define

sU as the rms of the residues between exact heat sources strengths Uexact and estimated
ones Û. In the present lab experiment, Uexact is known (measured), but of course, this
quantity is not known in a practical application for which only sY is available.

sU ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXp

i¼1
XNt�nf

j¼1 Ûi(tj)�Uexact
i (tj)

� 	2.
(p	 (Nt � nf ))

r
(13:106)

Analogous quantities, related to each one of the sources, may be defined. They are called
sU1 and sU2 .

13.11.2.3 Number of Future Time Steps

As we intend to propose an inversion algorithm able to work in real time, the choice of nf
should be made prior to any inversion using the measured data. For two heat source test
signals different than those of the inversion test using real measured data, we have
simulated temperature measurements by adding a random Gaussian noise to solutions
of the RM of order 4. Then, using these simulated data, we have performed inversions
using the RM of order 3 to recover the two test signals. For an added noise of standard
deviation sm¼ 0.1 K, corresponding to the supposed noise on temperature measurements
made using the infrared camera, two FTS were needed to obtain values of sY close to
sm¼ 0.1 K, when using T3 and T9.

13.11.3 Inversion Results Using RM and Computation of Internal Temperatures
with the Estimated Sources

Figure 13.26 shows temperatures at points 3 and 9, measured by the infrared camera, when
the test signals of Figure 13.24 are used. The number of time steps is Nt¼ 360 and the time
step is Dt¼ 20 s.
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Inversion results are summarized in Table 13.4. In addition to the nf¼ 2 case, results for
nf¼ 0 and nf¼ 1 are also presented in order to assess the improvement in the quality of
estimations when using 2 FTS.
Figures 13.27 and 13.28 show respectively estimated heat sources strengths as well as

exact signals, for nf¼ 0 and nf¼ 2, when the RM of order 3 is used. One can see that both
sources are discriminated.
First, let us look at the nf¼ 0 case. Since there are exactly as many data as unknowns

(q¼ p¼ 2) at each time step, the inverse problem is not over-determinated: consequently,
temperatures computed with the estimated heat sources strengths fit in quasi perfectly
with data (sY 
 10�14 K). This is not a good feature because it means that the measurement
errors have been fitted, and as a consequence, the estimated signals are pretty bad, as it can
be seen by watching at the values of sU.
When using one future temperature at each time step of the inversion algorithm (nf¼ 1),

the lagging and damping effects of heat diffusion are taken into account, and inversion
results are clearly improved. Moreover, the inverse problem becomes over-determinated
(more data than unknowns). The value of sY is close to the supposed standard deviation of
measurement errors (sm¼ 0.1 K). With nf¼ 2, the quality of estimations is improved again.
The value of sY is slightly larger than with nf¼ 1 but it remains of the order of magnitude
of sm. In fact, for both the nf¼ 1 and nf¼ 2 cases, results are very similar.
Thanks to the low-order model, the computing time spent to solve the inverse problem is

very low, about 2.5	 10�2 s for the 360 time steps.

FIGURE 13.26
Measured temperatures T3 and T9, used
as data for inversion.
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TABLE 13.4

Inversion Results Using RM of Order 3 and T3 and T9 as Data

RM Order n Data for Inversion nf sY (K) sU (W) sU1 (W) sU2 (W)

3 T3 and T9 0 4.5	 10�14 43.8 46.3 41.1

1 0.123 27.5 31.0 23.4

2 0.191 24.6 28.8 19.5
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Both heat sources intensities estimated from the knowledge of T3 and T9 (using nf¼ 2)
can then be used with the RM to compute temperatures at the remaining 10 points of the
set {T1 . . .T12}. Of course, in the present study, these temperatures have also been measured
in order to assess the quality of the results. Figure 13.29 shows both measured and
computed temperatures at point 12.
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FIGURE 13.28
Exact and estimated heat source strengths, for nf¼ 2.
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Exact and estimated heat source strengths, for nf¼ 0.
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13.12 Conclusion

In this chapter, we have presented the main principles of the model identification method
(MIM), which aims at building low-order models through the use of optimization tech-
niques, and we have shown the advantages provided by the use of such RMs to solve
transient inverse boundary problems.
The first part of the chapter has dealt with linear systems. The state space representation,

and especially its modal form, has been introduced to provide useful background for
presenting the MIM. Then, the main stages of the method for linear problems have been
developed.
First, the parameter estimation problem leading to the identification of the RM param-

eters has been described. For each one of the independent thermal inputs (prescribed heat
flux densities or temperatures at the boundaries, internal heat sources), it is based on the
minimization of a squared residuals functional built on the discrepancy between the low-
order model outputs and the ones of the system (simulations of a reference model or in situ
measurements) when a known input signal is applied. This phase corresponds to an
input=output calibration.
Second, the assembling of the ERMs (one for each single independent input), according

to the superposition principle, in order to form a global RM for the whole set of inputs, has
been presented.
The use of a low-order model for solving transient inverse boundary problems has been

developed. A sequential algorithm has been described, for the estimation of the time-
varying input vector gathering thermal loads from the knowledge of output (temperature)
data. The use of information at future time steps (FTS) to help solving and regularizing the
inverse problem has been introduced. A simple 2D academic example has been proposed
to illustrate the approach.
The second part of the chapter has been devoted to the extension of the MIM for

nonlinear systems. After a brief presentation of some reduction methods, we have given
the general philosophy of the MIM for nonlinear problems. Two examples have then been
presented to illustrate the method.

FIGURE 13.29
T12 measured and T12 computed by RM using iden-
tified heat source strengths.
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The first was dealing with an experimental setup involving nonlinear heat diffusion with
both convective and radiative boundary conditions. After describing the form of the low-
order model, we have underlined the benefits of an ‘‘experimental modeling,’’ that is, the
identification of a low-order model exclusively from in situ measured data, when some
crucial parameters such as heat exchange coefficients, thermal contact resistances, and
emissivities are not known accurately. Hence, no reference model based on classical spatial
discretization of PDE has been needed.
The second example was dealing with a 2D numerical problem: a heated flow on a

backward-facing step, involving heat convection and diffusion. The formulations of two
types of RM have been described:

. A fluid reduced model (FRM) relative to steady fluid mechanics only, dedicated to
the computation of the velocity field, for any constant Reynolds number Re in the
range [100;800].

. A thermal coupled reduced model (TCRM) designed to calculate temperature for a
time-varying flux w(t) and for different values of Re 2 [300;800]. The TCRM is
therefore weakly coupled to the FRM.

Finally, a nonlinear transient inverse problem has been presented. It was based on the
previous experimental setup involving nonlinear heat diffusion with both convective and
radiative boundary conditions. A sequential algorithm using the nonlinear RM has been
proposed and tested for the simultaneous estimation of two time-varying heat sources
from the knowledge of measured temperature data.

Nomenclature

A state matrix
B input matrix
C output matrix
e residual vector
F diagonal matrix of eigenvalues
G input matrix in the modal formulation
H output matrix in the modal formulation
J red objective functional
n order of the reduced model
nf number of future time steps
p number of inputs
q number of outputs
S dynamic sensitivity matrix
t time
T temperature vector
U input vector
X state vector
Y output vector
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14.1 Introduction

Infrared thermography is widely used to measure the thermal diffusivity of materials.
A thermographic experiment usually consists in illuminating the front face of a sample by a
light beam (point like, line, or other motifs) and detecting the thermal response of the
sample on either its front or its rear face. The light beam intensity can be Dirac-like,
modulated, pseudorandom, etc. The thermal behavior of the sample is observed using
an infrared camera with a focal plane array of infrared detectors. The development of
infrared video cameras with fast data acquisition (thousands of images=s) and high lateral
resolution (tens of micrometers) provides powerful tools for fast materials testing. The
drawback of these cameras is the huge amount of noisy data to be treated. To overcome
such a difficulty, experimental conditions are usually chosen so that simple analytical
solutions of the heat conduction problem exist. For instance, the diffusivity of homoge-
neous materials can be easily studied by the so-called slope method when illuminating a
thin but large enough sample placed in a vacuum chamber by a point-like or a line-like
intensity modulated laser beam (see, e.g., Mendioroz et al. 2009 and references within).
Otherwise (i.e. heterogeneous materials, other lighting motifs), the estimation process (heat
conduction model inversion) becomes a tricky task: computing time and memory
resources required when using standard approaches, i.e., diffusivity estimation by mini-
mization of a chosen residuals norm defined over the whole spatial domain, are generally
huge while results are very sensitive to noise when using point-by-point least squares
estimation approaches (see Chapter 7). In such a sense, mathematical tools allowing
significant reduction of the data set dimension, as well as noise control and parsimonious
estimations, could be an interesting alternative for extending characterization of materials
based on Infrared thermography to situations with unknown analytical solutions.
Proper orthogonal decomposition techniques are widely used for multivariate data reduc-

tion inmany areas of application. The reduction starts by choosing an appropriate orthogonal
basis allowing identification of some few dominant components (referred to as dominant
directions, eigenfunctions, or modes). A low-dimensional approximate description of the
whole set of data is thus obtained by projecting the initial high-dimensional set on the
dominant eigenfunctions. The choice of the basis makes the main difference among methods.
When dealing with regular signals, those arising out of spectral decomposition of the

energy matrix (or covariance matrix) of the multivariate data give the best results. This
means that it provides the lowest dimension for a given approximation precision or,
alternatively, the best precision for a given dimension. Such a method has been developed
about 100 years ago by Pearson (1901) as a tool for graphical data analysis and redeveloped
several times since then in different areas of application (Hotteling 1933, Karhunen 1946,
Loève 1955), that it has assumedmany names such as principal components analysis (PCA),
Karhunen–Loève decomposition (KLD), singular value decomposition (SVD), etc.
PCA=KLD=SVD is very commonly used today in image processing and signal processing
problems for compression and noise reduction (Deprettere 1988). It is also widely used for
signals classification, data clustering, and information retrieval problems (Berry et al. 1995,
Everitt and Dunn 2001, Everitt et al. 2001). Powerful model reduction techniques based on
PCA=KLD=SVD have been also proposed for low-dimensional description of problems
described by partial differential equations, mostly in the field of turbulent flows (Berkoz
et al. 1993, Holmes et al. 1996). In thermal analysis, SVD-based methods have been devel-
oped for efficient reduction of linear and nonlinear heat transfer problems (Ait-Yahia and
Palomo del Barrio 1999, 2000; Palomo del Barrio 2000; Dauvergne and Palomo del Barrio
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2009, 2010), as well as for solving heat transfer inverse problems dealingwith unknown heat
sources (Park and Jung 1999, 2001, Palomo del Barrio 2003a,b). For a fairly comprehensive
introduction to PCA=KLD=SVD, we recommend the books by Jolliffe (1986) and Deprettere
(1988). For more details on the mathematics and computation, good references are Golub
and Van Loan (1996), Strang (1998), Berry (1992), and Jessup and Sorensen (1994).
This chapter focuses on the use of KLD techniques in association with infrared thermog-

raphy for reliable and parsimonious thermal characterization of materials. In Section 14.2,
the KLD of infinite-dimensional and finite-dimensional problems is defined. Functions and
signal considered are, respectively, space-time-dependent functions and multivariate time
series. In the framework of thermal analysis, functions represent the thermal field while
multivariate time series are data taken from thermal field sampling. The property of KLD
to provide the closest r-dimensional approximation for an infinite-dimensional problem or
the closest rank-r approximation for a rank-n (n> r) matrix is used. A numerical example
illustrates the application of KLD for this problem. In Section 14.4, measurement noise
propagation through KLD is analyzed and two KLD-based filters are described. The
application of KLD for data filtering is highlighted using a numerical example. A KLD-
based method for reliable estimation of the diffusivity of homogeneous materials is
described and tested in Section 14.5, while Section 14.6 focuses on thermal characterization
of heterogeneous materials. This chapter includes unpublished experiments and results.

14.2 Karhunen–Loève Decomposition

Let T(x, t) be a space-time-dependent function in a bounded region V, with x¼ (x1, x2, x3)
and t representing point coordinates and time, respectively. It is assumed that this function
satisfies

8t,
ð
V

T2(x, t)dx <1 (14:1)

so that it belongs to the infinite-dimensional Hilbert space H associated with V. Moreover,
we assume that

8x,
ð
t

T2(x, t)dt <1 (14:2)

Sampling T(x, t) on V leads to the continuous in time n-dimensional vector
T(t) ¼ Ti(t)f gi¼1���n(n	 1), whose components represent T(x, t) values at the different n
sampling points. In the following, we will assume that sampling is done so that T(t)
provides a good enough approximation of T(x, t).

14.2.1 KLD of Infinite-Dimensional Problems

Let us define the energy function associated with T(x, t) as follows:

W(x, x0) �
ð
t

T(x, t)T(x0, t)dt (14:3)
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It can be easily proven that W(x, x0)¼W(x0, x) (symmetry property). In fact, W(x, x0) is a
compact, positive operator on H. We recall that a positive value for W(x, x0) means that, for
all nonzero functions w(x) 2 H, the following inequality is satisfied:ð ð

V

W(x, x0)f(x)f(x0)dxdx0 > 0 (14:4)

The well-known spectral theorem states that, if W(x, x0) is compact and self-adjoint, then
there is a complete orthonormal set in H (Hilbert basis) consisting of the eigenfunctions of
W(x, x0), noted as {Vm(x)}m¼1� � �1 in the following. Moreover, because W(x, x0) is positive, its
spectrum consists of 0 (zero) together with a countable infinite set of real and positive eigen-
values: s2

1 � s2
2 � � � � > 0. The problem defining eigenvalues and eigenfunctions ofW(x, x0) isð

V

W(x, x0)Vm(x0)dx0 ¼ s2
mVm(x) (14:5)

with orthogonal condition

hVk, Vmi �
ð
V

Vk(x)Vm(x)dx ¼ dkm (14:6)

Hilbert–Schmidt theorem allows eigenfunction W(x, x0) to be written as (see e.g. Intissar
1997)

W(x, x0) ¼
X1
m¼1

s2
mVm(x)Vm(x0) (14:7)

Besides, all functions belonging to H can be projected in a unique manner on the W(x, x0)
eigenfunctions set because {Vm(x)}m¼1� � �1 is a complete set in H (Hilbert basis). Since for 8t,
T(x, t) 2 H, it follows that

8t, T(x, t) ¼
X1
m¼1

Vm(x)zm(t) (14:8)

where decomposition coefficients (states in the following) are given by

zm(t) ¼ T(x, t), Vm(x)h i �
ð
V

T(x, t)Vm(x)dx (14:9)

Taking into account Equations 14.7 and 14.8, it can be easily proven that states are
orthogonal, and they satisfy the following equation:

zm(t), zk(t)h i �
ð
t

zm(t)zk(t)dt ¼ dmks
2
m (14:10)

Equation 14.8 gives the so-called Karhunen–Loève decomposition of T(x, t), also named
singular value decomposition (SVD). As shown in this section, SVD results from T(x, t)
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expansion on W(x, x0) eigenfunctions. The square root of the W(x, x0) eigenvalues are the
so-called singular values of T(x, t), designated as s1, s2,. . . .

14.2.2 KLD of Finite-Dimensional Problems

Let us now define the energy matrix associated with T(t) (n	 1) as follows:

W �
ð
t

T(t)Tt(t)dt (14:11)

The meaning of this matrix is close to that of the covariance matrix of T(t) signals. Diagonal
terms represent the energy (close to the variance) of T(t) components, while non-diagonal
terms measure the dynamic likeness among signals. It can be easily demonstrated that
W(n	 n) is a symmetric, definite positive matrix. Accordingly, spectral decomposition
of W leads to a n-dimensional set of orthonormal eigenvectors, V¼ [v1 v2 � � � vn]
with VtV¼ I, and associated eigenvalues satisfying s2

1 � s2
2 � � � � � s2

n > 0. The energy
matrix can hence be written as

W ¼ VS Vt with S ¼ diag s2
1 s2

2 � � � s2
n


 �
(14:12)

Moreover, V¼ [v1 v2 � � � vn] is a complete orthonormal set in H. Consequently, elem-
ents of T(t) can be represented as linear combinations of the W eigenvectors:

8k, Tk(t) ¼
Xn
m¼1

vkmzm(t) (14:13)

Using matrix writing, equations above become

T(t) ¼ VZ(t) (14:14)

with Z(t)¼ [z1(t) z2(t) � � � zn(t)]
t. From Equations 14.11, 14.12, and 14.14, it can be easily

proven that states are orthogonal: ð
t

Z(t)Zt(t)dt ¼ S (14:15)

Equation 14.14 is the Karhunen–Loève decomposition (or SVD) of T(t). It must be noticed
that for an appropriate T(x, t) sampling, the elements of W ¼ {wij}i, j¼1���n and the eigenvec-
tors vm(m¼ 1 � � � n) can be considered as good numerical approximations of W(x, x0) and
Vm(x), respectively.

14.3 Data Reduction Using KLD

As already mentioned in the introduction, KLD provides the most efficient way of captur-
ing the dominant components of an infinite-dimensional process (or a high-dimensional
one) with only a finite number of modes, often surprisingly few. The property of KLD to
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provide the closest r-dimensional approximation for an infinite-dimensional problem, or
the closest rank-r approximation for a rank-n (n> r) matrix, is shown in Section 14.3.1.
A numerical example for illustrating this property is provided in Section 14.3.2.

14.3.1 Low-Dimensional Approximations

An r-dimensional linear approximation of T(x, t) is achieved when truncating the expan-
sion series given by Equation 14.8 to its first r terms:

8t, Tr(x, t) ¼
Xr
m¼1

Vm(x)zm(t) (14:16)

This approximation is the orthogonal projection of T(x, t) on the space generated by
{Vm(x)}m¼ 1� � �r. The approximation error is

8t, er(x, t) � T(x, t)� Tr(x, t) ¼
X1

m¼rþ1
Vm(x)zm(t) (14:17)

Taking into account orthogonal properties of eigenfunctions {Vm(x)}m¼1� � �1 (see Equation
14.6) and states {zm(t)}m¼ 1� � �1 (see Equation 14.10), it can be easily proven that

kerk2 �
ð
t

ð
V

er(x, t)dxdt ¼
X1

m¼rþ1
s2
m (14:18)

As kT(x, t)k2<þ1, the approximation error tends to zero: limr!1kerk2¼ 0. Indeed,
Allahverdiev theorem (cf. Intissar 1997) for compact operators, say W(x, x0), states that all
r-dimensional approximations Wr(x, x0) of W(x, x0) satisfy kW�Wrk � ksrþ1 srþ2 � � �k,
where srþi is the (rþ i)th singular value of W and k.k represents unitarily invariant norms
of the approximation error. The same theorem states that the minimum value kW�Wrk¼
ksrþ1 srþ2 � � �k is achieved by truncation of the Schmidt development of W (Equation
14.7) to its r first terms (those associated with the largest singular values). It follows that all
r-dimensional linear approximations of T(x, t) satisfy

kerk2 �
X1

m¼rþ1
s2
m (14:19)

As a result, Equation 14.16 provides the best r-dimensional linear approximation of T(x, t)
with regard to the quadratic norm of the error.
In matrix algebra, Fan and Hoffman (1955) and Mirsky (1960) demonstrated that all

rank-r approximations for a rank-n (n> r) matrix, say W, satisfy

inf
rank(Wr)¼r

kW�Wrk ¼ kdiag(srþ1 srþ2 � � � sn)k (14:20)

Indeed, the closest rank-r approximation is provided by Wr ¼ VrSrVt
r, where V¼

[v1 v2 � � � vr] and Sr ¼ diag s2
1 s2

2 � � � s2
r


 �
. It follows that

Tr(t) ¼ VrZr(t) (14:21)
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with Zr(t)¼ [z1(t) z2(t) � � � zr(t)]
t provides the best r-dimensional approximation of T(t)

in the sense of unitarily invariant norms of the approximation error. As mentioned
previously, it can be easily proven that

kerk2 � kT� Trk2 ¼
Xn

m¼rþ1
s2
m (14:22)

14.3.2 Numerical Example

Let us consider the thermal behavior of a squared, homogeneous plate (L	 L, L¼ 6 mm)
exchanging heat by convection=radiation with an environment at constant temperature,
say at 08C. The temperature field of the plate at time t¼ 0 is represented in Figure 14.1a.
Reference axes are chosen so that the energy equation at inner points (0< x< L, 0< y< L)
can be written as follows:

qT(x, y, t)
qt

¼ ax
q2T(x, y, t)

qx2
þ ay

q2T(x, y, t)
qy2

� bT(x, y, t) (14:23)
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FIGURE 14.1
Data reduction using KLD: (a) initial temperature field of the plate; (b) temperature behavior in time, one curve by
volume of control; (c) KLD states; and (d) error of the 6D KLD approximation.
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ax¼ 0.1515	 10�6 m2 s�1 and ay¼ 0.3030	 10�6 m2 s�1 represent, respectively, the thermal

diffusivity in the Ox
�!

and Oy
�!

directions. b¼ 0.152 s�1 is the heat transfer coefficient
between the plate and its surroundings. At points on the plate boundaries (x¼ 0, x¼ L,
y¼ 0, y¼ L), adiabatic conditions are assumed.
The finite volume method has been applied on an equally spaced n	 n (n¼ 30) grid for

discretization of Equation 14.23. This leads to the state-space model:

_T(t) ¼ AT(t) with A ¼ axLx þ ayLy � bI (14:24)

where Lx and Ly represent numerical approximations of q2=qx2 and q2=qy2, respectively.
Results achieved from time integration of Equation 14.24 are reported in Figure 14.1b.
It includes the time behavior of the temperature at each control volume, T(t)¼ {Ti(t)}i¼1� � �n,
from t¼ 0 to t¼ 10 s with Dt¼ 0.5	 10�2 s (2000 sampling times). KLD of this set of signals
has been carried out as described in Section 14.2.2: T(t)¼VZ(t). Eigenfunctions associated
with the six first singular values are depicted in Figure 14.2, while the time evolution of the
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FIGURE 14.2
Eigenfunctions associated to the largest eigenvalues. Maps on the (6 mm	 6 mm) testing plate.
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corresponding states {zm(t)}m¼1, . . . ,6 is represented in Figure 14.1c. Table 14.1 includes
eigenvalues s2

1, . . . ,s
2
7 as well as the corresponding contribution of the total energy of

T(t) signals: s2
i = Sm¼1,...,ns2

m

� �
. It can be noticed that most part of the T(t) signals energy is

captured by the six first KLD components.
Hence, a 6D linear approximation of T(t) has been considered:

Tr¼6(t) ¼ Vr¼6Zr¼6(t)) 8k, Tk(t) 

X6
m¼1

vkmzm(t) (14:25)

The approximation errors er(t)¼T(t)�Tr(t) are represented in Figure 14.1d. It can be seen
that they are always less than 0.028C, negligible compared to the values of T(t) signals.
Hence, the whole set of data in T(t), 900 variables by 2000 sampling times (1.8 millions of
data), can be replaced by 6 eigenfunctions (900	 6 data) and 6 states (6	 2000 data). Data
reduction achieved is greater than 99% accurate. The results are much more spectacular in
actual infrared thermography experiences, because the camera focal plane array usually
includes 250	 250 infrared sensors. Following with the example (2,000 sampling times, 6D
approximation), this means replacing 125 millions of data by only 17,400 data points.

14.4 Noise Filtering Using KLD

Noise filtering is another striking feature of KLD. Noise propagation through KLD is
analyzed in Section 14.4.1. It is proven that spatially uncorrelated noise has no effect on
eigenfunctions, the noise being entirely reported on states. Section 14.4.2 explains why
KLD truncation acts as a filter and a method for optimal filtering using KLD is described.
The last paragraph in this section includes a numerical example that illustrates the power-
fulness of KLD for noise reduction purposes.

14.4.1 Noise Propagation through KLD

Let us first consider infinite-dimensional problems with noise-corrupted observations

~T(x, t) ¼ T(x, t)þ e(x, t) (14:26)

where x¼ (x1, x2, x3) represents point coordinates. Noise e(x, t) is assumed to be independ-
ent of T(x, t):

8x, x0
ð
t

e(x, t)T(x0, t)dt ¼ 0 (14:27)

TABLE 14.1

Eigenvalues of the Energy Matrix and Their Contribution to the Total Energy of the Whole
Set of Temperature Data

1 2 3 4 5 6 7

Eigenvalues	 10�3 464.43 59.52 5.07 0.512 0.0587 0.0061 0.001

Contribution to E (%) 87.69 11.24 0.9575 0.0967 0.0111 0.0011 0.0002
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as well as spatially uncorrelated

8x, x0 We(x, x0) �
ð
t

e(x, y, t) e(x0, t)dt ¼ s2
ed(x� x0) (14:28)

Taking into account noise properties, the energy function associated with the observations
can be written as

~W(x, x0) �
ð
t

~T(x, t)~T(x0, t)dt ¼
ð
t

T(x, t)T(x0, t)dtþ s2
ed(x� x0) ¼W(x, x0)þWe(x, x0) (14:29)

Rearranging Equation 14.7 into Equation 14.29 leads to

~W(x, x0) ¼
X1
m¼1

Vm(x)~s2
mVm(x0) with ~s2

m ¼ s2
m þ s2

ed(x� x0) (14:30)

which proves that eigenfunctions are not corrupted by noise. From Equation 14.30, it
follows that

~T(x, t) ¼
X1
m¼1

Vm(x)~zm(t) (14:31)

Noise-corrupted states are hence given by

~zm(t) ¼
ð
V

~T(x, t)Vm(x)dx ¼
ð
V

T(x, t)Vm(x)dxþ
ð
V

e(x, t)Vm(x)dx ¼ zm(t)þ gm(t) (14:32)

where gm(t) represents the orthogonal projection of the noise on eigenfunction Vm(x).
Comparing Equations 14.30 and 14.31, it follows that

8m, s2
e,m �

ð
t

g2m(t)dt ¼ s2
e (14:33)

For finite-dimensional problems, similar results are achieved starting from noise-corrupted
observations given by

~T(t) ¼ T(t)þ «(t) with We ¼ s2
eI (14:34)

Energy matrix associated with the observations is

~W ¼WþWe ¼Wþ s2
eI ¼ VSVt þ s2

eI ¼ V~SVt (14:35)

with ~S ¼ diag s2
1 þ s2

e s2
2 þ s2

e � � � s2
n þ s2

e


 �
. Consequently, the KLD of ~T(t) is

~T(t) ¼ V~Z(t) (14:36)
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with ~Z(t)¼Z(t)þg(t) and g(t)¼Vt «(t). As before, it can be easily proven thatð
t

g(t)gt(t)dt ¼ s2
eI (14:37)

14.4.2 Optimal Noise Filtering

Consider the observations given by Equation 14.26, with noise-verifying properties
described by Equations 14.27 and 14.28. The energy of the observed thermal response at
point x is

~W(x, x) �
ð
t

~T
2
(x, t)dt ¼

ð
t

T2(x, t)dtþ
ð
t

e2(x, t)dt ¼
X1
m¼1

V2
m(x) s2

m þ s2
e

� �
(14:38)

The signal=noise ratio is hence

I(x) �
Ð
t T

2(x, t)dtÐ
t e

2(x, t)dt
¼
P1

m¼1 V
2
m(x)s

2
mP1

m¼1 V2
m(x)s2

e
(14:39)

Consider now the r-dimensional approximation of ~T(x, t) given by

~Tr(x, t) ¼
Xr
m¼1

Vm(x)~zm(t) (14:40)

The energy of ~Tr(x, t) at point x and the corresponding signal=noise ratio are

~Wr(x, x) ¼
Xr
m¼1

V2
m(x) s2

m þ s2
e

� �
and Ir(x) ¼

Pr
m¼1 V

2
m(x)s

2
mPr

m¼1 V2
m(x)s2

e
(14:41)

Comparing signal=noise ratios I(x) and Ir(x) leads to

I(x)
Ir(x)

¼
P1

m¼1 V
2
m(x)s

2
mPr

m¼1 V2
m(x)s2

m

Pr
m¼1 V

2
m(x)s

2
eP1

m¼1 V2
m(x)s2

e
¼ 1þ

P1
m¼rþ1 V

2
m(x)s

2
mPr

m¼1 V2
m(x)s2

m

� � Pr
m¼1 V

2
m(x)P1

m¼1 V2
m(x)

� �
(14:42)

The first term into brackets in the equation above tends to 1 because eigenvalues satisfy
s2
1 � s2

2 � � � � > 0 and eigenfunctions Vm(x) are O(1). Indeed, first eigenvalue is usually
largely dominant (s2

1 � s2
2). Hence we can write

I(x)
Ir(x)



Pr

m¼1 V
2
m(x)P1

m¼1 V2
m(x)

� �
< 1 (14:43)

This equation shows that the signal=noise ratio is improved when truncating the KLD of
the observations. This effect is as much important as r is small. However, r must be
high enough for avoiding significant bias; that is, for approximation error er(x, t) �
T(x, t)�Tr(x, t) to be small enough.
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Even if simple KLD truncation allows some data filtering, better filtering can be done. Let
T̂(x, t) be an estimate of T(x, t) obtained by ~T(x, t) filtering. The quality of the estimate is
usually evaluated by

risk � T(x, t)� T̂(x, t)
�� ��2 (14:44)

It has been demonstrated (Wiener theorem, cf. Mallat 2000, p. 434) that

T̂(x, t) ¼
X1
m¼1

Vm(x)
s2
m

s2
m þ s2

e,m

 !
~zm(t) (14:45)

is a linear filter leading to minimum risk whenW(x, x0) andWe(x, x0) become diagonal in the
same Karhunen–Loève basis, as it is the case forWe(x, x0) ¼ s2

ed(x� x0) (uncorrelated noise).
Equation 14.45 shows that the best linear estimate of T(x, t) is achieved by weighting

states ~zm(t) with a factor that depends on the signal=noise ratio s2
m=s

2
e,m in the Vm(x)

direction. Low signal=noise ratio will lead to strong attenuation of ~zm(t) values.

14.4.3 Numerical Example

Wecomeback now to the example in Section 14.3.2. The plate thermal behavior simulated by
time integration of Equation 14.24 has been corrupted by additive noise: ~T(t)¼ T(t)þ «(t),
with We ¼ s2

eI (see Figure 14.3a). Noise amplitude is intentionally high (�0.58C) for better
illustration of KLD filtering powerfulness. Figure 14.3b shows the statistical correlation of an
arbitrary element of «(t), say ei(t), with elements ej¼1, . . . ,n(t). It can be seen that 8j 6¼ i
correlation is almost zero, but not zero. This means that noise energy matrixWe is diagonal
dominant, but not strictly diagonal. KLD of ~T(t) has been carried out as described in Section
14.2.2: ~T(t)¼ ~V~Z(t). In Figure 14.3c are represented states~z1(t),~z2(t),~z3(t), while time behavior
of ~z4(t), ~z5(t), ~z6(t) is depicted in Figure 14.3d. As expected, signal=noise ratio for states
(s2

m=s
2
e) reduces as state energy (s2

m) decreases. The maps in Figure 14.4 represent the
difference between the eigenfunctions (from first to sixth) derived from KLD of T(t) and
those from KLD of ~T(t); they are due to a not strictly diagonal We matrix. As for states, the
differences are greater for eigenfunctions associated with lower eigenvalues.
Estimates of T(t) from noise corrupted data in ~T(t) have been carried out in two different

ways, by truncation of ~T(t)-KLD and by truncation and states weighting:

T̂r¼6(t) ¼ ~Vr¼6~Zr¼6(t)) 8k, T̂k(t) 

X6
m¼1

~vkm~zm(t) (14:46)

T̂r¼6(t) ¼ ~Vr¼6Ẑr¼6(t)) 8k, T̂k(t) 

X6
m¼1

~vkm s2
m= s2

m þ s2
e,m

� �� �
~zm(t) (14:47)

The initial noise «(t)¼T(t)� ~T(t) is represented in Figure 14.5a. Noise after filtering
by KLD truncation is depicted in Figure 14.5b, while noise after filtering by KLD
truncation and states weighting is represented in Figure 14.5c. These three figures illustrate
the powerfulness of filters applied, as well as the predominant effect of KLD truncation
against states weighting even though strongest noise reduction is achieved by KLD
truncation and states weighting.
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14.5 Thermal Characterization of Homogeneous Materials Using KLD

This section focuses on the use of KLD techniques in association with infrared thermog-
raphy for reliable and parsimonious thermal characterization of homogeneous materials.
The mathematical method proposed for diffusivities estimation takes advantage of the
powerfulness of KLD techniques for data and noise reduction. Indeed, orthogonal prop-
erties of eigenfunctions and states are intensively used for getting simple diffusivities
estimates. As shown later, this leads to an exciting combination of parsimony and robust-
ness to noise. Moreover, no analytical solutions are required for diffusivities estimation
(contrary to, i.e., ‘‘slope method’’), so that few constraints regarding sample illumination
(spatial and time patterns) are applicable. The proposed method is, however, restricted to
lock-in thermography based on thin, large enough samples; that is, to experimental
situations where 2D heat transfer with adiabatic boundary conditions can be assumed.
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FIGURE 14.3
Highly noised experiment on a homogeneous plate: (a) temperature data (one curve by pixel), (b) one row of the
added noise correlation matrix, (c) first to third KLD states associated with the temperature data, and (d) fourth to
sixth KLD states associated with the temperature data.
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14.5.1 Problem Statement

Let us first consider the following heat conduction problem in a rectangular plate Lx	 Ly.
The energy equation at inner points (V: 0< x< Lx, 0< y< Ly) is written as

qT(x, y, t)
qt

¼ ax
q2T(x, y, t)

qx2
þ ay

q2T(x, y, t)
qy2

� bT(x, y, t) (14:48)

Boundary conditions are assumed to be adiabatic:

qT(x, y, t)
qx

����
y¼0, Ly

¼ 0,
qT(x, y, t)

qy

����
x¼0, Lx

¼ 0 (14:49)
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The initial condition is T(x, y, 0)¼To(x, y). T(x, y,t) represents the excess of temperature with
regard to the plate surroundings, which are assumed to remain at constant temperature
during the experiment. Rectangular domain and Cartesian coordinates have been inten-
tionally chosen to be in phase with infrared camera images (small square pixels covering a
rectangular or a square area). ax and ay represent, respectively, the thermal diffusivity in

the Ox
�!

and Oy
�!

directions. b is the heat transfer coefficient between the plate and its
surroundings.
To fit to such a problem, experiments must be carried out on thin samples (plates) located

in an environment at constant and uniform temperature. Starting from a plate in thermal
equilibrium with its environment, the initial condition To(x, y) can be established using a
light beam with almost arbitrary spatial and time patterns. Thermal relaxation of the plate
is thus observed using an infrared camera. At each sampling time, a plate temperature map
is recorded and stored: ~T(t)¼T(t)þ «(t). The dimension of vector ~T(t) is equal to the
number of pixel of the infrared image. Measurements noise is assumed to be spatially
uncorrelated:We ¼ s2

eI. This is not true for all infrared cameras, but it has been successfully
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FIGURE 14.5
Noise filtering: (a) noise before filtering, (b) noise after filtering by KLD truncation, and (c) and noise after filtering
by KLD truncation and states weighting.
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tested for the CEDIP-ORION type (Wellele and Palomo del Barrio 2008). We suppose that
the lateral resolution of the camera is good enough for ~T(t) to be a good approximation of
T(x, y, t). Indeed, the plate dimensions are as large as required to warrant the border is not
reached by thermal perturbations.
Thermal characterization consists in determining ax and ay values from the recorded

temperature data.

14.5.2 Thermal Parameters Estimation

The method proposed for ax and ay estimation is described here. In Section 14.5.2.1, we
first establish some fundamental equations and properties. The method itself is described
in Section 14.5.2.2.

14.5.2.1 Fundamental Equations and Properties

Let us again consider the KLD of the theoretical thermal field:

T(x, y, t) ¼
X1
m¼1

Vm(x, y)zm(t) (14:50)

We remind that eigenfunctions and states verify orthogonal properties:

hVk, Vmi �
ð
V

Vk(x)Vm(x)dx ¼ dkm zm(t), zk(t)h i �
ð
t

zm(t)zk(t)dt ¼ dmks
2
m (14:51)

Introducing Equation 14.50 into Equation 14.48 leads to

X1
m¼1

Vm(x, y)
dzm(t)
dt
¼ ax

X1
m¼1

q2Vm(x, y)
qx2

zm(t)þ ay

X1
m¼1

q2Vm(x, y)
qy2

zm(t)� b
X1
m¼1

Vm(x, y)zm(t)

(14:52)

Multiplying this equation by Vi(x, y), integrating over V and taking into account eigen-
functions orthogonal property, we obtain

dzi(t)
dt
¼ ax

X1
m¼1

q2Vm(x, y)
qx2

, Vi(x, y)
� �

V

zm(t)þ ay

X1
m¼1

q2Vm(x, y)
qy2

, Vi(x, y)
� �

V

zm(t)� bzi(t)

(14:53)

The above equation is now multiplied by zk(t) and integrated over time. Taking into
account the orthogonal property of the states, this leads to

1
s2
k

dzi(t)
dt

, zk(t)
� �

t
¼ ax

q2Vk(x, y)
qx2

, Vi(x, y)
� �

V

þay
q2Vk(x, y)

qy2
, Vi(x, y)

� �
V

�bdik (14:54)
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In a similar way, from Equations 14.49 through 14.51, it can be easily proven that

8m,
qVm(x, y)

qx

����
y¼0, Ly

¼ 0,
qVm(x, y)

qy

����
x¼0, Lx

¼ 0 (14:55)

As demonstrated in Appendix 14.A, the following identity is verified for all (i, k)

1
s2
k

dzi(t)
dt

, zk(t)
� �

t
¼ 1

s2
i

dzk(t)
dt

, zi(t)
� �

t
(14:56)

Taking into account Equations 14.54 and 14.56, it follows that

q2Vk(x, y)
qz2

, Vi(x, y)
� �

V

¼ q2Vi(x, y)
qz2

, Vk(x, y)
� �

V

, z ¼ x, y (14:57)

Accordingly, Equation 14.54 for (i, k) indexes and Equation 14.54 for (k, i) are identical
equations. Indeed, we can write

1
s2
k

dzi(t)
dt

, zk(t)
� �

t
¼ ax

q2Vi(x, y)
qx2

, Vk(x, y)
� �

V

þay
q2Vi(x, y)

qy2
, Vk(x, y)

� �
V

�bdik (14:58)

1
s2
i

dzk(t)
dt

, zi(t)
� �

t
¼ ax

q2Vi(x, y)
qx2

, Vk(x, y)
� �

V

þay
q2Vi(x, y)

qy2
, Vk(x, y)

� �
V

�bdik (14:59)

Adding equations above leads to

1
s2
i þ s2

k

dzi(t)zk(t)
dt

� �
t
¼ ax

q2Vi(x, y)
qx2

, Vk(x, y)
� �

V

þay
q2Vi(x, y)

qy2
, Vk(x, y)

� �
V

�bdik (14:60)

Consequently, we can write

zi(tf )zk(tf )� zi(0)zk(0)
s2
i þ s2

k

¼ ax
q2Vi(x, y)

qx2
, Vk(x, y)

� �
V

þay
q2Vi(x, y)

qy2
, Vk(x, y)

� �
V

�bdik
(14:61)

where tf is the experiment end-time.
Another interesting equation comes from integration of Equation 14.48 over V. For

adiabatic boundary conditions, this leads to

d T(x, y, t)h iV
dt

¼ �b T(x, y, t)h iV (14:62)

Hence

T(x, y, t)h iV¼ To(x, y)h iVexp(�bt) (14:63)
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14.5.2.2 Estimation Method

For free-noise space-time continuous observations, parameters ax, ay, and b can be calcu-
lated from any of the three arbitrarily chosen Equations 14.61. On the contrary, for noise-
corrupted observations, it is convenient to cast the ax, ay, and b estimation problem into a
least squares problem.
Taking into account the powerfulness of the spatial-mean operator h8iV for noise reduc-

tion, the best estimate of b is achieved applying the linear least squared method to
Equation 14.63. This leads to

b̂ ¼ ht2i�1t �t ln
�T(t)
�To

� �� �
t

(14:64)

with �T(t)¼h~T(x, y, t)iV and �To¼hTo(x, y)iV.
The estimation of ax and ay could be based on Equation 14.61, but the question is how

many of these equations and which ones must to be used. At least two equations are
required because the problem involves two unknown parameters. However keeping all of
them will be a wrong strategy because there are terms in the KLD of ~T(x, y, t), which are
not significant compared to the noise. As shown in Section 14.4.1, signal=noise rate for
states ~zm(t) is s2

m=s
2
e . On the other hand, eigenvalues s2

m usually decrease quickly, so that
s2
1 >> s2

2 >> s2
3 >> � � � (see Table 14.1). Hence, Equation 14.61 that will be preferred for

diffusivities estimation are those involving the states with largest eigenvalues, say ~z1(t)
and ~z2(t). As demonstrated in the previous paragraph, Equation 14.61 with i¼ 1 and k¼ 2
and Equation 14.61 with i¼ 2 and k¼ 1 are equivalent. However, for no perfectly uncor-
related noise (see Section 14.4.3), eigenfunctions from KLD of ~T(x, y, t) will be corrupted
by noise, with degradation increasing with decreasing eigenvalues. Consequently, Equa-
tion 14.61 with i¼ 1 and k¼ 2 will be preferred to Equation 14.61 with i¼ 2 and k¼ 1 in
order to limit noise amplification effects due to second-order space derivatives. We can
hence write

y ¼M
ax

ay

� �
(14:65)

with

y ¼
D~z1~z1= ~s2

1 þ ~s2
1

� �þ b̂

D~z1~z2= ~s2
1 þ ~s2

2

� �
D~z2~z2= ~s2

2 þ ~s2
2

� �þ b̂

264
375, M ¼

q2x ~V1(x, y), ~V1(x, y)
� �

V
hq2y ~V1(x, y), ~V1(x, y)iV

q2x ~V1(x, y), ~V2(x, y)
� �

V
hq2y ~V1(x, y), ~V2(x, y)iV

q2x ~V2(x, y), ~V2(x, y)
� �

V
hq2y ~V2(x, y), ~V2(x, y)iV

264
375

(14:66)

and D~zi~zk ¼ ~zi(tf )~zk(tf )� ~zi(0)~zk(0), q
2
z
~Vi(x, y) ¼ q2 ~Vi(x, y)=qz2.

The solution of Equation 14.65, in the least squares sense, leads to

âx

ây

� �
¼ (M0M)�1M0y (14:67)

In the experimental framework of infrared thermography with high lateral resolution,
~T(t) can be often considered as a good approximation of ~T(x, y, t). Hence, KLD of ~T(t)
(Equation 14.34) provides appropriate approximations of eigenfunctions Vm(x, y) and
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states ~zm(t). Using previous notation for finite-dimensional problems, with eigenvectors
~V¼ [~v1 ~v2 � � � ~vn], the elements of the matrix M become

q2z ~Vi(x, y), ~Vk(x, y)
D E

V

 vtkLzvi (14:68)

where Lz is the numerical approximation of q2=qz2.
For isotropic materials (ax¼ay), the estimate of the diffusivity can be easily obtained by

addition of the columns of the matrix M.

14.5.3 Numerical Example

We come back again to the example in Section 14.3.2. The plate thermal behavior simulated
by time integration of Equation 14.24 has been corrupted by additive noise: ~T(t)¼
T(t)þ «(t) (n	 1, n¼ 900), with We ¼ s2

eI. Three different values of noise amplitude have
been considered:�0.58C (bad-quality data),�0.18C (medium-quality data), and�0.028C
(good-quality data).
The estimation of the parameters ax, ay, and b has been carried out by the method

described in Section 14.5.2. Step by step this means:

1. Calculation of the KLD of ~T(t): ~T(t)¼ ~V~Z(t) (n	 1), with ~V¼ [~v1 ~v2 � � � ~vn].
This involves calculation and spectral decomposition of the energy matrix:
~W¼ ~V~S~Vt, with ~S ¼ diag ~s2

1 ~s2
2 � � � ~s2

n


 �
, and thus the calculation of the states:

~Z(t)¼ ~Vt~T(t). It must be noticed that the number of the KLD components required
for estimations is very low. Hence, algorithms allowing calculation of only the r<<
n largest eigenvalues and associated eigenvectors of ~W can be used.

2. States filtering as described in Section 14.4.2: ~Z(t) F ~Z(t), with F ¼ diag
~s2
1= ~s2

1 þ ~s2
e

� �
~s2
2= ~s2

2 þ ~s2
e

� � � � � ~s2
n= ~s2

n þ ~s2
e

� �
 �
.

3. Estimation of the parameter b by applying the linear least squares method to
equation �T(t)¼ �To exp(�bt), where �T(t) represents the mean value of ~T(t) at time
t and �To¼ �T(0).

4. Estimation of ax and ay using Equation 14.67. This involves calculation of vector
y and matrix M (Equation 14.66). The elements of M are approached as described
by Equation 14.67.

The results achieved are summarized in Table 14.2. It can be seen that even for bad-
quality data (noise amplitude equal to�0.58C), estimates of b̂, âx, and ây are very close

TABLE 14.2

Homogeneous Plate: Estimated Values for Thermal Parameters

Noise
Amplitude (8C) b̂ (s�1)

b� b̂

b

�����
�����	 100

âx

(	10�6 m2 s�1)
ax � âx

ax

���� ����	 100
ây

(	10�6 m2 s�1)
ay � ây

ay

���� ����	 100

�0.50 0.0153 0.91 0.1493 1.44 0.2989 1.37
�0.10 0.0151 0.028 0.1517 0.15 0.3026 0.15

�0.02 0.0152 0.017 0.1514 0.097 0.3034 0.124

True values are b¼ 0.152 s�1, ax¼ 0.1515	 10�6 m2 s�1, and ay¼ 0.3030	 10�6 m2 s�1.
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to b, ax, and ay values. Maximum bias (1.44%) is observed on âx when using poor-quality
data. Such results evidence the robustness to noise of the estimation method proposed.
The method has been already successfully applied on actual experiments for thermal

characterization of orthotropic carbon=epoxy materials (Palomo del Barrio and Dauvergne
2009).

14.6 Thermal Characterization of Heterogeneous Materials Using KLD

This section deals with thermal characterization of heterogeneous materials using KLD
techniques in association with lock-in thermography experiments based on thin samples
testing. As in the previous section, the mathematical method proposed for phase diffusiv-
ity estimation takes advantage of the KLD properties for data and noise reduction.
Moreover, simple diffusivities estimates are obtained using orthogonal properties of eigen-
functions and states. As for homogeneous materials, this leads to an attractive combination
of parsimony and robustness to noise.

14.6.1 Problem Statement

Let us consider a heterogeneous material coming from physical aggregation of n different
phases, as well as a thin sample (plate) of this material. Let Vi (i¼ 1, 2, . . . , n) denote the
region of the space occupied by the i-phase so that V¼V1 [ V2 [ � � � [ Vn represents the
indoor domain of the plate. The boundary separating the medium from its environment is
qV, and the interface between the i-phase and j-phase is referred as qGij. To simplify
notation, the phases are supposed to be isotropic, although theoretical analysis and
methods in this paper could be applied to anisotropic cases too.
For time t> 0 and points belonging to Vi (i¼ 1, 2, . . . , n), the energy equation can be

written as

qT(x, t)
qt

¼ air2T(x, t)� biT(x, t) (14:69)

where
x¼ (x1, x2, x3) represents point coordinates
T(x, t) is the excess of temperature with regard to the surroundings, which are assumed

to remain at uniform and constant temperature during the experiment
ai and bi are, respectively, the thermal diffusivity and the heat exchange coefficient

between the i-phase and the environment

The initial condition is T(x, 0)¼To(x). The plate dimensions are as large as required to
warrant the border is not reached by thermal perturbations. Hence, adiabatic boundary
conditions on qV can be assumed to be

rT(x, t)~n ¼ 0 8t, 8x 2 qV (14:70)

where~n represents the unit outward-drawn vector normal to qV at point x. At the interface
qGij, Robin-type conditions are assumed (8t, 8x 2 qG):

526 Thermal Measurements and Inverse Techniques

  



�kirT(x, t)ji~nij ¼ �h
�
T(x, t)ji � T(x, t)jj� (14:71)

�kjrT(x, t)jj~nij ¼ �h
�
T(x, t)jj � T(x, t)ji� (14:72)

where
ki and kj are, respectively, the thermal conductivity of i-phase and j-phase
h represents the inverse of the thermal resistance at the interface
~nij is the unit normal vector to the interface directed from Vi to Vj at point x

As for homogeneous materials, infrared thermography experiments must be carried out
on thin samples (plates). Operators r and r2 in the equations above represent 2D gradient
and Lapacian, respectively. Starting from a plate in thermal equilibrium with its environ-
ment, the initial condition To(x) can be established using a light beam with almost arbitrary
spatial and time patterns. Thermal relaxation of the plate is thus observed using an infrared
camera. At each sampling time, a plate temperature-map is recorded and stored: ~T(t)¼
T(t)þ «(t). The dimension of vector ~T(t) is equal to the number of pixels of the infrared
image. The noise measurement is assumed to be spatially uncorrelated: We ¼ s2

eI. More-
over, we suppose that the lateral resolution of the camera is high enough for ~T(t) to be a
good approximation of T(x, t).
Thermal characterization consists in determining ai(i¼ 1, 2, . . . , n) values from the

recorded temperature data.

14.6.2 Phase Discrimination and Interface Location

The first step toward thermal characterization consists in phase recognition and interface
qG location. As shown in Godin et al. (2010), this can be efficiently done applying KLD to
temperature data coming from a simple lock-in thermography experiment. The experiment
consists in illuminating the sample with a lamp providing uniform and constant intensity
over the full area of the sample during a short time, and recording the plate temperature
behavior using an infrared camera. Uniform illumination and short times are required to
ensure that points belonging to the same phase will show almost identical thermal behav-
iors. Details on the experimental device, as well as on the expected thermal behaviors, can
be found in Godin et al. (2009).
Let T(x, t) be the temperature field of the plate at time t and T(t) (measurements) a good

enough spatial sampling of T(x, t). It has been demonstrated in Godin et al. (2010) that the
rank of the energy matrix W of T(t) is equal to the number of phases within the plate.
Moreover, it has been proven that KLD eigenfunctions do not change of sign within
phases: 8x, x0 2 Vi ) 8m Vm(x)Vm(x0)> 0. On the contrary, it has been demonstrated that
8x, x0=x 2 Vi and 8x0 2 Vj) 9m=Vm(x)Vm(x0)< 0. This leads to a simple method for phase
discrimination based on eigenfunction sign analysis. For instance, in a two-phases plate, it
can be shown that points with sign(V2(x))> 0 belong to one of the phases, say Vi, while
points with sign(V2(x))< 0 belong to the other one, say Vj.
Let us consider the two-phase (black and white) plate in Figure 14.6. For constant

environment temperature, heat transfer equation within the phases can be written as

qT(x, y, t)
qt

¼ air2T(x, y, t)� biT(x, y, t)þ eiw, i ¼ black, white (14:73)
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with

ai ¼ ki
(rc)i

, bi ¼
h

(rc)ie
, ei ¼ ai

(rc)ie
,

where
w represents the radiative density flux applied on the plate
ai is the absorption coefficient of the i-phase
e is the thickness of the plate

Boundary conditions are assumed to be adiabatic. At the interfaces between phases, heat
flux continuity and equality of temperatures conditions are applied. Thermal properties are
specified in Table 14.3. Two different scenarios have been considered: high contrast and
low contrast of physical properties between phases.
Experiments have been simulated using model (14.74). The finite volume method is

applied on an equally spaced n	 n (n¼ 30) grid for energy equation discretization. The
resulting state-space model is thus integrated in time, from time t¼ 0 to t¼ 1 s. The
achieved results, T(t), are finally corrupted with additive noise: ~T(t)¼T(t)þ «(t), with
We ¼ s2

eI. High-quality data (noise amplitude:�0.028C) and poor-quality data (noise
amplitude:�0.58C) have been considered.
The simulated thermal behaviors (~T(t) signals) are depicted in Figure 14.7. Figure 14.7a

corresponds to a plate with high contrast in the physical properties of the phases and low-
noise amplitude (�0.028C), while Figure 14.7b represents the thermal behavior of the
same plate but with high-noise amplitude (�0.58C). Figure 14.7c includes ~T(t) signals

FIGURE 14.6
Two-phase heterogeneous plate (6 mm	 6 mm).

TABLE 14.3

Heterogeneous Plate: Physical Properties of the White and Black Phases for Phases
Discrimination and Interfaces Location within the Plate

High Contrast Case Low Contrast Case

Black Phase White Phase Black Phase White Phase

Thermal conductivity k (W m�1 K�1) 20 0.5 0.5 0.5
Thermal capacity rc (J m�3 K�1) 0.99	 106 3.30	 106 3.15	 106 3.30	 106

Absorption coefficient a (�) 0.95 0.80 0.80 0.80

Heat exchange coefficient h (W m�2 K�1) 10 10 10 10
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achieved for a plate with low physical properties contrast and low-noise amplitude
(�0.028C). It must be noticed that phases cannot be discriminated to the naked eye in the
two last cases.
The second eigenfunctions derived from KLD of ~T(t) are depicted in Figure 14.8. All of

them are characterized by near singularities (sharpness) at points located on the interfaces.
In the three cases, the microsctructure map reached using the sign[V2(x)] criterion for
phases discrimination match exactly with the plate microstructure in Figure 14.6. How-
ever, results achieved for a plate with low contrast in the physical properties of the phases
and high-noise amplitude are not satisfactory at all. A deeper analysis on the limits of
eigenfunctions sign analysis for phases discrimination can be found in Godin et al. (2010).

14.6.3 Estimation of Thermal Properties

The method proposed for estimation of thermal properties is described in this section. In
Section 14.6.3.1, we establish some fundamental equations and properties, while the
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FIGURE 14.7
Simulated temperature behavior (one curve by pixel): (a) plate with a high contrast in the thermal properties of
phases and low-noise amplitude, (b) plate with a high contrast in the thermal properties of phases and high-noise
amplitude, and (c) plate with a low contrast in the thermal properties of phases and low-noise amplitude.
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method itself is described in Section 14.6.3.2. Without loss of generality, only two-phase
media are considered. We note V¼V1 [ V2 the plate inner domain, qV¼ qV1 [ qV2 the
plate boundary, and qG the interface between the two phases within the plate.

14.6.3.1 Fundamental Equations and Properties

Let us consider the KLD of the theoretical thermal field:

T(x, t) ¼
X1
m¼1

Vm(x)zm(t) 8x 2 V (14:74)

with zm(t), zk(t)h it¼ dmks
2
m and Vk(x), Vm(x)h iV¼ dkm. It must be noticed that last inner

product refers to the entire spatial domain.
Multiplying Equation 14.69 by Vk(x) and integrating over Vi (i¼ 1, 2), leads to

qT(x, t)
qt

, Vk(x)
� �

Vi

¼ ai r2T(x, t),Vk(x)
� �

Vi
�bi T(x, t),Vk(x)h iVi

(14:75)
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Second eigenfunction: (a) plate with a high contrast in the thermal properties of phases and low-noise amplitude,
(b) plate with a high contrast in the thermal properties of phases and high-noise amplitude, and (c) plate with a
low contrast in the thermal properties of phases and low-noise amplitude.
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The second theorem of Green, with adiabatic conditions on qVi, allows writing

r2T(x, t),Vk(x)
� �

Vi
¼ r2Vk(x),T(x, t)
� �

Vi
þ I(i)k (t) (14:76)

with

I(i)k (t) ¼
ð
qG

Vk(x)rT(x, t)~nij � T(x, t)rVk(x)~nij

 �

dg (14:77)

Substituting Equation 14.76 into Equation 14.75 and adding resulting equations for i¼ 1
and i¼ 2, leads to

qT(x, t)
qt

, Vk(x)
� �

V

¼
X
i¼1, 2

ai r2T(x, t), Vk(x)
� �

Vi
þ Ik(t)�

X
i¼1, 2

bi T(x, t), Vk(x)h iVi
(14:78)

with Ik(t) ¼ I(1)k (t)þ I(2)k (t). Moreover, it can be demonstrated (Appendix 14.B) that

Ik(t), zk(t)h it¼ 0 (14:79)

We now replace T(x, t) in Equation 14.78 by its KLD, we multiply by zk(t) and integrate
over time. Taken into account zm(t), zk(t)h it¼ dmks

2
m and hIk(t), zk(t)it¼ 0, we obtain

1
s2
k

_zk(t), zk(t)h it¼
X
i¼1, 2

ai r2Vk, Vk(x)
� �

Vi
�
X
i¼1, 2

bi Vk(x), Vk(x)h iVi
(14:80)

or

z2k(t)
2s2

k

����tf
t¼0
¼
X
i¼1, 2

ai r2Vk, Vk(x)
� �

Vi
�
X
i¼1, 2

bi

�
Vk(x), Vk(x)

�
Vi

(14:81)

The estimation of diffusivities will be based on these equations. It must be noticed that
variables and parameters related to heat exchanges at the interface qG does not appear in
Equation 14.81. This is a significant advantage for reliable estimation of the diffusivities.
First, the number of unknown physical parameters is reduced (i.e., thermal resistances
have not to be estimated); second, knowledge or estimation of Vk(x) values on qG, which
could be a tricky task, is not required.
At last, it can be easily proven that integration over V of Equations 14.69 leads to

g1
b1

d�T1(t)
dt
þ (1� g1)

b2

d�T2(t)
dt
¼ �T(t) (14:82)

�Ti(t) ¼ T(x, t)h iVi
(i ¼ 1, 2) and g1 is the fraction of the plate surface, which is occupied by

the phase 1 (surface of V1=surface of V). As for homogeneous materials, estimation of
bi (i¼ 1, 2) parameters will be based on the equation above.
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14.6.3.2 Estimation Method

For free-noise observations, parameters ai and bi (i¼ 1, 2) can be easily calculated from any
four arbitrarily chosen Equations 14.81. On the contrary, for noise-corrupted observations,
it is convenient to cast the estimation problem into a least squares problem as done in the
case of homogeneous materials.
Let ~T(t)(n	 1) be the vector including temperature measurements (plate temperature

map) at time t, where n represents the number of pixels of the image supplied by the
infrared camera. As previously, it is assumed ~T(t) to be a good approximation of ~T(x, y, t).
Vectors ~T1(t) and ~T2(t) include the elements of ~T(t) belonging to V1 and V2, respectively.
Mean values of ~T(t), ~T1(t), and ~T2(t) at time t are named �T(t), �T1(t), and �T2(t) in the
following. The distribution of the phases within the plate is assumed to be known.
As mentioned before, the estimation of bi (i¼ 1, 2) parameters will be based on Equation

14.82. Applying the linear least squares method to Equation 14.82 leads to

1=b̂1

1=b̂2

� �
¼ (M0M)�1(M0y) (14:83)

with

(M0M) ¼
ð
t

g1
_�T1(t) (1� g1)

_�T2(t)
h it

g1
_�T1(t) (1� g1)

_�T2(t)
h i

dt

(M0y) ¼
ð
t

g1
_�T1(t) (1� g1)

_�T2(t)
h it

�T(t)dt
(14:84)

In practice, signals ~T1(t) and ~T2(t) have to be filtered in order to reduce noise amplification
due to time derivatives.
The estimation of diffusivities is based on Equations 14.81, assuming parameters

bi (i¼ 1, 2) already known. The first step toward ai (i¼ 1, 2) estimation is KLD of ~T(t). As
mentioned previously, this involves calculation and spectral decomposition of the energy
matrix: ~W¼ ~V~S~Vt, with ~V¼ [~v1 ~v2 � � � ~vn] and ~S ¼ diag ~s2

1 ~s2
2 � � � ~s2

n


 �
. States can

be thus calculated by ~Z(t)¼ ~Vt~T(t). Next, they are filtered as described in Section 14.4.2:
~Z(t)  F~Z(t), with F ¼ diag ~s2

1= ~s2
1 þ ~s2

e

� �
~s2
2= ~s2

2 þ ~s2
e

� � � � � ~s2
n= ~s2

n þ ~s2
e

� �
 �
.

The second step for diffusivities estimation consists in selecting significant states, i.e.,
z1(t), z2(t), . . . , zr(t), those showing high enough signal=noise ratio (~s2

k=~s
2
e ). Equations 14.81

for k¼ 1, . . . , r are then written in the matrix form:

y ¼M
a1

a2

� �
(14:85)

with

y ¼

D~z21=~s
2
1 þ

P2
i¼1 b̂i V1(x), V1(x)h iVi

D~z22=~s
2
2 þ

P2
i¼1 b̂i V2(x), V2(x)h iVi

� � �
D~z2r=~s

2
r þ

P2
i¼1 b̂i Vr(x), Vr(x)h iVi

266664
377775 D~z2i ¼

1
2
~z2i

����tf
t¼0

(14:86)
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M ¼

r2 ~V1(x, y), ~V1(x, y)
� �

V1
r2 ~V1(x, y), ~V1(x, y)
� �

V2

r2 ~V2(x, y), ~V2(x, y)
� �

V1
r2 ~V2(x, y), ~V2(x, y)
� �

V2

� � � � � �
r2 ~Vr(x, y), ~Vr(x, y)
� �

V1
r2 ~Vr(x, y), ~Vr(x, y)
� �

V2

2666664

3777775 (14:87)

For discrete approximations of eigenfunctions, as those coming from KLD of ~T(t), the inner
products in Equations 14.86 and 14.87 become

~Vk(x, y), ~Vk(x, y)
� �

Vi

 vtkPivk (14:88)

r2 ~Vk(x, y), ~Vk(x, y)
� �

Vi

 vtkPiLvk (14:89)

where
L is the numerical approximation of r2

Pi is a 1=0 diagonal matrix, which selects the elements of the eigenvector vk associated to
the pixels belonging to Vi

The solution of Equation 14.85, in the least squares sense, is

â1
â2

� �
¼ (M0M)�1M0y (14:90)

14.6.4 Numerical Example

Let us consider again the two-phase plate in Figure 14.6. Thermal behavior is governed by
Equations 14.69 and 14.70. At the interfaces between phases, continuity of temperature and
heat flux is assumed. Thermal parameters for the white phase are a1¼ 1.5152	 10�7 m2 s�1

and b1¼ 0.0061 s�1, while parameters of the black phase are a2¼ 5.0505	 10�7 m2 s�1 and
b2¼ 0.0202 s�1. The plate surroundings are assumed to be at uniform and constant
temperature. The finite volume method has been applied on an equally spaced n	 n
(n¼ 30) grid for discretization of Equations 14.69 and 14.70. The resulting state-space
model is thus integrated over time to emulate experiments. As in Section 14.4.3, simula-
tions are corrupted by additive noise: ~T(t)¼T(t)þ «(t) (n	 1, n¼ 900), with We ¼ s2

eI.
Three different values of noise amplitude have been considered:�0.58C (poor-quality
data),�0.18C (good-quality data), and�0.028C (validation data). The initial temperature
field is depicted in Figure 14.9a (in the case of poor-quality data), while Figure 14.9b
includes the time behavior of the temperature at each volume of control, ~T(t)¼
{~Ti(t)}i¼ 1� � �n, from t¼ 0 to t¼ 3 s with Dt¼ 10�3 s (3000 sampling times). KLD of this set
of signals has been carried out as described in Section 14.2.2: ~T(t)¼ ~V~Z(t). The first and
second eigenfunctions, those that are being used for parameters estimations, are depicted
on the top of Figure 14.10, while time evolution of the states {~zm(t)}m¼1, . . . ,6 is represented
in Figure 14.9c and d. It can be seen that compared to noise amplitude there is only five
significant states.
The estimation of the parameters ai and bi (i¼ 1, 2) has been carried out by the method

described in Section 14.6.3.2. The results achieved are reported in Table 14.4. It can be seen
that for satisfactory estimation of bi (i¼ 1, 2) parameters (bias less than 1%), high-quality
data are required. On the contrary, whatever may be the noise level, the results achieved
for diffusivities are excellent. This can be firstly explained by the low sensitivity of KLD
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eigenfunctions to noise. Figure 14.10 (on the top part) shows that noise effect on first and
second eigenfunctions calculated from poor-quality data (�0.58C noise amplitude case)
is negligible. Secondly, because the sensitivity of Equation 14.81 to bi values

Vk(x),Vk(x)h iVi

� 	
is very low compared to the sensitivity to ai values r2Vk(x),Vk(x)

� �
Vi

� 	
.

As shown in Figure 14.10, Vk(x) (k¼1, 2) are O(1) whiler2Vk(x) values are O(105).
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(Top): First (a) and second (b) eigenfunctions obtained by KLD of highly noise-corrupted (�0.58C) data. (Bottom):
Laplacian of first (c) and second (d) eigenfunctions.

TABLE 14.4

Heterogeneous Plate: Estimated Values for Thermal Parameters

Noise Amplitude (8)

�0.50 �0.10 �0.02
b̂1 (s

�1) 0.0082 0.0076 0.0060

(b1 � b̂1)=b1

�� ��	 100 34.8 26.1 0.93

b̂2 (s
�1) 0.0266 0.0255 0.0201

(b2 � b̂2)=b2

�� ��	 100 31.6 26.3 0.67
â1 (	10�6 m2 s�1) 0.1524 0.1526 0.1511

(a1 � â1)=a1j j 	 100 0.60 0.73 0.23

â2 (	10�6 m2 s�1) 0.5001 0.5013 0.5044

(a2 � â2)=a2j j 	 100 1.00 0.74 0.12
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14.7 Summary and Perspectives

Using KLD techniques in association with infrared thermography experiments for the
characterization of homogeneous and heterogeneous materials has some interesting advan-
tages. The first one is the power of KLD for significant reduction of data set dimension. The
second advantage is the KLD efficiency for noise filtering. The third one is related with the
orthogonal properties of KLD eigenfunctions and states, which allow obtaining simple and
efficient estimates for diffusivities. As a result, proposed estimation methods based on KLD
are an attractive combination of parsimony and robustness to noise. Numerical tests carried
out are conclusive but must be completed with actual experiments.
For the characterization of heterogeneous materials, some further research is still neces-

sary. For instance, phase discrimination and interface location by eigenfunctions sign
analysis will be limited by the resolution and the image grid (quadrangular) provided by
infrared camera. In such a case, results coming from KLD analysis must be refined using
more sophisticated mathematical methods. On the other hand, we think that the estimation
of heat exchange coefficients (bi parameters) has to be improved when working with more
than two-phase materials. Moreover, numerical estimation of eigenfunctions spatial
derivatives close to the interfaces could be a tricky task when dealing with materials
showing significant thermal resistances at the interfaces.
At last, KLD techniques in association with lock-in thermography experiments could

offer interesting perspectives for characterization of chemical reactions or phase change
phenomena within heterogeneous materials. Some preliminary work has been already
done on this problem.

14.8 Appendixes

Appendix 14.A

Let us consider Equation (18.54) for i 6¼ k. Simplifying without loss of generality, we
assume a¼ax¼ay. Hence, we can write

1
s2
k

dzi(t)
dt

, zk(t)
� �

t
¼ a r2Vk(x, y), Vi(x, y)

� �
V

1
s2
i

dzk(t)
dt

, zi(t)
� �

t
¼ a r2Vi(x, y), Vk(x, y)

� �
V

Taking into account the second Green theorem, the difference of equations above can be
written as

1
s2
k

dzi(t)
dt

, zk(t)
� �

t
� 1
s2
i

dzk(t)
dt

, zi(t)
� �

t
¼
ð
qV

Vi(x, y)rVk(x, y)� Vk(x, y)rVi(x, y)½ �dxdy
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As eigenfunctions satisfy Equation 14.55, it yields

1
s2
k

dzi(t)
dt

, zk(t)
� �

t
� 1
s2
i

dzk(t)
dt

, zi(t)
� �

t
¼ 0

Appendix 14.B

Introducing KLD of T(x, t) into Equation (18.77) leads to

I(i)k (t) ¼
ð
qG

Vk(x)
X1
m¼1

zm(t)rVm(x)~nij �rVk(x)~nij
X1
m¼1

zm(t)Vm(x)

" #
dg

Multiplying this equation by zk(t), integrating over time and taking into account orthogonal
property of the KLD states, we obtain

I(i)k (t), zk(t)
D E

t
¼
ð
qG

h
s2
kVk(x)rVk(x)~nij � s2

kVk(x)rVk(x)~nij
i
dg ¼ 0

Nomenclature

a absorption coefficient
e(x, t) approximation error
e(t) vector of approximation errors
h inverse of the thermal resistance
k thermal conductivity
t time
T(x, t) temperature field
T(t) vector of temperature
Vm(x) eigenfunctions of W
V matrix of eigenfunctions
W(x, x0) energy function
W energy matrix
x, y coordinates
zm(t) states
Z(t) vector of states

Greek Letters

a thermal diffusivity
b thermal loss coefficient
e(x, t) noise field
«(t) noise vector
rc thermal capacity
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s2
m eigenvalues of W

s2
e noise variance

Symbols

k.k unitarily invariant norm
h,i scalar product
. time derivative
~ noisy variable
� mean value
^ estimated value

Abbreviations

KLD Karhunen–Loève decomposition
PCA principal components analysis
SVD singular values decomposition
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15.1 Introduction

Many are the applications of interest for inverse radiative transfer problems, in several
fields, as cited, for example, in Sarvari and Mansouri (2004), Tito et al. (2004), Ren et al.
(2006), Sanchez and McCormick (2008), Gryn (1995), Moura et al. (1998), Chaloub and
Campos Velho (2003), Klose and Hielscher (2002), Liu et al. (2008), Özişik and Orlande
(2000), and Siewert (2002). Particularly, in Chapter 21, inverse thermal radiation problems
are discussed. In this context, a fundamental issue required for several methodologies is a
good solution for the direct problem, in this case, a solution for the radiative transfer
equation (Chandrasekhar 1960, Özişik 1973, Modest 1993).
The analysis of radiative transport is somewhat more complex than heat transfer by

conduction or convection within a medium (Modest 1993). In fact, the temperature is not
the main unknown in the balance equation, but the radiation intensity, which is function of
space variables and also direction of the particles. Still, radiative properties may depend,
along with direction, on the wavelength.
Due to the complexity of the original mathematical model associated with radiative

transfer processes (an integro-differential equation where the unknown distribution
depends on seven independent variables), several studies have been devoted to the
challenge of developing accurate solutions adequate to different geometries. In regard to
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the integro-differential form of the transport equation, an important result was given by
Case (1960), who derived an exact solution for simpler transport models. Although its use
is restricted to very simple physical models, it provided important theoretical information,
which was very helpful in the development of the preliminar numerical approaches in this
field. Nowadays, in general, two ways may be followed: the probabilistic approach and the
deterministic approach. In the deterministic approach, one searches for exact solutions of
approximated forms of the original equation. In this context, two classical methodologies
associated with the solution of radiation problems are very well known and should be
mentioned here: the spherical harmonics method and the discrete ordinates method.
The fundamental idea involved in the spherical harmonics method (Davison 1957), also

referred to as PNmethod, is the approximation (expansion) of the angular dependence in the
unknown function, as the radiation intensity, in terms of spherical harmonics functions, or,
simply, Legendre polynomials. More recent developments improved important features
of the PN solution, particularly making it more efficient from the computational point of
view (Benassi et al. 1983, 1984). The generalization of such approach to the treatment of
multidimensional problems and more complex geometries may be a very hard task, if
possible. Still, it is always important to emphasize that the spherical harmonics approach
provides a solution for the moments of the transport equation instead of the equation itself.
The development of the discrete ordinates method in the solution of the radiative transfer

equation may be mostly associated with Chandrasekhar’s work (Chandrasekhar 1960),
although it seems to be already proposed in Wick’s work (Wick 1943). The fundamental
idea in the discrete ordinates method is the use of a quadrature scheme to deal with the
integral termof the radiative transfer equation, such that the original problem is transformed
into a system of differential equations. Under certain restrictions on the quadrature scheme
and boundary conditions, it may be shown that the discrete ordinates method is equivalent
to the spherical harmonicsmethod (Barichello and Siewert 1998). As extension of the original
version of themethod, over the years, the discrete ordinatesmethod has been combinedwith
finite-difference techniques (Fiveland 1984, Lewis and Miller 1984), when the spatial
dependence of the problem is treated numerically, and multidimensional quadrature
schemes have been developed (Lewis and Miller 1984) as well.
In this chapter, we focus our attention on the solution of thermal radiation problems

based on a more recent analytical version of the discrete ordinates method: the ADO
method (Barichello and Siewert 1999a, Barichello and Siewert 2002). Differently of the
Chandrasekhar’s approach, the ADO approach (i) does not depend on any special prop-
erties of the quadrature scheme, (ii) has the separation constants defined as eigenvalues of
a matrix instead of roots of a characteristic equation, and (iii) defines a scaling to avoid
positive exponentials that cause overflows in numerical calculations. In addition, the ADO
formulation leads to eigenvalue systems of reduced order, in comparison with standard
discrete ordinates calculations, which results in computational gain. These features have
made possible the development of concise and accurate solutions for a wide class of
problems, including, with respect to radiative transfer applications, models that consider
polarization effects (Barichello and Siewert 1999b) and Fresnel boundary conditions
(Garcia et al. 2008), for example.
Here, as an introductory study, simple models will be used for developing the ADO

solution, in order to provide a basic scheme for establishing a computational procedure,
which may be, however, useful as benchmark case when solving more complex problems
with numerical tools. In addition, taking into account that solutions are obtained in a
closed form, this formalism may represent important computational gain if used in asso-
ciation with the solution of inverse problems (Barichello and Siewert 1997, Siewert 2002).
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In this way, this chapter is organized such that in Section 15.2, we briefly introduce some
definitions to formulate the general model of interest. In Section 15.3, we focus our
attention in the specific formulation for one-dimensional (plane-parallel) geometry. In
Section 15.4, we describe the problem (gray, anisotropic medium) to which we develop
the ADO solution in Section 15.5. Continuing, we deal with the simplest model, the
isotropic case, in Section 15.6, to show that, in this case, explicit solutions can be found.
In Section 15.7, we discuss computational aspects and list numerical results for a test case.
Finally, in Section 15.8, we add some general and concluding remarks.

15.2 Formulation

The fundamental balance equation for dealing with radiative transport in participating
medium has been derived and presented by many authors (Chandrasekhar 1960, Özişik
1973, Liou 1980, Modest 1993). In this way, here we discuss it briefly, just to introduce
the basic mathematical model relevant to the development of the discrete ordinates
approach.
We then consider, to describe the radiation field, an amount of radiant energy, dEl, in a

specified wavelength interval (l, lþdl), which is transported across an element of area
dA and in directions confined to an element of solid angle dV (Liou 1980, Modest 1993),
which is oriented at an angle u to the normal of dA, during a time dt (see Figure 15.1). This
energy, dEl, is expressed in terms of the specific intensity, Il, or simply, the intensity, Il, by
(Chandrasekhar 1960, Liou 1980)

dEl ¼ Il cos udldAdVdt: (15:1)

Equation 15.1 defines the (monochromatic) intensity as

Il ¼ dEl

cos udldAdVdt
, (15:2)

which is in units of energy per area per time per frequency and per steradian (units of solid
angle). It is clear that the intensity implies a directionality in the radiation stream. In fact,
the intensity is said to be confined in a pencil of radiation (Chandrasekhar 1960, Liou 1980).

FIGURE 15.1
Characterization of radiation fields.

dΩ

dA

θ

Explicit Formulations for Radiative Transfer Problems 543

  



A pencil of radiation traversing a medium will be weakened by its interaction with
matter. If the intensity of radiation Il becomes IlþdIl after traversing a thickness ds in the
direction of its propagation, then (Chandrasekhar 1960, Liou 1980)

dIl ¼ �blrIlds, (15:3)

where
r is the density of the material
bl denotes the mass extinction coefficient for radiation of wavelength l

This coefficient is the sum of the mass absorption (kl) and scattering (ssl) coefficients
(Chandrasekhar 1960, Liou 1980). In this way, the reduction in intensity is caused by
absorption as well as scattering of radiation by the material.
On the other hand, emission of the material ( jel) and multiple scattering (ssl) from all

other directions into the pencil under consideration have to be considered as contribution
to strength the intensity

dIl ¼ jlrds, (15:4)

where jl is the emission coefficient (Chandrasekhar 1960).
We consider then a small cylindrical element of cross section dA and height ds in the

medium. Counting up the gains and losses in the pencil of radiation during its traversal of
the cylinder, we have (Chandrasekhar 1960, Liou 1980), upon combining Equations 15.3
and 15.4,

dIl ¼ �blrIldsþ jlrds: (15:5)

It is still convenient to define the source function Jl (Chandrasekhar 1960, Liou 1980),

Jl ¼ jl
bl

, (15:6)

such that it has units of radiant intensity, and Equation 15.5 may be rewritten as

1
blr

dIl
ds
¼ �Il þ Jl: (15:7)

This is the general form of the equation of transfer processes, without imposing any
coordinate system (Chandrasekhar 1960, Liou 1980), which is fundamental in the discus-
sion of thermal radiative transfer process. More details can be found in the books of Özişik
(1973) and Modest (1993). Since the source function is dependent on the intensity at a point,
the equation of transfer is, in general, an integro-differential equation. In our further
discussion, we choose to omit the subscript l on various radiative quantities. We note
also that the time dependence of the radiation intensity may be almost always neglected in
heat transfer applications (Modest 1993), and so, for simplicity, we have considered the
independence of time in the above relations.
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15.3 Plane-Parallel Medium

It follows from the definition of intensity that in a medium that absorbs, emits, and scatters
radiation, it may be expected to vary from point to point and also with direction through
every point. A case of great interest is a medium stratified in parallel planes in which all the
physical properties are invariant over a plane. In this case, we can write (Chandrasekhar
1960)

I ¼ I(z, u,f): (15:8)

It is convenient to measure linear distances normal to the plane of stratification. If z is this
distance and if we introduce the optical variable t,

dt ¼ brdz, (15:9)

we have, for m¼ cos u, the equation of transfer written in the form (Chandrasekhar 1960,
Modest 1993)

m
q
qt

I(t,m,f)þ I(t,m,f) ¼ ˆ

4p

ð1
�1

ð2p
0

p(cosQ)I(t,m0,f0)df0 dm0 þ (1�ˆ)B(T): (15:10)

Here, we have written explicitly the source term; ˆ2 [0, 1] is the albedo for single
scattering (ratio of the scattering coefficient to the extinction coefficient (Özişik 1973)),
t 2 (0, t0) is the optical variable, t0 is the optical thickness of the plane-parallel medium,
Q is the scattering angle, m 2 [�1, 1] is the cosine of the polar angle, as measured from the
positive t-axis, and f is the azimuthal angle. Together, the polar and azimuthal angles
define the direction V of propagation of the radiation. Still, B(T), which depends on the
temperature, is defined in terms of the Planck’s function (Chandrasekhar 1960, Özişik
1973). We then seek to establish a solution of Equation 15.10 subject to boundary condi-
tions, which we will define explicitly later on in this chapter.
Still, in regard to Equation 15.10, we may suppose that the phase function can be

expanded as a series of Legendre polynomials (Chandrasekhar 1960), that is,

p(cosQ) ¼
X1
l¼0

blPl(cosQ), (15:11)

where the bl’s are constants.
Two usual forms used to describe the scattering law are the binomial form and the

Henyey–Greenstein model. The binomial form

p(cosQ) ¼ Lþ 1
2L

(1þ cosQ)L, (15:12)
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with L> 0, according to Siewert (2002), was introduced by Kaper et al. (1970), where the b
coefficients can be computed from a recursion formula (McCormick and Sanchez 1981)

bl ¼
2lþ 1
2l� 1

� �
Lþ 1� l
Lþ 1þ l

� �
bl�1, (15:13)

for l¼ 1, 2, . . . , with b0¼ 1. In the Henyey–Greenstein model (Siewert 2002),

p(cosQ) ¼ (1� g)2(1þ g2 � 2g cosQ)�3=2 (15:14)

or

p(cosQ) ¼
X1
l¼0

blPl(cosQ), (15:15)

with g 2 (�1, 1) and bl¼ (2lþ 1)gl. It is usual to make use of the addition theorem for the
Legendre polynomials (Gradshteyn and Ryzhik 1980) and express the phase function, for
scattering from {m0, f0} to {m, f} in the form

p(cosQ) ¼
XL
m¼0

(2� d0,m)
XL
l¼m

blP
m
l (m

0)Pm
l (m) cos [m(f0 � f)], (15:16)

where Pm
l (m

0) are the Legendre functions.
Making use of Equation 15.16, along with a classical Fourier decomposition (Chandra-

sekhar 1960) of the solution I(t, m, f), in terms of f, we find that each component of the
referred decomposition satisfies an equation written in a general form as

m
q
qt

I(t,m)þ I(t,m) ¼ ˆ

2

XL
l¼0

blPl(m)
ð1
�1

Pl(m0)I(t,m0)dm0 þQ(t,m), (15:17)

where
ˆ is the albedo for single scattering
t 2 (0, t0) is the (dimensionless) optical variable
t0 is the optical thickness of the plane-parallel medium
m 2 [�1, 1] is the cosine of the polar angle, as measured from the positive t-axis,

according to the geometry described in Figure 15.2

Still, bl are the coefficients in the Lth-order expansion of the scattering law, andQ(t, m) is an
inhomogeneous source term. We seek to establish a solution of Equation 15.17 subject to
the boundary conditions

I(0,m) ¼ F1(m)þ rs1I(0,�m)þ 2rd1

ð1
0

I(0,�m0)m0 dm0 (15:18)

and

I(t0, �m) ¼ F2(m)þ rs2I(t0,�m)þ 2rd2

ð1
0

I(t0,�m0)m0 dm0 (15:19)
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for m 2 (0, 1]. Here, F1(m) and F2(m) refer to known incoming radiation distribution (we
assume here that neither F1(m) nor F2(m) contains generalized functions); rsa, a¼ 1, 2 are the
coefficients for specular reflection and rda, a¼ 1, 2, for diffuse reflection.
In thermal radiation processes, if one considers local thermodynamic equilibrium, it is

usual to have as consequence of the emission, as indicated in Equations 15.10 and 15.17,

Q(t,m) ¼ Q(t) ¼ (1�ˆ)
s

p
T(t)4 (15:20)

and for a¼ 1, 2, in the boundary conditions

Fa(m) ¼ ea
s

p
T4
a, (15:21)

where
T1 and T2 refer to the boundary temperatures
e1 and e2 are the emissivities
s is the Stefan–Boltzmann constant (Özişik 1973, Modest 1993)

We consider, here that the temperature distribution in the medium T(t) is known.
Once we are able to develop a solution for the problem above, we can use the radiation

intensity to evaluate, for example, the radiation density, given by

r(t) ¼
ð1
�1

I(t,m0)dm0 (15:22)

and the partial radiative heat fluxes

q�(t) ¼ p

ð1
0

I(t, �m0)m0 dm0: (15:23)

FIGURE 15.2
Slab geometry.
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15.4 A Basic Problem

For simplicity, in order to have a better understanding of the discrete ordinates method,
considering the objective of the proposed text, we choose to work with a simpler math-
ematical formulation of the problem defined in the previous section. First of all, we
consider the homogeneous version of the problem (Q(t,m)¼ 0), since the procedure
would change basically by adding to the homogeneous solution (developed in this section)
a particular solution, which definition can be found in Barichello et al. (2000). We note,
however, that the conservative case (ˆ¼ 1) has to be considered as a special case. Another
issue is associated with the boundary conditions. We restrict ourselves to the case where
the incoming radiation intensity is known at the boundaries. In this way, we consider the
equation

m
q
qt

I(t,m)þ I(t,m) ¼ ˆ

2

XL
l¼0

blPl(m)
ð1
�1

Pl(m0)I(t,m0)dm0, (15:24)

subject to the boundary conditions

I(0,m) ¼ F1(m) (15:25)

and

I(t0,�m) ¼ F2(m) (15:26)

for m 2 (0, 1].
In the next section, we develop an analytical discrete ordinates solution for the problem

formulated above. In particular, the case here treated is a particular case (with azimuthal
symmetry) of the solution developed by Siewert (2000).

15.5 A Discrete Ordinates Solution

As a first step to develop a discrete ordinates solution for the problem defined above, we
rewrite the integral term in Equation 15.24,

m
q
qt

I(t,m)þ I(t,m) ¼ ˆ

2

XL
l¼0

blPl(m)
ð1
0

Pl(m0)[I(t,m0)þ (�1)lI(t,�m0)]dm0: (15:27)

We then derive the discrete ordinates version of Equation 15.27 in the form

mi
d
dt

I(t,mi)þ I(t,mi) ¼
ˆ

2

XL
l¼0

blPl(mi)
XN
k¼1

vkPl(mk) I(t,mk)þ (�1)lI(t,�mk)
h i

(15:28)
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and

�mi
d
dt

I(t,�mi)þ I(t,�mi) ¼
ˆ

2

XL
l¼0

blPl(mi)
XN
k¼1

vkPl(mk) (�1)lI(t,mk)þ I(t,�mk)
h i

, (15:29)

where mk and vk are the N arbitrary nodes and weights of the quadrature scheme defined
in the half-range [0, 1].
Once the integral term in Equation 15.24 was approximated by a quadrature scheme,

Equations 15.28 and 15.29 represent a first-order ordinary differential system. We then seek
for exponential solutions of the system, in the form

I(t,�mi) ¼ f(n,�mi)e
�t=n: (15:30)

In this way, we substitute Equation 15.30 into Equations 15.28 and 15.29, to obtain

�mi
d
dt

f(n,�mi)e
�t=n

h i
þ f(n,�mi)e

�t=n

¼ ˆ

2

XL
l¼0

blPl(mi)
XN
k¼1

vkPl(mk) f(n,�mk)þ (�1)lf(n, �mk)
h i

e�t=n, (15:31)

for i¼ 1, . . . , N. We can simplify the previous expression, to obtain

1� mi

n

� 	
f(n,�mi) ¼

ˆ

2

XL
l¼0

blPl(mi)
XN
k¼1

vkPl(mk) f(n,�mk)þ (�1)lf(n, �mk)
h i

, (15:32)

for i¼ 1, . . . , N. At this point, we introduce a matrix notation. We write the N	 1 vectors

F�(n) ¼ (f(n,�m1), . . . ,f(n,�mN)), (15:33)

P(l) ¼ (Pl(m1), . . . ,Pl(mN)), (15:34)

the matrices

M ¼ diag{m1, . . . ,mN} (15:35)

and

W ¼ diag{v1, . . . ,vN} (15:36)

to rewrite Equation 15.32 in the form

IN � 1
n
M

� �
F�(n) ¼ ˆ

2

XL
l¼0

blP(l)PT(l)W F�(n)þ (�1)lF�(n)
h i

: (15:37)

Here, IN is the N	N identity matrix and T denotes the transpose operation.
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Now, we define the N	 1 vectors

U ¼ Fþ(n)þF�(n) (15:38)

and

V ¼ Fþ(n)�F�(n): (15:39)

Continuing, we add the two equations expressed in 15.37

IN � 1
n
M

� �
Fþ(n)þ IN þ 1

n
M

� �
F�(n)

¼ ˆ

2

XL
l¼0

blP(l)PT(l)W Fþ(n)þ (�1)lFþ(n)þF�(n)þ (�1)lF�(n)
h i

, (15:40)

which now can be rewritten as

U� 1
n
MV ¼ ˆ

2

XL
l¼0

blP(l)PT(l)W[1þ (�1)l]U, (15:41)

or

IN �ˆ

2

XL
l¼0

blP(l)PT(l)W[1þ (�1)l]
 !

M�1MU ¼ 1
n
MV: (15:42)

In other words, we get

AX ¼ 1
n
Z, (15:43)

where

A ¼ IN �ˆ

2

XL
l¼0

blP(l)PT(l)W[1þ (�1)l]
 !

M�1, (15:44)

X ¼MU (15:45)

and

Z ¼MV: (15:46)

Continuing, we subtract the two equations expressed in 15.37

IN � 1
n
M

� �
Fþ(n)� IN þ 1

n
M

� �
F�(n)

¼ ˆ

2

XL
l¼0

blP(l)PT(l)W Fþ(n)� (�1)lFþ(n)�F�(n)þ (�1)lF�(n)
h i

, (15:47)
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to obtain

V� 1
n
MU ¼ ˆ

2

XL
l¼0

blP(l)PT(l)W[1� (�1)l]V (15:48)

or

IN �ˆ

2

XL
l¼0

blP(l)PT(l)W[1� (�1)l]
 !

M�1MV ¼ 1
n
MU, (15:49)

such that we can write

BZ ¼ 1
n
X, (15:50)

where

B ¼ IN �ˆ

2

XL
l¼0

blP(l)PT(l)W[1� (�1)l]
 !

M�1: (15:51)

In summary, from Equations 15.43 and 15.50, we obtain two eigenvalue problems

(BA)X ¼ lX (15:52)

and

(AB)Z ¼ lZ, (15:53)

where l¼ 1=n2. We note that the separation constants, nj, will appear in (�) pairs.
It is important to remark that the eigenvalue problems obtained here are of reduced

order (half-order), in general, in comparison with the ones obtained in the standard
N-order approximations of the discrete ordinates method, based on full-range quadrature
schemes.
Continuing, we choose Equation 15.43 to write

nAX ¼ Z: (15:54)

If now, we add X to both sides to the above equation, we obtain

(IN þ nA)X ¼ Xþ Z: (15:55)

Continuing, we substitute Equations 15.45 and 15.46 into Equation 15.55, from where we
see that

(IN þ nA)X ¼M(UþV), (15:56)
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and so

(IN þ njA)X(nj) ¼ 2MFþ(nj), (15:57)

such that

Fþ(nj) ¼ 1
2
M�1(IN þ njA)X(nj): (15:58)

On the other hand, if we subtract X in Equation 15.54

(�IN þ nA)X ¼ �Xþ Z, (15:59)

and we substitute Equations 15.45 and 15.46 into Equation 15.59

(IN � nA)X ¼M(U�V), (15:60)

we can write

(IN � njA)X(nj) ¼ 2MF�(nj) (15:61)

such that

F�(nj) ¼ 1
2
M�1(IN � njA)X(nj): (15:62)

In this way, from the solution of the eigenvalue problem, Equation 15.52 (or Equation
15.53), along with the elementary solutions, Equations 15.58 and 15.62, we can write (in a
vector form) the discrete ordinates solution of Equation 15.24,

I�(t) ¼ (I(t,�m1), . . . , I(t,�mN)), (15:63)

in the form

I�(t) ¼
XN
j¼1

AjF�(nj)e�t=nj þ BjF�(nj)e�(t0�t)=nj
h i

: (15:64)

We note that in writing the general solution in this way, we avoid the computational issue
of exponential terms, which can lead to overflow.
Finally, we substitute Equation 15.64 into the boundary conditions, Equations 15.25 and

15.26, to obtain a 2N linear system to determine the arbitrary constants {Aj} and {Bj}:

XN
j¼1

AjFþ(nj)þ BjF�(nj)e�t0=nj
h i

¼ F1(mi) (15:65)
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and

XN
j¼1

AjF�(nj)e�t0=nj þ BjFþ(nj)
h i

¼ F2(mi), (15:66)

for i¼ 1, . . . , N. Here, the N	 1 vectors, F1(mi) and F2(mi), have components defined by the
known incident radiation, F1(m) and F2(m), given in Equations 15.25 and 15.26.
Having established a discrete ordinates solution, analytical in terms of the spatial

variable, for the problem defined in Section 15.4, we note that it would be an easy extension
to deal with the boundary conditions defined in Equations 15.18 and 15.19. In fact, the
choice of the half-range quadrature scheme is very appropriate for evaluating the integral
terms present in those equations.

15.5.1 Radiation Density and Radiative Heat Flux

We can now evaluate some quantities of interest. We want to express in terms of our
discrete ordinates solution, the radiation density, Equation 15.22, defined in terms of the
intensity. Considering the quadrature scheme we have defined, we write

r(t) ¼
ð1
0

[I(t,m0)þ I(t,�m0)] dm0, (15:67)

such that in terms of the discrete ordinates solution, we obtain, to express the radiation
density,

r(t) ¼
XN
j¼1

Aje�t=nj þ Bje�(t0�t)=nj
h i

F0(nj), (15:68)

with

F0(nj) ¼
XN
i¼1

vi[f(nj,mi)þ f(nj,�mi)]: (15:69)

Still, looking back to Equations 15.23 and 15.33, we write the partial radiative heat fluxes

q�(t) ¼ p
XN
j¼1

Aje�t=njQ�(nj)þ Bje�(t0�t)=njQ�(nj)
h i

(15:70)

with

Q�(nj) ¼
XN
i¼1

vimif(nj,�mi): (15:71)
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15.6 The Isotropic Case

The solution developed in the previous section is valid for a medium where arbitrary
anisotropic scattering is considered. Its generalization for the problem without azimuthal
symmetry can be found in Siewert (2000).
Now, considering the objective of this chapter, we consider a special (and possibly

simplest) case relevant to isotropic scattering (Barichello and Siewert 2002). This case
can, in fact, be obtained from using L¼ 0 in the development given in the previous section.
However, in addition to dealing with an even simpler formulation, which can lead to
special eigenvalue systems, we show here that the ADO method can be used to obtain
explicit solutions for the problem—while, in the expression given in Equation 15.64, the
elementary solutions are the components of the vectors defined in Equations 15.58 and
15.62.
We then consider the radiative transfer equation written here as (Barichello and Siewert

2002)

m
q
qx

I(x,m)þ I(x,m) ¼ ˆ

2

ð1
0

[I(x,m0)þ I(x,�m0)] dm0, (15:72)

for x 2 (0, x0) and m 2 [�1, 1]. Here, I(x, m) is the intensity, and, to make it different from the
general solution of the previous section, we use x as the optical (spatial) variable, m as the
direction cosine (as measured from the positive x axis), and ˆ as the albedo for single
scattering. In addition, we consider Equation 15.72 with boundary conditions written as

I(0,m) ¼ F1(m), m 2 (0, 1], (15:73)

and

I(x0,�m) ¼ F2(m), m 2 (0, 1], (15:74)

where F1(m) and F2(m) are, again, specified.
We repeat the procedure described in Section 15.4, so we seek exponentials solutions of

Equation 15.72; we substitute

I(x,m) ¼ f(n,m)e�x=n (15:75)

into the Equation 15.72 to find

(n�m)f(n,m) ¼ ˆn

2

ð1
0

[f(n,m0)þ f(n,�m0)]dm0: (15:76)

Since it is Equation 15.76 that we wish to solve with the discrete ordinates approximation,
we introduce a quadrature scheme (at this point, arbitrary) and rewrite the equation as

(n�m)f(n,m) ¼ ˆn

2

XN
k¼1

wk[f(n,mk)þ f(n,�mk)], (15:77)
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where the Nweights and nodes {wk, mk} are defined for use on the integration interval [0,1].
If we now evaluate Equation 15.77 at m¼�mi, we can write

(n�mi)f(n,�mi) ¼
ˆn

2

XN
k¼1

wk[f(n,mk)þ f(n,�mk)], (15:78)

which can be rewritten as

1
n
MFþ(n) ¼ (IN � Ŵ)Fþ(n)� ŴF�(n) (15:79)

and

� 1
n
MF�(n) ¼ (IN � Ŵ)F�(n)� ŴFþ(n), (15:80)

where IN is the N	N identity matrix,

F�(n) ¼ (f(n,�m1), f(n,�m2), . . . ,f(n,�mN)), (15:81)

the elements of the matrix Ŵ are

(Ŵ)i, j ¼
ˆ

2
wj (15:82)

and

M ¼ diag{m1,m2, . . . ,mN}: (15:83)

If we now let

U ¼ Fþ(n)þF�(n), (15:84)

then we can eliminate between the sum and the difference of Equations 15.79 and 15.80 to
find

(D� 2M�1ŴM�1)MU ¼ 1
n2

MU, (15:85)

where

D ¼ diag m�21 ,m�22 , . . . ,m�2N

� �
: (15:86)

Multiplying Equation 15.85 by a diagonal matrix T, we find

(D� 2V̂)X̂ ¼ 1
n2

X̂, (15:87)
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where

V̂ ¼ M�1TŴT�1M�1 (15:88)

and

X̂ ¼ TMU: (15:89)

We can define (Barichello and Siewert 1999a) the elements t1, t2, . . . , tN of T so as to make V̂
symmetric; and therefore, since V̂ is a symmetric, rank one matrix, we can write our
eigenvalue problem in the form

(D�ˆzzT)X̂ ¼ lX̂, (15:90)

where l¼ 1=n2 and

z ¼ 1
m1

� �
w1=2

1
1
m2

� �
w1=2

2 � � �
1
mN

� �
w1=2

N

� �T
: (15:91)

We note that the eigenvalue problem defined by Equation 15.90 is of a form that is
encountered when the so-called divide and conquer method (Datta 1995) is used to find
the eigenvalues of tridiagonal matrices.
Considering that we have found the required eigenvalues from Equation 15.90, we

impose the normalization condition

XN
k¼1

wk[f(n,mk)þ f(n,�mk)] ¼ 1 (15:92)

so that we can write our discrete ordinates solution as

I(x,�mi) ¼
XN
j¼1

Ajf(nj,�mi)e
�x=nj þ Bjf(nj, �mi)e

�(x0�x)=nj
h i

, (15:93)

where

f(nj,mi) ¼
ˆnj

2
1

nj �mi
: (15:94)

Here, the arbitrary constants {Aj} and {Bj} are to be determined from the boundary
conditions, and the separation constants {nj} are the reciprocals of the positive square
roots of the eigenvalues defined by Equation 15.90. We note that differently of the previous
section, the elementary solutions of the discrete ordinates problem, Equation 15.94, are
written here in an explicit form. Of course, the cases where the eigenvalues and the
separation constants may be equal have to be avoided.
Now, we can substitute Equation 15.93 into discrete versions of Equations 15.73 and

15.74,

I(0,mi) ¼ F1(mi) (15:95)
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and

I(x0,�mi) ¼ F2(mi), (15:96)

for i¼ 1, 2, . . . , N, to define a linear algebraic system we can solve to find the required
constants {Aj} and {Bj}. And so our solution is established. Since the intensity is available,
we can use, for the isotropic case, Equations 15.92 through 15.94 to express the density
radiation

r(x) ¼
ð1
0

[I(x,m)þ I(x,�m)] dm (15:97)

as

r(x) ¼
XN
j¼1

Aje�x=nj þ Bje�(x0�x)=nj
h i

(15:98)

and the radiative heat fluxes

q�(x) ¼ p
XN
j¼1

Aje�x=nj � Bje�(x0�x)=nj
h i

f1(nj) (15:99)

with

f1(nj) ¼ nj
XN
i¼1

vimi

nj �mi
: (15:100)

To conclude this section, we note that while Equation 15.93 is a discrete ordinates expres-
sion for the intensity, a better result can be obtained (Barichello and Siewert 1999a). In fact,
we can use Equation 15.98 to rewrite Equation 15.72 as

m
q
qx

I(x,m)þ I(x,m) ¼ ˆ

2

XN
j¼1

Aje�x=nj þ Bje�(x0�x)=nj
h i

(15:101)

which we can solve, after noting Equations 15.73 and 15.74, to find

I(x,m) ¼ I0(x,m)þˆ

2

XN
j¼1

nj AjC(x : nj,m)þ Bje�(x0�x)=njS(x : nj,m)
h i

(15:102)

and

I(x,�m) ¼ I0(x,�m)þˆ

2

XN
j¼1

nj Aje�x=njS(x0 � x : nj,m)þ BjC(x0 � x : nj,m)
h i

, (15:103)
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for m 2 (0,1]. Here, the uncollided components are

I0(x,m) ¼ F1(m)e�x=m (15:104)

and

I0(x,�m) ¼ F2(m)e�(x0�x)=m: (15:105)

In addition, the S and C functions are given by

S(t : x, y) ¼ 1� e�t=xe�t=y

xþ y
(15:106)

and

C(t : x, y) ¼ e�t=x � e�t=y

x� y
: (15:107)

Although our analysis is based on a quadrature approximation, we note that our final
results, in this section, for the intensity, radiation density, and radiative heat flux are
continuous functions of the independent variables.

15.7 Computational Aspects

The first step to derive the computational procedure, in order to develop the discrete
ordinates solution and to obtain the quantities of interest, is to define a quadrature scheme.
As in other previous works where the ADO method was used, we choose to map the
interval [0, 1] into [�1, 1] to use the well-known Gauss–Legendre quadrature scheme, here
denoted {yk, vk}. In this way, the nodes mk 2 [0, 1] referred in Equations 15.28, 15.29, and
15.78 are related with the Gauss points, yk, for k¼ 1, . . . , N by

2mk ¼ yk þ 1: (15:108)

In a consistent form, vk¼ (1=2) vk.
Although some tables are available for Gauss–Legendre quadrature points and weights,

here, we mention an efficient way of computing these nodes, which seems to be very useful
when higher order quadrature schemes are required. Following previous work (Benassi
et al. 1984), where this problem was posed as a tridiagonal eigenvalue problem, we list
below an extension of that procedure, which results in simpler symmetric tridiagonal
eigenvalue system. The development is based on manipulations of the three-term recursion
formula for the generation of Legendre polynomials, such that, we can write

x2Pn*(y) ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
anþ1anþ2
p

Pnþ2* (y)þ (anþ1 þ an)Pn*(y)þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
anan�1
p

Pn�2* (y), (15:109)

with Pn(y)¼ (2=hn)1=2Pn*(y),an ¼ n2=(hn�1hn) and hn ¼ 2nþ 1, for n¼ 0,2, . . .N� 2 (n even)
to generate a tridiagonal symmetric eigenvalue problem for defining the N=2 positive
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roots of PN(y), N even. In other words, the N=2 positive quadrature nodes (we remind
they occur in�pairs).
For example, for the case N¼ 8, we impose the condition PN(y)¼ 0 to derive the four

positive nodes y, from Equation 15.109,

Hv ¼ y2v (15:110)

where

H ¼

a1
ffiffiffiffiffiffiffiffiffi
a1a2
p

0 0ffiffiffiffiffiffiffiffiffi
a1a2
p

a3 þ a2
ffiffiffiffiffiffiffiffiffi
a3a4
p

0

0
ffiffiffiffiffiffiffiffiffi
a3a4
p

a5 þ a4
ffiffiffiffiffiffiffiffiffi
a5a6
p

0 0
ffiffiffiffiffiffiffiffiffi
a5a6
p

a7 þ a6

0BBBB@
1CCCCA (15:111)

and

v ¼ (P0,P2,P4,P6): (15:112)

Having said that, we go back to the point of describing the general computational
procedure. The basic steps to follow are:

. To define a quadrature scheme;

. To solve the eigenvalue problem given by Equation 15.52 (or 15.90) using any
available linear algebra subroutine (Smith et al. 1976). For the simplest isotropic
case, we can use known theoretical (Case and Zweifel 1967) results for checking
the expected interval where the eigenvalues should be defined;

. To solve a linear system, Equations 15.65 and 15.66 (Equations 15.95 and 15.96);

. To evaluate quantities of interest, Equations 15.68 and 15.70 (Equations 15.98 and
15.99);

It is important to mention that the ADO solution has shown to be very fast and accurate.
As a simple introductory test case, in order to help the work of evaluating the expres-

sions derived in this chapter, we list in Table 15.1 results obtained for L¼ 6, t0¼ 1, and
ˆ¼ 0.99 and different values of quadrature order N. In regard to the boundary conditions,
we consider F1(m)¼ 1 and F2(m)¼ 0. The idea is also to show the behavior of the results as
N increases. It was implemented as a Fortran program, which runs in less than one second
in a MacBook.
As mentioned before, a good solution of the direct problem, in calculations related to

inverse problems in radiative transfer applications, is relevant. In this sense, analytical
approaches as described in the previous sections can be very useful, mainly in regard to
accuracy and gain in computational time, since, in many cases, the direct problem has to be
solved several times.
Analytical approaches have also been used for deriving solutions for multidimensional

problems, particularly associated with nodal schemes (Barichello et al. 2009).
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15.8 Concluding Remarks

An analytical version of the discrete ordinates method, the ADO method, was used to
develop a solution for thermal radiation problems defined in a gray plane-parallel medium.
For the isotropic case, an explicit solution is obtained. The choice of using half-range arbitrary
quadrature schemes leads to special forms of reduced size eigenvalue systems, in compari-
sonwith standard discrete ordinates approaches. The solution is easy to implement and fast.
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Nomenclature

B(T) Planck’s function
El radiant energy
Il specific intensity
jel emission coefficient
kl absorption coefficient
L anisotropy degree
p(cos Q) phase function
q�(t) partial radiative fluxes
Q(t, m) source term
T temperature

TABLE 15.1

Radiation Density r

t N¼ 10 N¼ 20 N¼ 30

0.0 1.29320 1.29320 1.29320

0.1 1.20038 1.20027 1.20027
0.2 1.13796 1.13798 1.13798

0.3 1.08352 1.08354 1.08354

0.4 1.03279 1.03279 1.03279

0.5 9.83728(�1) 9.83728(�1) 9.83728(�1)
0.6 9.34947(�1) 9.34945(�1) 9.34945(�1)
0.7 8.85085(�1) 8.85070(�1) 8.85070(�1)
0.8 8.32215(�1) 8.32203(�1) 8.32203(�1)
0.9 7.72365(�1) 7.72461(�1) 7.72462(�1)
1.0 6.84710(�1) 6.84711(�1) 6.84711(�1)
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x optical variable
z spatial variable

Abbreviation

ADO method analytical discrete ordinates method

Greek Variables

bl extinction coefficient
bl coefficients of the scattering law
ea emissivity at the surface a
f azimuthal angle
m cosine of the polar angle
rsi coefficient for specular reflection at the boundary i
rdi coefficient for diffuse reflection at the boundary i
r(t) density of radiation
u polar angle
Q scattering angle
l wavelength
r density
ssl scattering coefficient
t optical variable
t0 optical thickness
ˆ albedo
V unitary vector
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16.1 Introduction

The difficulty every researcher approaching a physical phenomenon faces is choosing the
model that best suits the requirement. For this purpose, knowledge of the parameters
and=or the functions of modeling is imperative. These data can, indeed, be obtained not
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only in the literature but also by way of inverse techniques. In an inverse problem, we have
information (measurements of temperatures, heat flux, deformations, etc.) which are the
effects of the causes we try to estimate. It is, thus, a question of identifying the laws of
physics that we study. Although the inverse techniques apply to all the domains of physics,
we discuss only the problems of heat diffusion here.
In this chapter, we particularly emphasize the quality of the measurements, which is

constantly necessary to try to obtain. Figure 16.1 summarizes the usually followed inverse
and direct approaches. We find five types of estimation errors. If we do not take the effects
of coupling between these various terms into account, the global error can be defined as the
sum of these types of errors:

eg ¼ e1 þ e2 þ e3 þ e4 þ e5: (16:1)

The direct problem is only a mathematical image of our experiment. If the hypotheses
made for the definition of this problem are not relevant to the experiment, an error e1 can
lead us to a nonrealistic estimation. Furthermore, the resolution of the direct problem
appeals to various methods. The calculated answer is more or less different from the
exact answer required by the model. The errors of resolution (error of numerical scheme
connected to the steps of time, to the steps of space, and to the precision of the computer)
will lead to an error e2 of estimation.
The first two errors generally occur during the modeling of a phenomenon for which we

do not completely know the physics, in particular in the case of coupling between several
domains (heat conduction, electricity, phase change, etc.). Other errors for the inverse
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experience

Model: equations of
state and observation Answer = f (parameters)

Hypotheses

Estimated
parameters

Inverse
algorithm

Measured
field

Measured
signal Experiment

e3 e5

e1e2

e4
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estimated parameters

Calibration
models of

sensor

Noise

Direct
problem

Inverse
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FIGURE 16.1
Summary of the inverse and direct approaches.
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problems will eventually be added to these errors. First of all, the error e3 is an error
resulting from objectives of the experiment=reverser. The composed questions are as
follows:

1. Do we have some knowledge of the shape of the law that we want to estimate?

2. Have we worked on the estimation of a perfectly unknown function or have we
estimated the parameters of a law?

3. What is the spatial and=or temporal domain on which we have to estimate our
parameters and=or functions?

4. In the case of an estimation on a limited domain, what are the parameter values for
the rest of the domain?

5. What errors in the estimation are due to the uncertainties connected to the know-
ledge of the known data (e.g., spatiotemporal data: position of the sensors and the
measures of the forms of the sample)?

Having partly answered these questions by the choice of a parameterization of the function
that we want to estimate, by the study of the sensitivity coefficients when faced with the
position of the sensors and the uncertainties on the known data, the error is stressed by the
fact that the inverse methods themselves cause errors in estimated values. These last errors
are engendered by the method.
The fourth component e4 of the error of the estimation results from the conversion of the

signal delivered by the sensor (e.g., temperature). It is thus connected to the characteristics
of the sensor (problems of the nonlinearity of the sensor, the reproducibility of a measure-
ment, etc.) and results from the definition of the experimental design of these sensors in the
experiment (intrusive character of the sensor). The study of these errors of thermal metrol-
ogy is an important element to obtain a quality estimation.
The last of the estimation errors e5 is due to the measuring device of the signal produced

by the sensor. This error can be defined under the general term of ‘‘noise.’’ Beck and
Arnold [1] presented hypotheses on the nature of this noise allowing for the implementa-
tion of the methods of estimation.

. The noise is additive:

Yi ¼ Ti þ ei, (16:2)

where
Yi is the measured temperature
Ti is the exact temperature
ei is a random noise

. The noise ei has a zero mean value:

E(ei) ¼ 0: (16:3)

. The noises associated with the various measurements are not correlated. Two
noises of measures ei and ej are said to be noncorrelated if their covariance verifies:

cov(ei, ej) ffi E[[ei � E(ei)][ej � E(ej)]] ¼ 0 for i 6¼ j: (16:4)
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In this case, the noise ei has no effect on and no relation with the noise ej.
. The noise has a constant standard deviation:

si ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E [Yi � E(Yi)]2

 �q

¼ const: (16:5)

. The considered noise follows a normal probability distribution.

. We have no information a priori about the unknown.

. Only the measurements used in the estimation procedure constitute the noisy data.
Other parameters present in the model are supposed to be exactly known.

These enumerated hypotheses are rarely combined in reality. They are emitted for the
validity of the estimation methods.
In this chapter, we thus suggest analyzing the error e4. We also try to make a link

between the errors of measurement and the developed direct model by integrating it into
the modeling of the sensor. Working mainly on the measurement of temperature using
thermocouples, we will have to take into account several special points such as the drilling
of the sample and the quality of the contact between the sensor and the sample.

16.2 Temperature Measurement by Thermocouple
and Errors of Measurement

Any temperature measurements by a thermocouple on or in a sample generate errors of
measure by their intrusive aspect. First of all, the temperature measure in a point of a
material environment in fact involves a measure of a small element surrounding this point.
Furthermore, when we have important gradients of temperature in the environment, we
suppose that the volume element is small enough so that the temperature is practically
uniform. Finally, if the considered element is defined on the surface, it has to take into
account the fact that the surface possesses specificities such as its roughness and the state of
the surface connected to surface treatments (oxidation and quenching). All these physical
specificities underline the difficulties involved, on the one hand, in integrating a sensor
whose physical characteristics are often different from the environment where we want to
realize the measure and, on the other hand, in estimating the disturbance that this sensor
engenders.
In general, following the use of the sensor (strong temperature gradients or not, steady

state or transient, and strongly transient phenomenon or not), we have to master the
parameters of implementation, namely, its calibration, its sensitivity, and all the involved
thermoelectric effects. Numerous works ([1–9], or Chapter 3 by Lanzetta) summarize these
various aspects like the size of the sensor, the embedded thermocouple or not in the sample
and of the chain of measure.
In this chapter, we will mainly emphasize the presence of the sensor and the disturbance

it generates on the phenomenon of heat diffusion. In any theory, the presence of the sensor
in an environment supposes a modification of the heat transfers by conduction, convection,
or radiation. The local temperature is modified. Concerning more particularly the surface
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temperature measure, the presence of a sensor modifies the emissivity and the exchanges
by radiation. The sensor and the elements transferring the information (e.g., thermocouple
wires) are affected by the outside conditions, provoking a measure that can be very
different from the one to be measured.

16.2.1 Error during Measurement of a Surface Temperature

As we were able to underline above, during measurement of a surface temperature, the
superficial exchanges are modified by the presence of the sensor, and the thermophy-
sical and radiative properties are different from those of the surface material. Further-
more, because of the link between the sensor and the acquisition system, a parasite heat
flux is passed on through it and then toward the environment. A generation or an
absorption of heat at the level of the sensor can also occur. Furthermore, because of the
methodology of the setting up of the sensor, we can have an exothermic or endothermic
reaction of chemical origin. All these heat transfers make a disturbance of the surface
temperature.
The temperature is not T but Tp. Figure 16.2 presents the heat transfers during a measure

of a surface temperature. We can note that, in the presented case, because of heat transfer
from the material to the outside environment and thus the pumping of energy engendered
by the sensor, the temperature Tp(t) is lower than the true temperature of the surface.
Furthermore, generally the temperature sensor is implanted on the surface of the material
with a contact which very often remains imperfect. The sensor is thus going to take, in
the case of Figure 16.2, an intermediate temperature Tc(t) defined as the temperature
between the new temperature of the surface Tp(t) and the temperature of the outside

Data logger

Convection

Radiation

Conduction 

T T(t) 

Tp(t)
Tc(t) Te(t)

FIGURE 16.2
Heat transfers through the sensor surface.
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environment Te(t). So in the sensor, we have a parasite heat transfer, noted w(t). In reality,
during this heat transfer, three effects are conjugated:

. The first effect occurs in the material through the convergence of the lines of heat
flux toward the sensor (macro-constriction effect).

. The second effect is connected to the quality of the contact between the sensor and
the material. A contact resistance between both elements provokes a temperature
drop at the interface.

. The third effect is laid to the exchanges between the sensor, the wires of the sensor,
and the ambient. This effect is also mentioned as the fin effect.

So as we were able to highlight above, a measure error appears and is represented by the
distance between the true temperature T(t) and the temperature on the sensor Tc(t):

e(t) ¼ T(t)� Tc(t): (16:6)

16.2.2 Error during a Temperature Measure within a Volume

In the case of a measure within a volume, we find the three effects seen during the analysis
of the measure of a surface temperature. Indeed, according to the thermophysical charac-
teristics, generally different from those of the material, an effect of macro-constriction
between the material and the sensor shall be found. Furthermore, according to the quality
of the setting up of the sensor in the middle (sensor simply put in contact, sticking or
welding), a contact resistance will provoke a temperature difference between the material
and the sensor. Finally, the third effect seen above will globalize transfers among the
material, the sensor, and its wires, then between the ambient and the wires of the sensor.
Really, a difficulty is added here. The fact of realizing a hole with a diameter always higher
than the diameter of the sensor involves having to analyze transfers between both elements
(space between the wires and the hole, space between the sensor and the opening, the
contact through grease, glue, etc.).

16.2.3 Error Models

We find in the literature a lot of models to describe the errors of measurement by
thermocouple. The study of these errors which result from parasite transfers requires the
resolution of problems of complex thermal transfers. The variety of configurations and the
conditions connected to the environment involves the elaboration of mathematical models
adapted to each case.
First of all, we suggest presenting a very simplistic but typical model that will allow us to

highlight the respective roles of conduction within the middle, of the imperfection of the
contact between the thermocouple and the surface, and finally of the exchanges with the
environment. The model described in the study of Cassagne et al. [4] appears through
the three effects seen in Section 16.2.1. Most of the conclusions of this study will then be
transposed into various configurations usually met in practice.
We shall successively consider the measures in steady-state regime and in transient

regime. However, before this, it is necessary to underline that transfers between the
wire of the thermocouple and the ambient are defined through a heat transfer coefficient h
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and a characteristic temperature TE, being able to group together the convective
and radiative transfers.

h ¼ hr þ hcv, (16:7)

where
hr ¼ 4esT3

m
Tm is the medium temperature of the two surfaces

For example, a model in steady-state regime can be developed for a measure of the
surface temperature [3,5,6].
Let us suppose a measure of temperature on an isothermal surface (T) of an opaque semi-

infinite region. For the needs of the theoretical study, we consider only a single wire
(measure by a semi-intrinsic thermocouple). Figure 16.3 presents the theoretic scheme.
The surface of the region is supposed to be insulated. We have only heat transfer at the
contact with the sensor represented by a bar. The modeling of the contact is defined by the
three previously seen effects:

. Effect of the convergence: this effect is defined by a convergence of the heat toward
the zone of measure. The temperature T of the insulated region is perturbed by the
energy pumping in the wire:

T � Tp ¼ rmF, (16:8)

where
rm is the macro-constriction resistance
F is the transferred heat flux

T T

Tp

Tc
Te

he
Te

Diameter = 2y

Isolated
surface

T
λ, ρ, cp = cste

rmΦ

rcΦ
reΦ

FIGURE 16.3
Model of error in steady-state regime.
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We show with the hypothesis of a semi-infinite region, the following two
expressions:

rm ffi 1
4yl

or rm ffi 8
3p2yl

: (16:9)

We suppose the circle of contact to be isothermal or crossed by a uniform heat
density (l is the thermal conductivity of the material). The calculation also shows
that the main part of the temperature disturbance is located in the immediate
neighborhood of the circle of contact (94% of the temperature drop T–Tp occurs
inside the sphere of center O and of radius 10y).

. Effect of the contact resistance: responsible for the temperature drop between the
perturbed temperature and the measured temperature, it is defined by the relation

Tp � Tc ¼ rcF, (16:10)

where rc represents the contact resistance for the contact area s: rc ¼ Rc

s
. This effect

is connected to the imperfection of the contact which results from the roughness of
the surface.

. Fin effect: it is defined by heat transfer between the wire and the outside environ-
ment. The heat flux is transferred between the face x¼ 0 at the temperature Tc and
the outside environment at an equivalent temperature Te:

Tc � Te ¼ reF, (16:11)

where re represents the global thermal resistance of the transfer. It depends on the
geometry, on the global heat transfer coefficient he (convectionþ radiation), and on
the conductivity le of the wire. For a bar with a radius y, the resistance is defined
by the relation:

re ¼ 1
py

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2heley

p : (16:12)

With these three equations, we deduct the error of measure:

T � Tc ¼ dT ¼ (rc þ rm)F

or

T � Te ¼ (rc þ rm þ re)F

so

T � Tc

T � Te
¼ dT

T � Te
¼ (rc þ rm)

(rc þ rm þ re)
, (16:13)
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dT ¼ T � Te

(rc þ rm þ re)
(rc þ rm)

,

dT ¼ T � Te

1þ re
rc þ rm

:

(16:14)

The committed error is thus proportional to the difference between the temperature to
be measured and the outside equivalent temperature. The error will be weak if the sum of
the macro-constriction and contact resistances is weak in the presence of the outside
resistance.
We show the following:

1. For measures on a metal with a good conductivity rm � rc, it is essentially the
contact conditions that set the error.

2. For measures on an insulating material rm � rc, it is the effect of macro-constric-
tion that sets the error.

3. Even in conditions of perfect contact, an error persists depending on the relation-

ship
rm
re
.

4. The roles of re and of Te are finally very important. It is necessary to have re the
biggest possible and Te the closest of T.

These conclusions, established in the case of a measure on an opaque region and for the
configuration defined by a wire having the shape of a perpendicular bar, stay for more
complex real configurations. In any case, it would now be necessary to study the case of a
measure within the region as well as the cases of the transient regimes.
As the objective of this chapter is to take into account measure errors in the inverse

analysis, we will attempt to develop numeric models of error to quantify these and define
in transient regime the best configurations of thermocouple design.

16.3 Application

16.3.1 Introduction

Welding is an assembly method in constant evolution. Mainly used by heavy industry,
many processes were developed for several years; however, arc welding is the most
harnessed.
Moreover, to ensure joint quality, numerical simulations take on a fundamental import-

ance and try by complementing or making it possible to avoid experimental measure-
ments. Actually, mechanical effects such as welding distortions or residual stresses are
directly linked to the evolution of the thermal field created by process energy. The
difficulties concern, first, the simulation of coupled phenomena such as the arc and the
plasma over the liquid metal, and second, the characterization of not well-known param-
eters. For these reasons, two levels of simulation can be implemented. The first is named
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‘‘Multiphysic’’ and its objective is to model the whole physical phenomena. The second is a
simplified thermal simulation with an equivalent heat source.
One way to establish the simplified law of energy distribution is the implementation of

an inverse method used in conjunction with thermal measurements. Therefore, the quality
of inverse problem results is strongly dependent on the experimental part.
The objective of this work is to investigate the thermal discrepancy between our meas-

ured temperatures and temperatures obtained by classical measurement techniques. This
study was carried out to propose an optimal configuration for thermocouple installation.
Our study was conducted to determine an equivalent heat source for Metal Active Gas
(MAG) process with filler material and on ‘‘T’’ configuration [7].

16.3.2 The Goal of the Instrumentation

Before introducing bases of instrumentations, an explanation about the different forms of
simulation is required. Two classes of numerical models can be distinguished. The first is
designed to simulate the process by modeling the whole phenomena. The second is
simplified to a pure conduction model; thus, phenomena occurring in the fused zone are
neglected or approximated.
It should be noted that these studies need a large knowledge of physics parameters such

as magnetic, hydrodynamic, and thermal properties of gas, liquid, and solid materials.
Moreover, the needed numerical resources are also important and not available in the
industrial context. For this reason, simplified models are developed using only the thermal
diffusion equation and an equivalent heat source term which represent the effects of
phenomena in the fused zone.

16.3.2.1 Equivalent Heat Source

The ‘‘equivalent source’’ simulation is based on the assumption that the real heat distri-
bution is closely approximated by a mathematical function. Therefore, the thermal field is
assumed to be lowly sensitive to the liquid part, or the equivalent heat source must
approximate its effects. Mathematical laws’ complexity is dependent on the approximation
level. Indeed, the most simplified expression is the ‘‘point heat source’’ in which all the
energy is applied at one surface point. If the real energy input is introduced inside the
volume, it is possible to simulate it by distributing constant energy along a line. These two
kinds of assumptions were mainly used in the past for analytical resolutions. Now numer-
ical simulation and computing evolution allow for the use of more complex laws. When
energy has to be applied on the workpiece surface, the Gaussian distribution is commonly
used. Indeed, it allows for the set up of the amplitude and the radius. Moreover, for a
process that gives energy inside the workpiece volume, the surface equivalent heat source
could be used but the theoretical energy had to be distributed along the third dimension.
Several cases can be encountered, energy can stay constant along the depth or it can
decrease with a mathematical law, for example, linear or Gaussian.
Nevertheless, the shapes of the approximate heat sources depend on the process, which

is why several laws are made to be easy to customize. For example, the one named
cylindrical involution normal (CIN) is shown in Equation 16.15 in a quasi-steady-state
formulation. The source term is assumed to be constant through time, and after the moving
of the space referential on it [8,9].
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S(x, y, z) ¼ kKzhUI
p(1� exp (�Kzep))

exp (�k(x2 þ z2)� Kzy) * [1� u(y� ep)], (16:15)

where
u(� � �) is the Heaviside function
k is the concentration factor
Kz is the involution factor
ep is the depth source application
U, I, and h are, respectively, the welding voltage (V), current (A), and arc efficiency
(x, y, z) is the coordinate system in which x and z are tangent and normal to the top

surface of the filler material

Other kinds of equivalent heat sources try to include the fluid-mechanic effects.
An example of these distributions is the ‘‘Goldak double ellipsoid’’ [10], in which the
front and the rear ellipsoids (Figure 16.4) are, respectively, written with Equations 16.16
and 16.17:

qf (x, y, z) ¼
6
ffiffiffi
3
p

ff Q
abcfp

ffiffiffiffi
p
p exp � x2

a2

� �
exp � y2

b2

� �
exp � z2

c2f

 !
, (16:16)

qr(x, y, z) ¼ 6
ffiffiffi
3
p

frQ
abcrp

ffiffiffiffi
p
p exp � x2

a2

� �
exp � y2

b2

� �
exp � z2

c2r

� �
, (16:17)

where
ff and fr are factors of energy deposited on the front and rear parts of y-axis
a, b, cf, and cr are the Gaussian radius

The difficulty in these approaches is the determination of these previous parameters
because they are not directly related to a physical phenomenon. However, they are
estimated by an inverse method, but it compels to perform experimentation. By knowing
the real temperatures at a few points and having the numerical simulation at these same

Heat flux
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Source
displacement

cr

FIGURE 16.4
Goldak’s double ellipsoid. (From Goldak, J. et al., Int. Inst. Weld., 603, 1985.)
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points, an identification algorithm compares experimental and numerical temperatures to
adjust heat source parameters.
In our study, the equivalent heat source is written with the CIN law and the estimation

method is based on the Levenberg–Marquardt algorithm. It reduces a quadratic criterion
defined as the difference between experimental and numerical temperatures.
Actually, a lot of thermal instrumentations are available to solve inverse problems.

Measurements must be performed in a high temperature gradient (sensitivity problem),
which means close to the liquid=solid interface. In the next part, some of these methods are
explained.

16.3.2.2 Welding Measurement Methods

For the characterization of heat diffusion in the fused zone, three main measurement
methods can be distinguished: observation with high speed cameras, infrared measure-
ments, and thermoelectric probes.

. High speed cameras are suitable for observations of fluid motion or for measure-
ments of weld pool sizes. However, it gives only surface information. Without
temperature measurements, this method is impractical for heat source identifica-
tion but it is possible to use its observations for constrain estimation.

. Thermography and pyrometry are two methods which allow for measurements of
infrared radiations. With appropriate relation, it leads to surface temperatures. But
both are limited by the difficulties to determine the emissivity and they are only
able to detect surface information directly. The main advantage of thermography
is the high number of sensors (for example, 120	 160) and its ease of implemen-
tation. By measuring radiation at two wavelength values, some pyrometers are not
subject to emissivity difficulties.

. The use of thermocouple is an intrusive method. The hot junction (Figure 16.5) has
to be in contact with the sample at the exact location where the measurement must
be made. So, the way to implement thermocouple inside a solid body is to get it in
touch at the bottom of a hole (Figure 16.5). The drawback is the thermal field

FIGURE 16.5
Example of our thermocouple.
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disturbance that can occur all around the probe. Furthermore, different types of
thermocouples are available, and their use depends on temperature levels. In our
case, type K thermocouples are used (Figure 16.5), and their maximal thermal
charge is 13678C for 0.15 s. Due to this information and because we want meas-
urements that are as sensitive as possible for researched parameters, an imple-
mentation plan must be developed.

Figure 16.5 presents a picture showing one of our thermocouples implemented in the
sample and the different parts of it. More information is given about this picture in
the following sections.
The choice of thermocouple locations is critical for the quality of identification results.

The next part explains how we have selected these positions.

16.3.2.3 Thermocouple Locations: Thermal Gradient Measurements

To define a good thermocouple position, several ideas have to be explained. The identifi-
cation concept is based on observation of the parameter variation effects on the thermal
field. This sensitivity decreases when measurements are far off the weld pool. Moreover, a
temporal discrepancy is observed. Caused by the thermal capacity of material, those effects
can be reduced by introducing thermocouples close to the heat source.
For heat flux identification, one measurement line might permit estimation. Neverthe-

less, the solution cannot be reliable because several flux shapes can reduce quadratic
criterion. For this reason and to stabilize estimation, a second line of thermocouples is
installed. So, a three-dimensional (3D) ‘‘picture’’ of thermal gradient is obtained and
stability of the estimation procedure is enhanced.
The goal of the identification is to characterize the gradient versus the three directions of

diffusion (x, y, z). So, a finite measurement line is defined around the fused zone limit seen
on a scheme of a macrograph (Figure 16.6). According to fused zone uncertainty (caused by
weld pool instability) and with a previous theoretical simulation, we define a priori this
first line near 11008C–12008C (Figure 16.6). Then, to define thermal gradients correctly, a
second line is fixed to observe isothermal lines at 10008C–11008C. The third dimension is
along the welding direction. We have considered a quasi-steady-state analysis; therefore,
the third dimension is the time multiplying the welding velocity. The z gradient is, in fact,
time variations.

FIGURE 16.6
Measurements locations, scheme of macro-
graph.
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16.3.3 Our Welding Case

As described above, this study takes place in a larger project named MUSICA [7]. This
multi-partner work was initiated by the CEA in collaboration with the French ‘‘Welding
Institute,’’ the CETIM, Esi-Group, and AREVA. The aim of their work is the develop-
ment of three software tools designed to allow a nonexpert user to realize global simula-
tion of welding processes. Indeed, the first is made for the simulation of welding
processes, the second for thermo-mechanical simulation at component sides, and the
third for calculation of distortion effects on multicomponent structures. Moreover, the
tools coupled to inverse method and with instrumented equipment permit heat source
estimation for usual welding processes such as tungsten inert gas (TIG), laser, electron
beam welding, or metal inert=active gas (MIG=MAG). These elements need accumulation
of knowledge about many welding simulation cases, such as ring-shaped welding or ‘‘T’’
welding.
This welding study deals with the optimal instrumentation for two weld displacements

and with the heat source identification in the case of ‘‘T’’ welding with filler material.
It should be noted that the industrial aspect of this work has constrained us to not unveil

the process parameters or thermal properties of the used material. Each of the given cases
will be specified.

16.3.3.1 Mathematical Model

The best parametric estimation must be performed only with previous experimentations. It
allows one to check the ‘‘weldability’’ of the specimen. Two pieces of metal (AISI S355
steel) are used (Figure 16.7): the ‘‘Base’’ (0.5	 0.5	 0.01 m3) and the ‘‘Ame’’ (0.5	 0.01	
0.1 m3). After the welding test, the sample is cut out, transversal plans are chemically
attacked, and photographs of weld joints are taken. The main objective of this first
experimental part is to create a simplified simulation (Figure 16.8), which gives a fused
zone as close as possible to the one observed on previous macrographies. The simulation
gives a thermal field, which is then used to define the location of an a priori instrumenta-
tion for the next experimental part designed for the inverse problem.
In Figure 16.7, we show the two instrumented zones: A for the first transit and B for the

second.

FIGURE 16.7
Experimental sample.
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The simulated geometry has to be reduced (Figure 16.8) to decrease calculation time, but
dimensions must be sufficient to avoid fused zone disturbances caused by boundary
conditions implemented in the model.
It is difficult to simulate the filler material during the welding. So, we shall always

suppose it present during the simulation.
A 3D direct problem is solved by the finite-element method with the software Comsol

Multiphysic1. This analysis is performed by assuming the heat equation in a quasi-steady-
state conduction according to Equation 16.18. To reduce the degrees of freedom solved, the
fluidmechanics and other phenomena are neglected. So, the equivalent heat source S(x, y, z),
in this heat equation formulation, must represent all these phenomena in the fused zone
and approximate the 3D heat distribution. This heat sourcewill be described in the next part.
The following is the heat diffusion equation:

vr(T)cp(T)
qT
qz
¼ q

qx
l(T)

qT
qx

� �
þ q
qy

l(T)
qT
qy

� �
þ q
qz

l(T)
qT
qz

� �
þ S(x, y, z), (16:18)

where
v is the welding speed (m s�1) along z-axis
r is the density (kg m�3)
cp is the heat capacity (J kg�1 K�1)
l is the thermal conductivity (W m�1 K�1)

Thermal properties are isotropic. Boundary conditions are defined in Figure 16.9. In this
quasi-steady-state simulation, the equivalent heat source is centered on the ‘‘S’’ point
(Figure 16.9) and its ‘‘displacement’’ is simulated (quasi-steady-state assumption) along
the z direction. Consequently, a graph showing temperature along the z-axis is equivalent
to a thermogram. This is what we need to compare: real time measurement with this
simulation.

. For z¼ 0, before the heat source (Figure 16.9 boundaries A), the temperature is
equal to ambient temperature (208C).

T ¼ T1: (16:19)

FIGURE 16.8
Simulated sample.
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. Behind, for z¼ 0.05 (Figure 16.9 boundaries C), boundaries are assumed suffi-
ciently far from heat source to be represented by thermal symmetry. The same
assumption is realized for boundaries on x¼�0.02 and 0.025.

l(T)
qT
qn
¼ 0: (16:20)

. Lastly, for boundaries that are in contact with air (Figure 16.9 boundaries B), we
consider that a correct approximation of temperatures is obtained by classical
convection and radiation losses.

�l(T) qT
qn
¼ h(T � T1)� es(T4 � T4

1), (16:21)

where
h is the coefficient of convection (W m�2 K�1)
e is the emissivity
s is the Stefan–Boltzman constant

In the majority of studies, the filler material is ever present in the workpiece geometry,
but elements are activated at the rear of the weld pool which can be approximated with the
rear of source application. In our case, the software used does not allow us these kinds of
numerical tools, but here, the heat source is stationary and we can directly define the front
part of the fused zone geometry. This shape is defined thanks to experimental information
and created with a Bézier surface. The latter is built thanks to observations of the filler
material after solidification. During the last part of the welding, when the arc disappears,
the fused zone is solidified, but the surface shape of the liquid part stays apparent. The
mark left by the maximum of the arc pressure could also be located. So, the surface length
is twice the distance between the front of the observed weld pool limit and the hole left by
the arc. Consequently, by applying the heat source in the center of the surface, the energy
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FIGURE 16.9
Mesh and boundary conditions (A: ambient temperature, B: heat losses, and C: thermal symmetry).
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input into the fused zone looks like a good approximation of reality. Indeed, the difficulty
is the representation of physical phenomenon which occurs during energy input. The latter
is divided into two parts: the first is introduced by the electrical arc (at the surface) and the
second by the droplet (in the volume). To simulate these two effects, we located the CIN
source at halfway of the filler material in the center of the Bézier surface (Figure 16.9).

16.3.3.2 Heat Source Definition

The aim of this chapter is the identification of an equivalent heat source function. The
mathematical expression of S(x, y, z) is assumed to be a CIN, as defined in Equation 16.15,
but with modified axis, as

S(x, y, z) ¼ kKzhUI
p(1� exp (�Kzep))

exp (�k(v2 þ z2)� Kzw) * [1� u(w� ep)], (16:22)

(v, w, z) is a modified axis system in which v and w are tangent and normal to the top
surface of the filler material. The main advantage of this volume heat source is the small
number of unknown parameters: k, Kz, and ep, the source application depth.
The inverse problem has to find values of CIN parameters; however, the validity of this

energy input shape must be checked. The direct problem is solved using different source
parameter configurations. Several melted zones are shown in Figure 16.10.
The choice of heat source parameters is not easy, but as shown in Figure 16.10, weld pool

observed on a macrograph can be surrounded by the results of two parameter configur-
ations. The ‘‘CIN configuration no. 2’’ has good width but the depth is too low; inversely, the
‘‘CIN configuration no. 1’’ has an insufficient width but the depth is too great. This means
that the mathematical law is able to simulate energy input which validates the shape of
the melted zone, but the use of the inverse method is necessary to avoid the manual

FIGURE 16.10
Melted zones for two sources.
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parameterization. Moreover, macrograph allows only for a partial validation (plan 0xy
Figure 16.10) of the fused zone limit. Indeed, the shape along the z-axis (or time evolution)
cannot be checked this way. So, the good heat source term will be found only after
resolution of the inverse problem because estimation is realized with temperature meas-
urements throughout time, which is the third dimension of our quasi-steady-state model.
Model used to obtain Figure 16.10 results is defined with tetrahedral mesh elements. The

software Comsol Multiphysics is already fitted with an automatic mesh creator, which
allows the definition of the maximal sizes of boundary or volume elements. The numerical
sample is too big for a global definition of a thin mesh, but for our case, the interesting
zone is near the weld pool. So, only elements on volumes of filler material are refined at
0.0015 mm of maximal size. Other volumes are freely meshed, but with a growing factor
equal to 1.1. The number of elements is close to 40,000 elements. The analysis of this mesh
is realized by comparing these results to others obtained with the same simulation but
discretized more thinly (higher than 60,000 elements). By observing the shape of the phase
change temperature, which is very close in both cases, it is possible to conclude that the
first mesh is sufficiently thin.

16.3.3.3 Inverse Problem Method and Experimentation Plan

In this study, the inverse problem reduces a quadratic error built on the difference between
temperatures which results from the direct problem and experimental measurements, such
as Equation 16.23. The used method is the Levenberg–Marquardt algorithm which calcu-
lates new parameters with the iterative expression (16.24). It is an association of the
steepest and Gauss–Newton methods, which allow for an important estimation speed
and good robustness.

S(n) ¼
X
i

(Y(i)� T(i))2, (16:23)

pnþ1 ¼ pn þ [ JTJ þ lnV]�1JT(Y� T(pn)), (16:24)

with

J ¼ T(pn þ epn)� T(pn � epn)
2evpn

, (16:25)

where
n is the iteration step
P is the estimated parameter
J is the sensitivity, in our case; it is obtained by the numerical derivation of modeled

temperature over parameter variation (16.25)
Y and T are, respectively, measured and simulated temperatures
l is a damping factor
V a diagonal matrix defined to offset measurement noises
ev factor is the variation step of parameters

In Equation 16.25, it is possible to observe the link between thermal measurements and
parameter estimation. As a consequence, the estimation of the heat source needs a very
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accurate experimental investigation. Situation and number of temperature measurements
have an impact on the parameter quality.
To ensure efficient parameter identification, thermocouple positioning must respect four

principles related to the measurement theory and previous observations [3]:

. The thermal field is a picture of energy distribution. Measurements have to be
given all around the melted zone.

. For sensitivity reasons, the thermocouple must be as close as possible to the weld
pool.

. The thermal gradient measurement in three dimensions can be useful.

. Information observed throughout time gives the third dimension gradient (quasi-
steady-state assumption).

With the previous advice, we define an a priori location of thermocouples as shown in
Figure 16.11. The validation of this plan is realized by a theoretical inverse problem.

16.3.4 Theoretical Inverse Problem

16.3.4.1 Estimation without Measurement Noise

Before the identifications of the parameters with experimental temperatures, it is necessary
to check, theoretically, several points such as, which parameters can possibly be estimated
with the previous implementation plan?
For this reason, a sensitivity analysis is made. Two elements are important: amplitudes of

sensitivities and linear dependence of parameters. In the first case, no sufficient amplitude
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FIGURE 16.11
Theoretical location of thermal measurement.
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signifies that a parameter variation involves too low of a difference on the thermal field; its
effect is the difficulty and the increase in the time to estimate. In the second case, if two
parameters are linearly dependent, a variation of each of them produces the same effects
on the thermal field. Therefore, a small change of the first parameter can influence the
second and the algorithm will not be able to estimate parameters.
The previous theoretical model is used as a direct problem and as a ‘‘numerical experi-

mentation’’ with reference parameters. The latter is defined to have a melted zone quite
close to the one observed on macrographies.
The parameter choices are realized after few tries. So the melted zone shape is not perfect

with regard to macrographies, but sufficient to perform this analysis.
We assume that k¼ 57,000 m�2, Kz¼ 370 m�1, and ep¼ 0.012 m.
With this heat source, the first analysis concerns sensitivity coefficients presented by

Equation 16.25. In Figure 16.12, it is possible to observe the sensitivity of the first parameter
(k) on the first measurement line at x¼ 0.004 m, y¼ 0.018 m, and along z-axis. It should be
noted that the real sensitivity amplitude is obtained by multiplying coefficients by the
reference parameter. Obviously, this kind of curve must be realized for each parameter and
at each measurement coordinate. Observations are related to theoretical thermocouple
locations. First, the k parameter, which is the concentration factor, has more influence
over the thermal field near the surface. Consequently, sensitive thermocouples are those
that are close to the surface, for example, TC No. 15 in Figure 16.11, and amplitudes of
variations observed are sufficient for estimation (approximately 9008C). Second, the Kz

parameter is the involution factor and it affects the center part of the heat source by making
it more cylindrical or more conical. So, in this case, sensitive thermocouples are those
located by the sides of the fused zone, TC No. 45 in Figure 16.11. And third, the depth
penetration ep of heat source produces variation underneath the simulated weld pool, and
measurements are sensitive near the lower extremity of heat source, TC No. 65.
The second curve in Figure 16.12 is the ratio between two parameter sensitivities. Here, it

is the case of k sensitivity divided by the Kz sensitivity, along the first measurement line.
This ratio had to be made for all parameters and for all measurement coordinates. Their
aim is the search for linear dependences. If this ratio is equal to a constant value,
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parameters are correlated and the estimation will fail. In Figure 16.12, k and Kz are clearly
independent on this ‘‘thermocouple.’’ Conclusions are the same for other parameters, only
several measurements are partially dependent but this is caused by their low sensitivities.
This validation is implemented with theoretical thermocouple locations chosen for the

first transit (Figure 16.11). A satisfactory estimation is obtained after 10 iterations with a
final criterion equal to 27, which signifies a mean error of 0.248C. The decrease of the latter
can be observed in Figure 16.14.
Figure 16.13 shows evolutions of parameters dividing referential parameters, so as to

observe variations in the interval [0; 1] and to be able to compare them. The first two
parameters k and Kz have equivalent progress. Their final values, respectively, 57,032 m�2

and 370 m�1, are very close to references, and convergences are obtained quite quickly. The
third parameter is ep; its identification takes more time than previous parameters and the
final value is not perfect, near 0.01185 m, but tends to evolve correctly.

16.3.4.2 Estimation with Simulated Measurement Noise

The interest of this theoretical method is to test the estimation algorithm. Indeed, the
previous test is done with simulated measurements which are not realistic but allow for
sensitivity analysis. Nevertheless, before the estimation with experimental temperatures,
we have to check if the measurement noise will cause failure of estimation.
For this, inverse and direct problems are the same as before, but an artificial noise is

created with a random function. The level of this perturbation is chosen as close as possible
to the real measurement noise, which signifies nearly 1% of the maximal signal or 158C.
In this case we only present the criterion decrease. As shown in Figure 16.14, the noise
induces estimation after more iterations than before: 15 iterations. Moreover, the criterion
is stabilized at a higher value (3800) which is equivalent to a mean error of 58C in each
measurement. Parameters are quite correctly estimated and final values are 56,980 m�2,
370 m�1, and 0.0121 m, respectively, for k, Kz, and ep. These values are very satisfactory,
and with these data, we can assume that the experimental inverse problem will be a
success.
Results are summarized in Table 16.1.

FIGURE 16.13
Parameters’ evolution.
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16.3.5 Experimental Design

16.3.5.1 Experimental Implementation

In our study, we use 32 thermocouples introduced inside the workpiece through the Base.
This choice of implementation is imposed by the industrial term of reference; for example,
we can only drill the workpiece from its back side. We use type K thermocouples to
observe large amplitudes of measurement. TC wires are 50 mm in diameter and the hot
junction is 220 mm in diameter. To observe the workpiece temperature, the contact between
the thermocouple and workpiece has to be perfect. So TCs are welded (Figure 16.5) to the
sample by capacitive discharge.
Following the ideas proposed in Sections 16.3.2.2 and 16.3.2.3, measurements are real-

ized along the 11008C isotherm, nearly 1 mm after the melted pool limit (Figure 16.11). The
location of this isothermal line is realized with a previous experimentation without instru-
mentation in association with a simplified model. The simulation parameters are approxi-
mately chosen to obtain a melted zone close to the one observed on the first macrograph.
Finally, the simulation gives us the shape of isothermal lines. This instrumentation method
assumes the repeatability of the welding procedure process, which means that two weld-
ing procedures with the same process parameters (current and tension) produce a melted
zone with the same dimensions.
The high number of thermocouples (15) forces us to divide them into six plans orthog-

onal to the weld direction and spaced by 4 mm as shown in Figure 16.15.
Experimentations have been realized by the French Welding Institute in Yutz.

TABLE 16.1

Results of the Estimations

k Kz ep Criterion

Reference 57,000 370 0.012

Without noise 57,032 370 0.01185 27 (0.258C)

With 1% noise 56,980 370 0.0121 3800 (�58C)

FIGURE 16.14
Criterion reduction during identifica-
tion.
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16.3.5.2 Measurements Results

Results of the inverse problem are directly dependent on thermal measurements. For this
reason, experimental temperatures are first analyzed and then the link with estimation
difficulties is established.
For the first transit, all thermocouple outputs are presented in Figures 16.16 and 16.17.

In the first one, it is possible to observe the failure of TC No. 36 located at x¼ 3 mm and
y¼ 14 mm (cf. Figure 16.11 for axis origin). The flat signal shows that the problem is not
inherent in the welding conditions.
It should be remarked that the time lag of each curve is a consequence of the space

dispersion of thermocouples (Figure 16.15).
On previous curves, another singularity is observed. Two thermocouples, whose coord-

inates are theoretically the same (x¼ 8.5 mm and y¼ 8.5 mm), have very different maximal
temperatures. The discrepancy between TC No. 26 in Figure 16.14 and TC No. 57 in Figure
16.17 is nearly 3008C. The first reason that can explain this error is drilling accuracy. Holes,
where thermocouple hot junctions are welded, can be realized with low depth differences,
and the very high thermal gradient induces this error. The second reason is the link to the
filler material; indeed, droplet configuration is globular and induces variations in melted
pool limits along the weld direction. As previously stated, measurements are implemented
into six plans spaced by 4 mm. Consequently, thermal field differences appear between
plan numbers 2 and 5.
These explanations are also valid for other cases, for example, TC No. 16 in Figure 16.16

and TC No. 45 in Figure 16.17, which are equidistant from the melted pool limit. They
observe different temperature amplitudes and have different evolutions throughout time.
It should be noted that holes are, respectively, parallel and perpendicular to isothermal
surfaces. Moreover, the temperature of perpendicular thermocouple increases more
quickly, and maximal thermal level is higher than that of the parallel thermocouple.
Nevertheless, the cooling of both is quite equivalent, which leads one to suppose another
cause. In fact, when the thermocouple hole is perpendicular to isothermal lines, this means
it is along the thermal flow direction. Thus, it blocks thermal diffusion in that direction,
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Hole locations on the back side of the sample ‘‘Base.’’
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which induces thermal accumulation on the hole head [11]. Conversely, when the hole is
parallel to isothermal surfaces, it is perpendicular to the flow, and heat diffusion is less
disturbed. Considering this effect, it is possible to understand previous differences, accu-
mulation makes observed temperatures higher and more quickly but there is no effect
during the cooling when the flow is reduced.
To check drill accuracy, real positions of hole heads are observed. For this, the workpiece

is cut along each measurement plan, polished, and chemically attacked. With these macro-
graphies and knowing the thickness of the Base and the Ame, it is possible to adjust
positions of measurements. For example, the two previous thermocouples with same
theoretical coordinates are in reality at TC No. 26 x¼ 8.2 mm, y¼ 8.4 mm and TC No. 57
x¼ 7.8 mm, y¼ 8.4 mm. Thus, in reality, the first thermocouple is less close to the melt zone
than the second, which explains the thermal difference.
Another phenomenon occurs during the welding and has probably disturbed the ther-

mal measurement. It is the displacement of the vertical part over the horizontal part of the
workpiece. Despite previous static spots made to seal samples together, the gap hassled by
the first transit is 300 mm in size, which is nearly half of a hole diameter. This displacement
implies the use of thermo-mechanical simulation and it becomes a more complex problem.
We assume that the thermocouple has moved with the vertical part, and thus relative
distances between the melted pool and the thermocouples are constant and can be
neglected.
In an inverse problem, it is important to compare equivalent measured and simulated

information, which is why simulated temperatures are extracted from the model at the real
coordinates.

16.3.5.3 Inverse Problem Results

The Levenberg–Marquardt algorithm has been implemented with the software
MATLAB1, and the direct problem is run on Comsol Multiphysic which uses the finite
elementmethod. It should be noted that estimated parameters are the concentration factor k,
the involution factor Kz, and the depth of source application ep. Other process parameters,
such as weld current and voltage, are known because they were measured during the
welding. Moreover, we note the acquisition parameters such as the step time 0.1 s, the
total acquisition time 240 s, and the weld speed 5 mm s�1. These values are used to
convert the time on third space dimension implemented on the simulation, thanks to the
quasi-steady-state assumption. Moreover, before estimation, the time lag observed in
Figures 16.16 and 16.17 had to be corrected thanks to the weld velocity and the instrumen-
tation line spacing.
Measurements are realized all along the welding period; it is thus necessary to choose the

best interval which allows for an efficient estimation. This time duration is chosen accord-
ing to sensitivity coefficients.
Figure 16.18 presents the sensitivity of the concentration factor along two measurement

lines: thefirst is TCNo. 15 located on x¼ 4mmand y¼ 0.018mmand the second is TCNo. 65
on x¼ 0.003 mm and y¼ 9.5 mm.
The concentration factor is a parameter that indicates thewidth of the heat sources (1) and (8)

and the two thermocouples—TC No. 15 and TC No. 65—are near and beneath the
melted zone, respectively. As previously stated, the melted pool shape is directly linked to
heat source function, and variation effects of the concentration factor can be seen near the
workpiece surface (Figure 16.18). For this reason, sensitivity is more important on TC No. 15
thanonTCNo. 65. The sameobservation could be realized for the involution factor,which also
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defines the shape of the heat source. Indeed, TC No. 65 is more sensitive to depth variations
and TC No. 15 does not observe any width variation (Figure 16.18). Abscissa is the number
of measurement points used for identification, the step time is 0.2 s with a weld speed of
5 mm s�1; thus the space measurement step used in estimation is 1 mm.
The selection of time (or third space dimension in the model) interval is realized using

curves such as that in Figure 16.16. The measurements used are those which have maximal
sensitivities and which do not create linear dependences. When measurements are too far
from the heat source, all sensitivities are very close to zero and linear dependences appear
in each case. As a consequence, it is necessary to keep only the more sensitive measurement
points. We have used 15 measurement lines with 30 points per line, which means 450
comparison points.
Results of identification are not satisfactory; the end criterion value is very high. More-

over, the melted zone limit obtained with estimated parameters does not correspond to
those observed on macrographs (Figure 16.19). Differences between the two shapes of weld
pool are by a majority located on the surface where the heat source is defined by the
concentration factor. In the depth of the material, the two shapes are close enough and the
algorithm does not seem to be able to enlarge the surface part without increasing depth
penetration. This fact leads to reviewing measured temperatures, which gives improper
information, and to reassessing effects of thermal accumulation previously cited.
To study thermal disturbances caused by thermocouples, we have to develop a new

analysis. Thermocouples were included in simulation, thus we will be able to calculate the
level of discrepancies.

16.3.6 Quantification of Thermocouple Disturbance

This work has two objectives: the first concerns quantification of thermal disturbances
caused by instrumentation in implementation configuration. Indeed, the theory of thermo-
couple measurement recommends that holes are drilled parallel to the isothermal surfaces,
but in our case the industrial requirements impose a perpendicular direction.

FIGURE 16.18
Sensitivity of concentration factor along
two thermocouples (dots, TC No. 65;
line, TC No. 15).
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The second is the comparison between different kinds of thermocouples and the deter-
mination of effects caused by their implementation. New simulation needs a new definition
of the mathematical problem, which is presented first, and then the two kinds of thermo-
couples are described; lastly, they are numerically implemented in several configurations.

16.3.6.1 New Mathematical Model

In the present work, thermocouples are simulated with workpiece geometry. As a conse-
quence, the previous assumption concerning quasi-steady state is no longer usable. Indeed,
quasi-steady state is obtained when the thermal field is, in each time step, the same for a
referential located on heat source axis, which is not realistic when the thermocouple is in
the workpiece.
Thus, the solved equation is still the heat conduction equation but now in transient

analysis:

r(T) cp(T)
qT
qt
¼ q

qx
l(T)

qT
qx

� �
þ q
qy

l(T)
qT
qy

� �
þ q
qz

l(T)
qT
qz

� �
þ S(x, y, z, t): (16:26)

It is interesting to note that the heat source term is presently a time function and is defined
in the following equation:

S(x, y, z) ¼ kKzhUI
p(1� exp (�Kzep))

exp �k(v2 þ (z� vt)2)� Kzw
� �

* [1� u(w� ep)]: (16:27)
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This expression allows a heat flow shape like previously but it travels across the
workpiece along the z-axis. Parameters k, Kz, and ep are not a well-known cause of the
failure of the inverse problem. As a consequence, tests have to be realized to set them at
coherent values.
Only one boundary condition is modified, the one named A in Figure 16.9. We take in

this boundary an adiabatic condition. These adiabatic conditions (Figure 16.20) are also no
longer valid because now the heat source is not sufficiently far from them, (at ‘‘the
beginning’’ and at ‘‘the end’’). However, they are kept because thermocouple temperatures
are not disturbed by them. On all thermocouple boundaries, convective and radiative heat
losses are assumed and defined as Equation 16.21.
Other simulation parameters are kept, only thermocouple geometry has been introduced

into the workpiece and will be explained in the next part.
As shown in Figure 16.20, the filler material is now ever present all along the workpiece.

The longitudinal shape of the fused zone is thus different than the real case. But, for this
analysis, we do not try to simulate the perfect weld pool shape, and an approximation with
coherent thermal levels is sufficient.

16.3.6.2 Thermocouple Simulations

The origin of this study is the collaboration with the industrial company. As the time
needed to implement laboratory instrumentation is very important, it could be interesting
to observe effects caused, on the thermal field, by the use of industrial thermocouples. An
experimental investigation could be realized but, as we have previously said, it is very
difficult to install two thermocouples at the same coordinates. Therefore, this analysis is
performed using numerical simulations.
Laboratory thermocouples are those described in ‘‘Instrumentation implementation.’’

Made by ourselves, thermocouples are only composed of the hot junction and the two
wires. Materials used are nickel chromium–nickel alloy (type K), mean thermal properties
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of which are noted in Table 16.2. The hot junction is assumed to be an ellipsoid with
320 mm for high diameter and 240 mm for short diameter, wires are 54 mm in diameter, and
the hole is 650 mm in diameter (Figure 16.21-1).
The industrial thermocouple is also constituted of hot junction and wires but it is

sheathed with stainless steel AISI 304L (Figure 16.21-2). The sheath is 250 mm in diameter,
the hot junction is a 240 mm diameter sphere, and wire holes are the same as before. This
thermocouple is selected so as to have an equivalent geometry to a laboratory thermo-
couple.
Geometry characteristics of laboratory thermocouples are observed on macrographies

(Figure 16.21-3) and some features, such as size of contact surface, are measured on
pictures realized by scanning electron microscope (SEM). Industrial thermocouple
geometry is created using some information found in the manufacturer documentation:
Thermocoax.
The numerical design of thermal contact between laboratory thermocouples and the

workpiece is assumed to be perfect (welded). In the industrial case, the thermocouple is
assumed to be put down to the bottom of the hole. This implementation is much faster than
that in the laboratory case but induces bad contact quality. This quality is assumed to be
symbolized by thermal contact resistance Rc.
It should be noted that the numerical implementation of thermocouples induces an

important increase in the number of freedom degrees we have to solve; thus, it is impos-
sible to simulate all of them at once. Moreover, it seems to be obvious that thermal
disturbance will increase with thermal gradient; therefore, only TC No. 45 (Figure 16.10),

TABLE 16.2

Thermal Properties

Material l (W m�1 K�1) cp (J kg�1 K�1) r (kg m�3)

TC 25 445 8600

Sheath (AISI 304L) 15 470 7800

(2)(1)

a

a

b

c
c

d

e
e

(3)

FIGURE 16.21
Geometries for (1) laboratory thermocouple, (2) industrial thermocouple, and (3) comparison between simulation
and macrograph (a, hole; b, wires; c, hot junctions; d, sheath material; and e, workpiece).
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located on x¼ 2.5 mm and y¼ 12.5 mm is examined. Relevance of the latter is its high
temperature level (near 11008C) and its implementation ease for each configuration.

16.3.6.3 Numerical Tests and Results

An objective of this work is the understanding of inverse problem failure and the obser-
vation of effects caused by instrumentation quality. As a consequence, the first test deals
with implementation orientation, and the second compares results of the industrial and
laboratory thermocouples.
As said in the previous section, the TC No. 45 is interesting because its location allows for

different directions of implementation. Moreover, it is the one that poses problem in the
‘‘Measurements Results’’ (Section 16.3.5.2). The maximal temperature observed by this TC
seems to be overestimated regarding an equivalent measurement implemented parallel to
isothermal surfaces. The method to confirm this point is to simulate two cases: one with
real thermocouple implementation, which is perpendicular to isothermal surfaces, and
another at the same coordinates but implemented parallel to isothermal surfaces.
For the second analysis, thermocouple evacuation is fixed along the heat flow, which

corresponds to the previous second simulation. The bottom of the hole is also positioned at
the same coordinates and the contact area is assumed to be maximal. In this case, four
values of thermal contact resistances are set: RC1¼ 1	 10�4 K m2 W�1, RC2¼ 1	 10�5

K m2 W�1, RC3¼ 1	 10�6 K m2 W�1, and RC4¼ 1	 10�7 K m2 W�1, where the first is a
bad contact and the last is a good contact.
Results in Figure 16.22 are temperatures observed in hot junction between the two

thermocouple wires. These temperature values are then compared with values taken in
even coordinates but without influence of thermocouples.
Concerning the first analysis, observation of discrepancy caused by thermocouple imple-

mentation, Figure 16.22 clearly shows thermal accumulation on the thermocouple head.
The perpendicular TC starts to overestimate temperatures near t¼ 5 s and give again good
values near t¼ 8 s, whereas parallel TC observations are merged with referential during
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FIGURE 16.22
Thermal measurements.
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the entire time. This time interval corresponds with the one which is selected for the inverse
problem, in other words, when sensitivity coefficients are maximal. Nevertheless, the time
delay induced by the diffusion inside the parallel thermocouple induces discrepancy
(Figure 16.23) but the time in which it occurs is outside the one used for estimation.
In the experimental case, not all thermocouples are along heat flow; therefore, some

temperatures are overestimated and others not. These observations explain why estimation
has failed. In fact, algorithms try to reduce the criterion defined as the difference between
measured and estimated temperatures by varying parameters. But when temperatures are
disturbed and not disturbed, the parameters are different, which leads to previous criterion
stagnation with false heat source function.
The second analysis gives information concerning effects of measurement context,

industrial or laboratory, and also with regard to implementation quality. In a first time,
the worst contact, when RC¼ 1	 10�4 K m2 W�1, induces an important misjudgment of
temperatures. The measurement discrepancy of the maximal temperature is higher than
3008C and with nearly 1.1 s delay. These two values lead to understanding temperature
discrepancies in ‘‘Thermal measurements results,’’ when two measurements at the same
coordinates give different thermal evolutions. The time delay (Figures 16.16 and 16.17)
between maximal temperature of TC No. 26 and TC No. 57 is about 3.6 s, in which a part
results from plan spacing. There is 12 mm between plan nos. 2 and 5 (Figure 16.15) and the
speed is 5 mm s�1; thus the delay should be 2.4 s, but it remains 1.2 s. Thus it is possible to
conclude that contact quality of TC No. 26 is not perfect. Moreover, its heating and cooling
rates are too low according to TC No. 25 which is closer to the melted zone (observed on
macrographies); this can be explained by diffusion difficulties to go through contact
resistance. The curve with RC¼ 1	 10�5 K m2 W�1 shows the same results concerning
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Thermal discrepancies.
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maximal value and time delay but with less perturbation. When RC¼ 1	 10�6 K m2 W�1

and RC¼ 1	 10�7 K m2 W�1, the effects of contact resistance are negligible and informa-
tion is close to reference. Industrial thermocouples are thus able to measure true temper-
atures, but the contact quality must be very good by using, for example, heat-sink grease.
The industrial thermocouple is perpendicular to isothermal surfaces, but the ones with

best contact do not have overestimated temperatures. Indeed, the important diameter of
sheath material (304L) allows for heat evacuation along the thermocouple and helps avoid
heat accumulation.

16.4 Conclusions

In this chapter, we have observed effects on the thermal field of disturbances caused by
intrusive instrumentation. We have carried out this study because of the failure of the
equivalent heat source estimation for the case of ‘‘T’’ welding. Despite several assump-
tions, our direct problem has been confirmed thanks to macrographies. However, this
validation is not significant because it compares a simulated fused zone to a maximal weld
pool size observed on the transversal plan. This led us to apply an inverse method which
makes 3D temperature comparisons. But theoretical estimations were made before the
implementation of the experimental case. This is for two reasons: first, sensitivity ampli-
tudes and independences have been checked, and, second, an artificial measurement noise
has been added to theoretical temperature acquisition, in order to check the estimation
capacity without a perfect signal. The results in these two cases have been very satisfactory,
so we have validated thermocouple location and defined an a priori instrumentation.
Nevertheless, the inverse problem with real information has failed, and thus after

experimental result analysis, thermal measurement has been selected as the most import-
ant origin of disturbances. Consequently, to observe thermocouple effects, we have
chosen to simulate two kinds of them: first, with laboratory shape and second, with
industrial characteristics. Moreover, two implementation methods have been studied: the
first respects the thermocouple measurement theory by being inserted parallel to isother-
mal surfaces and the second is our experimental case, imposed by industrial requirement,
in which the hole is made perpendicular to isotherms. Results of this analysis are very
interesting and help explain our experimental errors. We have shown that a laboratory
thermocouple inserted along the thermal flow direction stops the diffusion and induces
a thermal accumulation at the end of the hole where the measurement is made. Con-
versely, when it is perpendicular to the flow, the thermocouple has a temperature that
is very close to that of the true value. The link between this cause of error and experi-
mental temperature discrepancies is thus made. Afterward, we have tried to simulate the
industrial thermocouple, those with sheath. In this case, perfect contact conditions are
difficult to obtain, so a thermal contact resistance has been assumed. Also in this part,
simulation has explained some experimental errors; for example, discrepancies between
two thermocouples at the same coordinates could result from the bad contact of one over
the workpiece.
Finally, this instrumentation simulation has shown why an inverse problem, with a

nonoptimal experimental implementation, does not find satisfactory results. So it is pos-
sible to define an implementation method which limits temperature disturbances but
increases estimation sensitivities.
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Measurements had to be realized

. All around the weld pool

. As close as possible to the fused zone

. In such a way as to observe thermal gradient (e.g., along two lines)

. In holes drilled perpendicular to the heat flow

. With the best contact quality

But when this recommendation cannot be applied, two solutions exist. The first is the use
of a direct problem which simulates the whole instrumentation inside the workpiece. In
this case, the shape of thermocouples induces a very thin mesh and a too important
number of meshes. The second is the development of an error model that can be applied
to direct problem measurements.

Nomenclature

a, b, cf, cr radii of heat source
cp heat capacity
eg global estimation error
e1, . . . , e5 types of estimation error
ep depth source application
E expected value
fl fr double ellipsoid front and rear factor
h, hcv, he, hr heat transfer coefficients
I process current
J sensitivity matrix
k concentration factor
Kz involution factor
~n normal vector
n iteration step
P estimated parameter
rc contact resistance in thermal measurement
re thermal resistance of transfer on wires
rm macro-constriction resistance
RC1, RC4 contact resistance simulated
S(x, y, z) heat source
S(n) quadratic error
T temperature
T1 ambient temperature used in simulation
Te environment temperature
Tp surface temperature with thermocouple
Tc temperature measured par thermocouple
TC No. . . . identification of thermocouple
u(� � �) Heaviside function
U process voltage
v process velocity
Y measured temperatures
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Greek Symbols

dT thermal measurement error
e random noise
e measure error
e emissivity
ev variation step of parameter
h process efficiency
l thermal conductivity
ln damping factor
le thermal conductivity of TC wire
r density
s statistical deviation
s Stefan–Boltzman constant
F heat flux
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17.1 Introduction

In a thermal characterization experiment, the studied material is stimulated through a
steady or transient heat excitation and temperature measurements are compared to a
corresponding pertinent model in order to estimate its thermophysical properties. In
such an experiment, it is often necessary to set temperature sensors (thermocouples,
platinum resistances, etc.) not only at the surface of the sample but also inside the material.
It is usually assumed that measurement noise only affects the temperature signal given

by the sensors.
This corresponds to the case where the location of each of these sensors, for example, the

hot junction in the case of a thermocouple, is known with a high enough precision that
allows neglecting the effect of the location error on the values of the estimated parameters
(thermal diffusivity, specific heat, conductivity, contact resistance, heat transfer coefficient,
etc.). The interested reader can refer to Chapter 7, where classical estimation methods
based on this assumption are presented.
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If the previous assumption is not fulfilled, a sensitivity study allows the calculation of the
bias, namely, the systematic error on each parameter resulting from a given level of the
error on the sensor location. This point is studied in Chapter 9. However, such an
assessment of the estimation bias requires knowledge of the location error, which is not
known precisely, that is, in a deterministic sense.
Another way to take this location error into account is to measure the exact location of the

temperature sensors through a destruction of the sample, once the thermal characterization
experiment has been completed. This type of destructive technique can be implemented, for
example, for thehot junction of a thermocouple that hasbeen embedded into a resin (polymer
sample) or stuck to the bottom of a hole drilled inside the material (metallic sample).
However, situations exist where this type of technique is not possible anymore: friable

porous material, textile, nonconsolidated granular medium, etc.
We will illustrate here how this uncertainty on the exact positions of the sensors can be

adequately accounted for by the implementation of a modified least squares minimization
technique that can be considered either as a total least square estimation or as Bayesian
estimation. This last type of estimation is studied in Chapter 12.

17.2 The Linear Model of a Straight Line

Let us consider a model whose output h, temperature, for example, varies linearly with the
considered location t:

h ¼ h(t;b) ¼ b1 þ b2t (17:1)

The notation used in Beck and Arnold (1977) is chosen here: h and t are the dependent and
the independent variables, respectively, and b1 and b2 are the two parameters. It is first
assumed that experimentally noised data (measurements) yi are available for locations
ti (i¼ 1 to n)

yi ¼ h(ti;b)þ ei (17:2)

where
b¼ [b1 b2]

t is the parameter vector
ei is an uncorrelated and unbiased noise of constant standard deviation s, which can be

expressed (using Kronecker’s symbol dij) as

E(ei) ¼ 0 and E(ei ej) ¼ s2dij (17:3)

17.2.1 Case of Known Exact Locations

If the exact locations ti are known, the best estimation technique consists in minimizing the
ordinary least squares sum

Sy(b1,b2) ¼ (y� Xb)t(y� Xb) ¼
Xm
i¼1

[yi � h(ti;b)]2 (17:4)
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where y is the measured temperatures vector

y ¼ y1 y2 � � � ym½ �t (17:5)

and where X ¼ X1(t;b) X2(t;b)½ � is the sensitivity matrix, the column of which are the
sensitivity vectors X j of model h to the parameters bj (for j¼ 1–2).
The coefficients of this sensitivity matrix are the sensitivity coefficients Xij that are the

values of the sensitivity functions Xj evaluated for the m discrete values ti:

Xij ¼ Xj(ti;b) ¼ [X j]i ¼
qh(ti;b)

qbj
(17:6)

Vector t ¼ t1 t2 � � � tm½ �t is the column vector composed of the values ti of the
independent variable t (the locations of the measurements) for which the temperatures
have been measured.
For the straight line model (17.1) corresponding to the least square sum given by (17.4),

the sensitivity matrix is

X ¼ 1 1 . . . : 1
t1 t2 . . . : tm

� �t
(17:7)

In this case, the locations are known and the solution is explicit (see Chapter 7):

b̂ ¼ (XtX)�1Xty (17:8)

The notation ‘‘^’’ (hat) is used here to designate the estimator (or the estimated value), in
the statistical sense, of a parameter. This solution can also be written as

b̂2 ¼
sty
s2t

(17:9a)

b̂1 ¼ �y� b̂2�t (17:9b)

The preceding solution involves the mean values of both measurement locations and
measured temperatures

�t ¼ 1
m

Xm
i¼1

ti and �y ¼ 1
m

Xm
i¼1

yi (17:10)

as well as the statistical variance of the locations (a measure of their dispersion)

s2t ¼
1
m

Xm
i¼1

t2i � �t2 (17:11)

and the statistical covariance between signal and location of measurement

sty ¼ 1
m

Xm
i¼1

tiyi � �t�y (17:12)
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The covariance matrix of the estimation error on parameters bj can be calculated then (Beck
and Arnold 1977)

cov(b̂) ¼ s2(XtX)�1 ¼ s2
1 r12s1s2

r12s1s2 s2
2

" #
(17:13)

where s1 and s2 are the standard deviations of estimators b̂1 and b̂2, respectively

s1 ¼ sffiffiffiffi
m
p 1þ

�t 2

s2t

� �1=2

and s2 ¼ s

st
ffiffiffiffi
m
p (17:14)

and r12 is their correlation coefficient

r12 ¼ �
1

(1þ�t2=s2t)
1=2 (17:15)

17.2.2 Case of Unknown Exact Locations

If no information is available on the exact locations ti, the first idea would be to incorporate
these unknowns into a new augmented parameter vector a ¼ [bttt]t ¼ [b1 b2 t1 t2 . . . tm]t,
the new matrix for the sensitivity coefficients becoming

Xa ¼
1 t1 b2 0 . . . 0
1 t2 0 b2 0 0
..
. ..

.
0 . .

. ..
.

1 tm 0 . . . 0 b2

26664
37775 (17:16)

However, one can easily show that the sensitivity vectors Xaj (the column vectors of matrix
Xa) are linearly dependent:

�b2Xa1 þ 0Xa2 þ
Xm
j¼1

Xa(jþ2) ¼ 0 (17:17)

so that it is impossible to estimate b1 and b2 without any information on the exact locations
ti. In fact, this impossibility of estimating both the n parameters (here n¼ 2) and the m
locations holds for any model since the number of data (the mmeasurements) is lower than
the number of unknowns (nþm).

17.2.3 Case of Uncertain Exact Locations

In most practical cases, only approximate values ti of the exact locations ti are available:
these values are the nominal locations of the sensors that the experimenter tries to respect
when the sensors are embedded in the material. It is therefore possible to write

ti ¼ ti þ di (17:18)
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where di is an uncorrelated and unbiased noise of standard deviation s0 with

E(di) ¼ 0 and E(didj) ¼ s02dij (17:19)

Often, one may interpret the nominal locations ti as design quantities (deterministic
quantities) that are used by the experimentalist as setpoints in the control of the true
locations ti during the embedding operation. Then, the true locations ti ¼ ti � di have to
be considered as stochastic quantities.
One further assumes that the error on the locations of the sensors di is not correlated with

the error on temperature ej:

E(di ej) ¼ 0 (17:20)

In this new light, two kinds of ‘‘measurements’’ are now available, yi and ti, and two kinds
of parameters are looked for, the initial parameters b1 and b2 and, additionally, the
unknown locations ti.
The location can therefore be considered at the same time as a noiseless deterministic

‘‘pseudo-signal’’ (ti) and as stochastic unknown parameters (ti).
In order to get estimations of all unknown parameters, b̂j and the t̂i, two types of

residuals (temperature and location) have to be considered within a minimization process.
Since such residuals are not expressed in the same units, they have to be normalized by the
two standard deviations s and s0. The sum that can be minimized with respect to
parameter vector a becomes

S(b, t) ¼
Xm
i¼1

yi � h(ti;b)
s

� �2

þ
Xm
i¼1

(ti � ti)
s0

� �2

¼ 1
s2 Sy(b, t)þ

1
s02

St (17:21)

or, in a vector and matrix form

S(b, t) ¼ 1
s2 (y� X(t)b)t(y� X(t)b)þ 1

s02
(t � t)t(t � t) (17:22)

Minimization of this sum leads to an estimation problem that is not linear any more. This
corresponds to a total least squares problem (see Van Huffel and Lemmerling [2002]). The
estimators of b and t are the solutions of the following system of equations

rbSy(b̂, t̂) ¼ 0 (17:23a)

rtSy(b̂, t̂)þ 1
Q
rtSt(t̂) ¼ 0 with Q ¼ s0

s

� �2
(17:23b)

The solution of Equation 17.23b provides the estimator of t as a function of the estimator
of b:

t̂i ¼ ti þQ(yi � b̂1)b̂2

1þQb̂2
2

(17:24)
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It is interesting to notice here that Equation 17.24, for an error-free knowledge of locations
t (Q¼ 0), leads to its exact value t̂ ¼ t (whatever the error on y). Conversely, if there is no
information on t (Q!1) or if measurements y are exact (with the same consequence:
Q!1), we obtain yi ¼ b̂1 þ b̂2t̂i. This means that for each of these two extreme cases,
either of the two terms Sy and St of the least square sum S—Equation 17.21—is equal to
zero. Even if it is not a function that has to be estimated, coefficient Q (or its inverse)
behaves as a Tikhonov’s regularization coefficient of order zero. Equation 17.22a provides
the classical linear estimator of b in terms of t̂:

b̂ ¼ (Xt(t̂)X(t̂))�1Xt(t̂)y (17:25)

Substituting t̂i given by Equation 17.24 into Equation 17.25 provides the estimation of the
two remaining parameters

b̂1 ¼ �y� b̂2
�t (17:26a)

b̂2
2 � 2Zb̂2 �

1
Q
¼ 0 with Z ¼ Qs2y � s2t

2Qsty
(17:26b)

and

s2y ¼
1
m

Xm
i¼1

y2i � �y2 (17:26c)

where
The upper bar designates the statistical mean
s2y and s2t are the statistical variances of y and t, respectively
sty is the statistical covariance of t and y

See Equations 17.10 through 17.12 and 17.26c for the definition of these coefficients.
Equation 17.26b has two solutions of opposite signs. The correct solution can be discrim-
inated using the sign of the linear correlation coefficient r between t and y:

b̂2 ¼ Zþ s Z2 þ 1
Q

� �1=2

with r ¼ sty
stsy

and s ¼ r
jrj (17:27)

If s0 tends to zero (i.e., t ! t and Q ! 0), b̂2 and b̂1 approach the classical ordinary least
squares estimator (17.8). If it is s that tends to zero (i.e., y! h and Q!1), the same holds
for interchanged dependent and independent variables and the model can be rewritten as

t ¼ �b1

b2
þ 1

b2

� �
h (17:28)

This means that the nonlinear estimator given by Equations 17.24, 17.26a, and 17.27 is only
a generalization of the ordinary least squares estimator (17.8). It is called by various names:
estimator of the error in variables model, orthogonal regression least square estimator, and total
least squares estimator. Bibliographic information about this type of estimator can be found
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in Van Huffel and Lemmerling (2002), Fuller (1987), Seber andWild (1988), Cheng and Van
Ness (1999), and Emery (2001).
An estimation example is shown in Figures 17.1 and 17.2, for m¼ 20 locations that are

uniformly distributed between 1 and 20, in the following case: b1¼ 1 K,b2¼ 1 Km�1, s¼ 3 K,
and s0 ¼ 3 m. Noised variables t and y have been generated by use of Equations 17.2
and 17.18—thanks to a stochastic number generator for e for d.

FIGURE 17.1
Estimation example (S minimization).
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FIGURE 17.2
Estimation example (S minimization)—
results for the location variable.
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In this quite extreme case (strong noise on both t and y, relatively low number of
measurement points), the linear estimator (17.8) provides, with t¼ t, the estimation
(3.79; 0.765) for the (b1, b2) pair whereas the nonlinear estimator (17.26) and (17.27)
provides the better estimation (3.04; 0.837) that is closer to the true value (1; 1).

17.3 Bias and Variance of the Nonlinear Estimator

The â ¼ [b̂t, t̂t]t estimator is biased because it does not correspond to a linear combination
of the data (yi and ti). This means that its stochastic mean (its expectation) a priori differs
from its exact value:

E(â) 6¼ a (17:29)

It is possible to calculate (see Maillet et al. [2003]) approximated values of biases
bj ¼ E(b̂j)� bj and standard deviations sj of the estimators of the two parameters bj:

b2 
 b2=m

(st=s0)2
(17:30a)

b1 
 ��t b2=m

(st=s0)2
(17:30b)

s2 
 1ffiffiffiffi
m
p b2

2 þ 1=Q
� �1=2

st=s0
(17:30c)

s1 
 sffiffiffiffi
m
p 1þQb2

2

� �1=2
1þ �t2

s2t

� �1=2

(17:30d)

These approximations have been derived in the case s=sh¼s=(b2st)< 1 and s0=st< 1.
An important factor in these indicators of the quality of the nonlinear estimation is the

‘‘signal-over-noise’’ ratio (st=s0) of the (deterministic) distribution of the location of
measurement (the independent variable). In the example that is presented in Figures
17.1 and 17.2, this ratio is close to 2 and the experimental locations t (nominal locations)
do not constitute a monotonically increasing function of the exact locations—see Figure
17.2: this explains why the ordering of the estimated locations visible in this figure is
nearly blurred.
The preceding equations show that when the number m of measurement points is

increased, the biases of the estimators decrease as 1=m while their standard deviation
decreases as 1=m1=2. This means that for most situations met in practice, the bias over
standard deviation ratio (bj=sj) remains low, if a high enough number of measurements are
available.
At last, since in this very particular nonlinear case (the straight line), the theoretical bias

is known, it is possible to derive an unbiased corrected estimator: b̂jcor ¼ b̂j � bj. The
properties of this unbiased estimator can be verified through a great number of Monte
Carlo simulations of inversions (see Maillet et al. [2003]).
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17.4 Effect of Uncertainty in the Statistical Properties of the Two Sources
of Noise: Regularization of the Estimation

In practice, when one tries to implement the nonlinear estimator given by Equations 17.26
and 17.27, which accounts for both errors of measured temperature and of nominal
locations, the variance ratio Q¼ (s0=s)2 or q¼ (s=s0)2 is rarely known.
Usually, only an order of magnitude of the standard deviation s0 on the locations can be

evaluated.
In order to test the sensitivity of the estimators to this effect, Monte Carlo simulations

have been achieved for the following values: b1¼ 1 K, b2 ¼ 100 K m�1, s¼ 3 K, s0 ¼ 3 m,
and m¼ 20 points (with Qexact¼ (s0=s)2¼ 1 m2 K�2).
For each value of the Q ratio, N¼ 10,000 inversions are made, each inversion number k

resulting from the 20 (tki , y
k
i ) data coming from the exact locations and model output

(ti, hi¼b1þb2ti) that have been noised (tki ¼ ti þ dki ; y
k
i ¼ hi þ eki ) using a random number

generator for di and ei. Each inversion k provides an estimation b̂k
1, b̂

k
2, t̂

k
1, t̂

k
2, . . . , t̂

k
n

� �
. The

statistical mean and standard deviation of the estimates of each parameter are calculated as

�̂
bj ¼

1
N

XN
k¼1

b̂k
j ; sb̂j

¼ 1
N

XN
k¼1

b̂k
j

� 	2
� �̂

bj

� 	2 !1=2

(17:31)

They are plotted versus the Q hyperparameter in Figures 17.3 through 17.6. The corre-
sponding means and standard deviations resulting from the linear estimator (see Equation
17.8) are also plotted in the same figures.
It is interesting to note that the mean estimated values depend only very weakly on this

parameter as soon as it has reached a high enough level (Q=Qexact> 10�2). The bias of the
nonlinear estimator remains low and does not deteriorate too much the dispersion of
the estimations when compared to the linear model estimations.

FIGURE 17.3
Monte Carlo inversions—b2 estimation—
mean value.
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17.5 Characterization of Thermal Dispersion in a Granular Medium

17.5.1 Direct Problem and Experimental Setup

Thermal dispersion, that is, heat transfer in a porous medium through which a fluid is
flowing, occurs in many natural situations or industrial applications. In the case of process
engineering, modeling of this phenomenon is very important for controlling temperature in
granular catalyst beds, since chemical conversion and=or catalyst lifetime strongly depend
on temperature. Thermal dispersion in a porous model is a complex phenomenon, resulting
from conduction in the solid phase and convection and conduction in the moving fluid.

FIGURE 17.4
Monte Carlo inversions—b2 estimation—
standard deviation.
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FIGURE 17.5
Monte Carlo inversions—b1 estimation—
mean value.

0

Q/Qexact = qexact/q

50

M
ea

n 
va

lu
e o

f t
he

 es
tim

at
io

ns
 o

f β
1

100

150

200

250

–50
10–10 10–5 100 105 1010

Linear estimator

10,000 simulated inversions
for each Q value

Exact value

Nonlinear estimator

608 Thermal Measurements and Inverse Techniques

  



The simplest homogeneous model that can be used in such a situation is based on a local
mean temperature that is an average between the local solid and fluid temperatures with a
weighting according to their respective heat capacities (see Moyne et al. [2000]). This
reduced model requires the definition of a thermal dispersion tensor, the coefficients of
which can be considered as pseudo-conductivities that depend on the local Darcy (or
filtration=superficial) velocity.
Metzger et al. (2003, 2004) have shown experimentally that this model could be used

in the case of water flowing through a bed of glass beads. They estimated the depend-
ence of the longitudinal thermal dispersion coefficient on the reduced Darcy’s velocity (the
Péclet number). In the water=glass beads case, they could only yield rough estimates of
the transverse dispersion coefficient. Testu et al. (2007) used the same setup for air flow
through the same bed of glass beads to estimate the corresponding dispersion coefficients.
We will focus here on the estimation technique and the interested reader can refer to

Moyne et al. (2000), Metzger et al. (2003, 2004), Testu et al. (2007), and Maillet et al. (2009)
for more physical insight.
We consider a fixed granular bed as shown in Figure 17.7 through which a fluid flows

downward with a uniform Darcy velocity u. The incoming fluid has constant temperature
T0 and, initially, the whole bed is at the same uniform temperature. An electric heating wire
is set along the z-axis (normal to the xy plane of the figure and located at its origin
x¼ y¼ 0). It dissipates heat with a power step of line power intensity Q (W m�1) at time
t¼ 0. The medium is treated as infinite and the temperature response to this excitation
DT ¼ T � T0 tends to zero at large distances from the source.
The one-temperature model dispersion heat equation (Moyne et al. 2000) can be

written as

rct
qT
qt
¼ lx

q2T
qx2
þ ly

q2T
qy2
� rcf u

qT
qx
þ s (17:32)

FIGURE 17.6
Monte Carlo inversions—b1 estimation—
standard deviation.
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Its solution, for a volumetric heat source s ¼ Qd(x)d(y)H(t), where d(�) is the Dirac distri-
bution and H(�) is the Heaviside function, can be calculated using two-dimensional Green’s
function:

DT(x, y, t) ¼ Q
4p

ffiffiffiffiffiffiffiffiffiffi
lxly

p exp
rcf ux
2lx

� � ð(rcf u)
2 t

4rctlx

0

exp � x2

lx
þ y2

ly

� �
(rcf u)

2

16lx

1
u
� u

 !
du
u

(17:33)

Here, the total volumetric heat rct of the medium is given by a mixing law based on the
volumetric heat of both phases

rct ¼ ef rcf þ (1� ef )rcs (17:34)

where ef is the void volume fraction of the granular medium (porosity). In Equations 17.32
and 17.33, lx and ly are the longitudinal and transverse thermal dispersion coefficients,
respectively. The integral (with dimensionless integration variable u) can be calculated by
numerical quadrature.
The experimental fixed bed (see Figure 17.7) comprises monodisperse glass beads of

diameter d¼ 2 mm and has a porosity ef¼ 0.365. Either water or air can flow downward
through it. Table 17.1 gives the thermal properties of the respective phases. The initial
bench (Metzger et al. 2004), designed for water flow, has been modified for a gas flow
(Testu et al. 2007). Then, a fan is located in a cylindrical duct downstream the setup. It
aspires air from a large volume room upstream the lab through a second upstream
cylindrical duct. This design ensures a quasi-constant temperature for the inlet air.

FIGURE 17.7
Dimensions of the granular medium and locations of thermocouples.
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The heating wire is perpendicular to the air flow. Thirteen thermocouples of type E and
of 127 mm diameter set parallel to the wire and located mainly downstream the heating
wire measure the temperature response of the medium to the power step. Thermocouples
12 and 13 allow to check the constancy of inlet temperature whereas thermocouples 8 and
11 allow verifying that the heated zone does not reach the wall and that the assumption
of an infinite medium is valid. The fluid velocity is measured, in the case of water, by a
gear flow meter or, in the case of air, by a hot wire anemometer in the downstream
cylindrical duct.
The heating level Q is chosen in order not to modify the thermophysical properties of

both the fluid and solid (maximum temperature rise on the order of 1 K). Measurements
have been made for Péclet numbers (Pe¼ rcf ud=lf) from 10 to 70 in the case of air flow,
which corresponds to maximum filtration velocities close to 0.7 m s�1. For water flow, the
Péclet number varies between 10 and 130, with maximum filtration velocities on the order
of 7 mm s�1.
Theoretical temperature variations with time—see Equation 17.33—are plotted in Figure

17.8 for three downstream locations (water flow, u¼ 6.55 mm s�1, lx¼ 60 W m�1 K�1,
ly¼ 3 W m�1 K�1, and Q ¼ 300 W m�1).

17.5.2 Sensitivity Study

As already indicated in Section 17.1, it is impossible to know the exact locations of the
13 thermocouples since they have been installed before filling the experimental volume

TABLE 17.1

Thermal Properties of the Two Phases
of the Granular Medium

Water Air Glass

rc (KJ m�3) 4170 1.2 2080

l (W m�1 K�1) 0.607 0.026 1

FIGURE 17.8
Thermal responses at three different loca-
tions (water flow).
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with glass beads, which caused a displacement of the hot junctions of the thermocouples
(in the z¼ 0 plane). This means that their exact locations (xi, yi) differ from their nominal
locations (xnomi , ynomi ). As a consequence, the unknown parameters that have to be esti-
mated by inversion of the temperature measurements are not only lx, ly, and u, which can
be put in a parameter vector b¼ [lx, ly, u]

t but also the exact locations (xi, yi) of the NTc
thermocouples. We are therefore trying to estimate the augmented parameter vector
a ¼ lx ly u (xi, yi)i¼1,NTc


 �t.
It is thus necessary to study the behavior of the sensitivity coefficients Xaj, which are

the partial derivative of temperature T with respect to each parameter aj ( j¼ 1�5):
Xaj ¼ qT

qaj
.

The reduced sensitivity coefficients ajXaj are plotted in Figure 17.9 for temperature at
exact location (x¼ 4 cm; y¼ 0.25 cm), for the same conditions as in Figure 17.8 (water flow).
The two sensitivity coefficients to location, Xx and Xy, have been normalized by multipli-
cation by a length L¼ 1 cm, in order to give them the same unit (K) as the other reduced
sensitivities. It is very clear that, at this location, the sensitivities of temperature to velocity
u and y location (divided by 3 in Figure 17.9) are the highest. But one can notice that
sensitivities to ly and y are almost proportional. The same is true for sensitivities to u and x
(for short times, which bear the majority of the information on the different parameters).
This means that, without any information on the exact location of the thermocouples, it will
not be possible to estimate the b parameters. The same holds if more than one thermo-
couple is used for inversion because of the addition of new location parameters.

17.5.3 Parameter Estimation Technique

The most classical parameter estimation technique relies on the minimization of the
ordinary least squares sum

ST(b) ¼
XNTc

i¼1

XNt

k¼1
(Texp, ik � T(xi, yi, tk,b))

2 (17:35)

FIGURE 17.9
Variation of temperature and sensitivity
coefficients with time for thermocouple
located at x¼ 4 cm and y¼ 0.25 cm
(water flow).
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where
Texp, ik is the temperature measured at the location (xi, yi) of the ith thermocouple at

time tk
T(xi, yi, tk,b) is the corresponding theoretical temperature given by solution 17.33 of the

direct problem, which depends on the different parameters to be estimated

If the exact locations of the thermocouples are known, it is possible to estimate the two
dispersion coefficients as well as the filtration velocity, that is, b¼ [lx, ly, u]

t.
With the assumption of a normal independent and identically distributed noise (at

different times and locations) of standard deviation s, the opposite of ST=(2s2) is equal
to the logarithm of the joint probability distribution of these temperature measurements
(within an additive constant). Minimizing ST with respect to parameters bj (for fixed
measurements) corresponds to a maximization of this logarithm (ST=(2s2) and hence ST),
which is also called log-likelihood. The resulting estimator b̂ is called maximum likelihood
estimator. If the normality hypothesis is relaxed from the above assumptions and, more-
over, if one assumes the model to be linear (with respect to the parameters), which can
always be verified on a local incremental basis, minimization of ST yields the minimum
variance estimator: this is the linear estimator (17.8) that is characterized by the lowest
variances of all its components (see Beck and Arnold [1977]).
In practice, the exact locations of the thermocouples are not known and it is necessary to

estimate not only lx, ly, and u but also the unknown locations (xi, yi).
In order to estimate the new parameter vector a¼ [lx, ly, u, (xi, yi)i¼ 1, NTc]

t, the prior
knowledge of these nominal locations is incorporated in the new objective function:

S(a) ¼ 1
s2
T

XNTc

i¼1

XNt

k¼1
(Texp, ik � Tik(a))

2 þ 1
s2
loc

XNTc

i¼1
xnomi � xi
� �2 þ 1

s2
loc

XNTc

i¼1
ynomi � yi
� �2 (17:36)

where
sloc is the standard deviation of the locations in x and y of the thermocouple hot junctions

in the bed
sT is the standard deviation of the temperature measurement

This corresponds to a total least square problem (Van Huffel and Lemmerling 2002) already
described in Section 17.2.3.
If the probability distributions of the temperature noise, called « in Section 17.2, and the

distribution of d, the error on thermocouple location in the same section, are both
independent and normal, minimization of S (for fixed measurements) corresponds to a
maximization of the conditional joint probability distribution of « for a given known
distribution d, if Bayes’ theorem is used (see Chapter 12 for more insight into this subject).
The distribution of d is called the prior distribution, because its knowledge brings

information before the minimization of S. So, the resulting estimator is called a maximum
a posteriori estimator.
Since our problem is nonlinear, an iterative technique has to be used to minimize sum S.

A Gauss–Newton algorithm (see Beck and Arnold [1977]) is used:

a(k) ¼ a(k) þ (Xt(a(k�1))X(a(k�1))þ qRtR)�1(Xt(a(k�1))(Texp � T(a))þ qRt(znom � z))

(17:37)
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In the above equation, the nominal and exact position vectors are

znom ¼ xnom1 � � � xnomNTc ynom1 � � � ynomNTc½ �t, z ¼ x1 � � � xNTc y1 � � � yNTc½ �t (17:38)

the corresponding theoretical temperatures

T(a) ¼ [T(x1, y1, t1,b) � � �T(x1, y1, tNt,b)T(x2, y2, t1,b) � � �
T(x2, y2, tNt,b) � � �T(xNTc, yNTc, t1,b) � � �T(xNTc, yNTc, tNt,b)]t (17:39)

and the experimental temperatures

Texp ¼ [Texp, 11 � � �Texp, 1NtTexp, 21 � � �Texp, 2Nt � � �Texp,NTc1 � � �Texp,NTcNt]t (17:40)

The sensitivity matrices are defined by

X(a) ¼ Xb Xz½ � with Xb ¼ qT
qb1

qT
qb2

qT
qb3

� �
and Xz ¼ qT

qz1
� � � qT

qz2NTc

� �
(17:41)

and

R ¼ 0 I½ � (17:42)

The matrix 0 above is a zero matrix of size (2NTc	 3) and I an identity matrix of dimension
2NTc. The coefficent q is equal to (sT=sloc)

2.
The preceding estimator can also be considered as a Gauss Markov estimator since sum

(17.36) can also be written as

S(a) ¼ (Y � T(a))tV�1(Y� T(a)) with Y ¼ Texp
znom

� �
, h(a) ¼ T(a)

z

� �
(17:43)

with

V ¼ s2
TINTcNt 0
0 s2

locI2NTc

� �
(17:44)

where Ip is the identity matrix of size (p	 p).
An approximation of the covariance matrix of this estimator is (see Beck and Arnold

[1977]) as follows:

cov(â) ¼ (~X
t
(â)V�1 ~X(â))�1 with ~X ¼ X

R

� �
(17:45)

The experimental temperature standard deviation (sT¼ 0.028C) can be measured in a
steady-state situation, that is, without any excitation Q, and it can be assumed that the
standard deviation of the location of a hot junction, that is, a measure of its displacement, is
on the order of one bead radius (sloc¼ 1 mm).

614 Thermal Measurements and Inverse Techniques

  



Metzger et al. (2003, 2004) have shown that the estimated values depend quite weakly on
the choice of the standard deviation sloc, as soon as this standard deviation becomes larger
than a fraction of a millimeter. A low value sloc (smaller than one micrometer) leads to very
poor temperature residuals with estimated locations close to their nominal values
(x̂i 
 xnomi ; ŷi 
 ynomi ). In the range between one micrometer and a few tenth of millimeter,
a decrease of the residuals and a variation of the estimated values are observed. As soon as
sloc reaches a 1 mm value, both residuals and estimates become good and do not vary any
more. At last, for sloc> 1 m, one nearly meets the case of ordinary least squares where
temperatures only are fitted and the nonlinear inversion algorithm does not converge
anymore. We notice that multiplication of sum S by s2

T shows that this minimization can
also be considered as some form of Tikhonov zeroth-order regularization where the
regularization coefficient is q¼ (sT=sloc)

2.

17.5.4 Monte Carlo Simulations

For Monte Carlo simulations of inversion, nominal thermocouple coordinates (xnomi , ynomi )
are noised with an uncorrelated additive noise of standard deviation sloc to produce the
exact locations (xi, yi). Subsequently, the same technique is applied to the true temperature
response of model (17.33) with a noise of standard deviation sT to obtain simulated
experimental temperatures Texp,ik. A Gauss–Newton minimization of S yields an estimation
â of the parameter vector. If 400 simulations of this type are made with the corresponding
inversions, 400 estimates â(n)

j are available for the jth parameter of â, n being the inversion
number. It is then possible to assess the statistical distribution of each estimated parameter
(via its histogram) and to calculate the dispersion (standard deviation sj) of each estimate as
well as its bias bj, that is,

bj ¼ �̂aj � aj and sj ¼ 1
400

X400
n¼1

�
â
(n)
j

�2 � �̂aj
� �2 with �̂aj ¼ 1

400

X400
n¼1

â
(n)
j (17:46)

Such estimates are given in Table 17.2 (see Testu et al. [2007]) for air or water flow through
the glass beads. They correspond to the use of temperature signal of thermocouples 2–7 in
Figure 17.1 and to a time step of 0.15 s, with a final time of 900 s for air, the corresponding
values being 0.15 and 45 s for water. One can use here the (jbjj þ sj)=aj ratio (relative error)
as an index of inversion quality for parameter aj. The lx estimations have the same quality

TABLE 17.2

Monte Carlo Simulations of Inversion for Air or Water Flow through a Bed of Glass Beads

j Parameter
Exact

Value aj

Average
Estimation �̂aj

Estimation
Bias bj

Estimation
Standard

Deviation sj

Bias=
Dispersion
jbjj=sj (%)

Relative
Error

(jbjj þ sj)=aj (%)

Air 1 lx (W K�1 m�1) 0.962 0.984 þ0.022 0.008 275 3

2 ly (W K�1 m�1) 0.256 0.246 �0.010 0.003 336 5.2

3 u (m s�1) 0.353 0.355 þ0.002 0.004 50 1.7
Water 1 lx (W K�1 m�1) 60 60.321 þ0.321 1.009 32 2.2

2 ly (W K�1 m�1) 3 2.681 �0.329 0.310 106 21

3 u (mm s�1) 6.288 6.306 þ0.018 0.033 55 0.8
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for air and water with ‘‘relative errors’’ smaller than 3%: bias is larger for air but it is
compensated by a lower dispersion.
For ly estimations, the relative error is still acceptable for air (5%) but too large for water

(21%) to yield precise values. For both fluids, the filtration velocity is the parameter that is
estimated with the maximum precision (relative errors lower than 2%). This confirms the
possibility of estimating the transverse dispersion coefficient for air, which was not pos-
sible for water.
It is interesting to note here that the estimation bias for the different parameters, which is

caused by the nonlinear character of the estimator, can be of the same magnitude as or even
higher than the standard deviation (see the jbjj=sj column in Table 17.2).

17.6 Conclusion

Starting from the linear model of the straight line, it has been shown that the errors in the
measured signal (ordinates, dependent variable) and in the locations of the sensors
(abscissa, independent variable) can be simultaneously accounted for in the estimation
problem if a two-term functional is minimized. The weighting factor in this sum is the ratio
of the variances of these two types of variables. It has also been shown that precise
knowledge of the weighting factor may not be necessary. This nonlinear estimator is a
generalization of the classical ordinary least squares estimator and can be considered as a
Bayesian estimator. Bias and standard deviation of the estimated parameters have been
derived analytically for this simple case.
The same approach can be used in an experimental estimation problem of thermophy-

sical parameter determination where the location(s) of the sensor(s) is not precisely known.
The nonlinear character of this new type of estimator can be taken into account. Monte
Carlo simulations of inversion allow an assessment of bias and standard deviation of the
estimated parameters.
This type of total least squares estimator can also be very useful for multiphysical

estimation problems where the composite signal comes from different types of sensors
(temperature, pressure, etc.).

Nomenclature

b bias
E(�) expectancy
m number of measurement locations
Nt number of times of measurements
NTc number of thermocouples
Q ratio of variances
s statistical standard deviation
t location (Sections 17.2 through 17.4) or time (Section 17.5)
y noised signal
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X sensitivity matrix
Xj sensitivity vector

Symbols

a augmented parameter vector
b parameter vector
d, e location and signal noise
dij Kronecker’s symbol
ef porosity
h model
s, s0 standard deviations of e and d
sj standard deviation of b̂j
t exact time or location

Superscripts

^ estimated value or estimator
- statistical average
nom nominal
t transpose

Subscripts

exp experimental
loc location
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18.1 Introduction

Several researchers have been working on the simultaneous determination of thermal
diffusivity and thermal conductivity (Guimarães et al., 1995, Huang and Yang, 1995,
Dowding et al., 1996, Nicolau et al., 2002, Lima e Silva et al., 2003, Borges et al., 2006).
However, themethods proposed inmost of theseworks can only be used to obtain a and k of
nonconductor materials. Additional problems occur due to conductive materials: problems
such as contact resistance, low sensitivity due to the small temperature gradient, and the
heat flux losses are responsible for the difficulty of direct application of these methods.
As in any experimental method, the identification of thermal properties is sensitive to

measurement uncertainty. Thus, to guarantee accuracy in the estimation, the design of the
experiments should be optimized.
The optimal design is related to the boundary conditions and sensor locations. Beck and

Arnold (1977) have shown that the best experiment corresponds to a finite body with a
heat flux that produces a temperature change in a surface, keeping the other surfaces
insulated. This basic idea for the thermal model is used here. However, to avoid the low
sensitivity and the thermal contact resistance problems, the sensors are disposed in differ-
ent ways using the three-dimensional (3D) model.
Two distinct problems are then established: experimental and thermal model develop-

ments. These problems are developed in the next section.

18.2 Fundamentals

18.2.1 Dynamic and Thermal Equivalent System

The technique proposed here is based on the use of an input=output dynamical system
(Figure 18.1), given by the convolution integral

Y(t) ¼
ð1
0

H(t� t)X(t)dt (18:1)

or in transformed frequency–plane

Y( f ) ¼ H( f )	 X( f ) (18:2)

where the weighting function, H( f ), is equal to 0 for t< 0, when the system is physically
realizable. In frequency domain, H( f ) represents the frequency response, which is defined
as the Fourier transform of H(t):

H( f ) ¼
ð1
0

H(t)e(�j2p)dt (18:3)

where j ¼ ffiffiffiffiffiffiffi�1p
is the imaginary unit (Bendat and Piersol, 1986).

FIGURE 18.1
Input=output dynamic system.

System
X Y
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18.2.1.1 Thermal Model

The proposed thermal model to be reproduced experimentally is given by a sample
initially at uniform temperature, T0. The sample is then submitted to a heat flux (W=m2)
while all other surfaces are kept isolated.
The dynamic model can be obtained from a thermal model shown in Figure 18.2, where

q(t) represents the heat flux, T represents the temperature, and i¼ 1, 2 is the index used to
describe the location of the respective temperature in the sample.
In this thermal model, the input, X(t), and output, Y(t), data are defined as X(t)¼ q(t) and

Y(t)¼T1(t)�T2(t), respectively.
The 3D thermal model can be obtained by the solution of the diffusion equation

q2T
qx2
þ q2T

qy2
þ q2T

qz2
¼ 1

a

qT
qt

(18:4a)

in the region < (0< x< L, 0< y<W, 0< z<R) and t> 0.
Subjected to the boundary conditions:

�kqT
qy

����
y¼W
¼ q(t); in AP surface (18:4b)

�kqT
qy

����
y¼W
¼ 0; in A0 surface (18:4c)

qT
qx

����
x¼0
¼ qT

qy

����
x¼L
¼ qT

qy

����
y¼0
¼ qT

qz

����
z¼0
¼ qT

qz

����
z¼R
¼ 0 (18:4d)

and the initial

T(x, y, z, 0) ¼ T0 (18:4e)

where
A is defined by (0< x< L, 0< z<R)
xH and zH are the boundary of AP

A0 surface is defined by A0¼A�AP

q(t)

y

x
z

T2(t)T1(t)

Isolated surface
Heat flux (AP surface)

FIGURE 18.2
3D thermal equivalent model.
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If T(r, t) represents T(x, y, z, t), the solution of Equations 18.4 can be given in terms of
Green’s function as in Beck et al. (1992).

T(r, t) ¼
ð
<

G(r, tjr0, 0)T0dr0 þ a

k

ð
A

ðt
t¼0

[q(t)G(rjr0, t� t)] dA dt (18:5)

Since Green’s function is available and exists (Beck et al., 1992), the solution of the problem
defined by Equations 18.4a through 18.4e can be performed numerically or analytically.
Equation 18.5 reveals that an equivalent thermal model can be associated with the

dynamic model given by Equation 18.1. In this case, the equivalent thermal model can
be obtained as the convolution product in the frequency domain:

H( f ) ¼ GH( f ) ¼ Y( f )
X( f )

¼ T1( f )� T2( f )
q( f )

(18:6)

where the variable f indicates that Fourier transform was applied to the variables T(t), q(t),
and GH(t� t). A comparison of Equation 18.6 with Equation 18.1 gives

GH(t� t) ¼ a

k
[G(r1, t� t)� G(r2, t� t)] (18:7)

It can be observed that as T1(t) and T2(t) are obtained by discrete measurements, Fourier
transform can be performed numerically by using the Cooley–Tukey algorithms (Discrete
Fast Fourier Transform) for these data (Guimarães et al., 1995).
Observing Equations 18.4 and 18.6, it can be concluded that the frequency response H( f )

is strongly dependent on the thermal properties:

H( f ) ¼ GH( f ) ¼ function(a, k) (18:8)

It also should be observed that the transformed impedance in the f plane is a complex
variable, which in a polar form can be written by

H( f ) ¼ GH( f ) ¼ jH( f )je�jw( f ) (18:9)

where jH( f )j and w( f ) represent, respectively, the amplitude and the phase factor of H. The
phase factor can be written by

w( f ) ¼ arctan
=H( f )
<H( f )

� �
(18:10)

where =H( f ) and <H( f ) are the imaginary and real parts of H( f ), respectively.
The phase of frequency response H( f ) and the time evolution of superficial temperatures

T1(t) and T2(t) are the experimental data used for estimation of thermal diffusivity and
thermal conductivity, respectively.
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18.2.2 Thermal Diffusivity Estimation: Frequency Domain

The fact that the phase factor is just a function of the thermal diffusivity a is the great
convenience of working in the frequency domain. The basic idea here is the observation
that the delay between the experimental and theoretical temperature is an exclusive
function of a. This condition was first verified by Guimarães et al. (1995), and this effect
in the sensitivity coefficient will be shown in Section 18.3. Therefore, the minimization of
an objective function, Sw, based on the difference between experimental and calculated
values of the phase is used to determine the thermal diffusivity. This function can be
written as

Sw ¼
XNf

i¼1
(we(i)� w(i))2 (18:11)

where we and w are the experimental and calculated values of the phase factor of H( f ),
respectively.
The theoretical values of the phase factor are obtained from the identification of H( f ) by

Equation 18.10. In this case, the output Y( f ) is the Fourier transform of the difference
obtained by the numerical solution of Equations 18.4a through 18.4e using the finite
volume method (Patankar, 1980). In fact, this procedure avoids the necessity of obtaining
an explicit and analytical model of H( f ).
The values of a will be supposed to be those that minimize Equation 18.11. In this work,

this minimization is done by using the golden section method with polynomial approxi-
mation (Vanderplaats, 1984).

18.2.3 Thermal Conductivity Estimation: Frequency Domain

Once the thermal diffusivity value is obtained, an objective function based on least square
temperature error can be used to estimate the thermal conductivity. In this case, there is no
identification problem as just one variable is being estimated. Therefore, the variable k will
be supposed to be the parameter that minimizes the least square function, SqH, based on the
difference between the calculated and experimental of the frequency response amplitude
defined by

SqH ¼
Xs
j¼1

Xn
i¼1

(jHe(i, j)j � jHt(i, j)j)2 (18:12)

where
jHe(i, j)j is the experimental frequency response modulus
jHt(i, j)j is the respective calculated values
n is the total number of frequency measurements
s represents the number of sensors

The optimization technique used to obtain k is also the golden section method with
polynomial approximation (Vanderplaats, 1984).
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18.2.4 Thermal Conductivity Estimation: Time Domain

The variable k can also be the parameter that minimizes the least square function, SqT,
based on the difference between the calculated and experimental temperature defined in
time domain and given by

SqT ¼
Xs
j¼1

Xn
i¼1

(Te(i, j)� Tt(i, j))2 (18:13)

where
Te(i, j) is the experimental temperature
Tt(i, j) is the calculated temperature
n is the total number of time measurements
s represents the number of sensors

18.3 Sensitivity Analysis

Although the thermal contact resistance and the low gradient problems do not represent
any difficulties for nonmetallic materials, they must be taken into account in the presence
of conductor materials. This section discusses both problems.
Figure 18.3 presents the thermal contact resistance that can appear between sample and

sensors in a 1D model (Figure 18.3a) and an alternative 3D model (Figure 18.3b) that avoid
this problem. Another advantage in a 3D model is the experimental flexibility, allowing the
optimal location of the identification sensors.
In 1D model, a high magnitude of heat flux (input) can be necessary to establish a

thermal gradient high enough for the estimation process. Figures 18.4 and 18.5 present a
simulation using the same heat flux input. It can be observed that while the temperature

Thermocouple

Electrical resistance and heat transducer

(a) (b)

q(t)

T1(t)

T2(t)

q(t)

y

x
z

T2(t)T1(t)

T(x, y, z, t)

FIGURE 18.3
Experimental scheme for models: (a) 1D model and (b) 3D model.
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gradient is situated in the region of the uncertainty of thermocouples (0.3 K), for 1D model
(Figure 18.3a), the 3D model produces a sufficient gradient to properties estimation (Figure
18.3b). Figure 18.5 presents the difference between the two temperatures involved in each
model as shown in Figure 18.3.
This fact can be better analyzed through a sensitivity analysis. Small and=or inaccurate

values of temperature difference and heat flux signals produce linear dependence or low
values. The linear dependence of two ormore coefficients indicates that the parameters cannot
simultaneously be estimated. Low values indicate that the estimation is strongly sensitive to
the measurements uncertainty (Beck and Arnold, 1977). The sensitivity coefficients involved
in this technique are defined as follows and presented in Figures 18.6 and 18.7.
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Temperature evolution for AISI304 sample: (a) 1D model and (b) 3D model.
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Temperature difference for AISI304 sample: (a) 1D model and (b) 3D model.

Thermophysical Properties Identification in the Frequency Domain 625

  



ST,a ¼ a

T
qT
qa

, ST,k ¼ k
T
qT
qk

, Sw,a ¼ a

w

qw
qa

, Sw,k ¼ k
w

qw
qk

(18:14)

SjHj,a ¼ a

jHj
qjHj
qa

, SjHj,k ¼ k
jHj

qjHj
qk

(18:15)

Figure 18.6 reveals a linear dependency of ST,a and ST,k as shown by the symmetry. This
fact indicates that both thermal properties cannot be estimated simultaneously in time
domain, justifying the use of frequency domain for the thermal diffusivity estimation.
It can be observed in Figure 18.7 that the absolute values of the sensitivity of phase

related to the thermal diffusivity are higher for the 3D model and there is no possibility to
estimate the thermal conductivity in frequency domain due to Sw,k¼ 0 for any frequency
value. This fact reveals that the phase dependency with thermal diffusivity is unique and
exclusive.

FIGURE 18.6
Sensitivity coefficients for the 3D model to AISI304
sample.
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Another advantage of using a 3D model is the possibility of estimating thermal proper-
ties from a thin sample. In the 1D case, for conductor materials, it is very hard to obtain
temperature gradients with values high enough to allow a good estimation as in Figure
18.8. For a sample with thin thickness, it can be seen that no temperature variation in the
direction y is observed. This fact makes the 1D analysis unpractical.
Another important characteristic of the technique presented here is the very low sensi-

tivity of a related to the amplitude of the signals X and Y. It means that the estimated value
of the thermal diffusivity is insensitive to bias error, like uncertainty due to poor calibration
of thermocouples or heat flux transducers or both. This fact can be demonstrated by
verifying Figures 18.9 and 18.10, which show the behavior of phase factor and modulus
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FIGURE 18.8
Spatial temperature in a thin conductor sample.

FIGURE 18.9
Phase factor subjected to the original and cali-
brated pair of input=output data.
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of H due to the same input=output signals in both versions: original data, mV=V, and
calibrated data, 8C=W m2.
It can be observed in Figures 18.9 and 18.10 that there are no changes in the phase factor

while the modulus is strongly affected.

18.4 Experimental Determination of Thermal Conductivity and Diffusivity
Using Partially Heated Surface Method with Heat Flux Transducer

18.4.1 Experimental Apparatus and Results

18.4.1.1 Conductor Material Application

It should be observed that the boundary conditions present in the theoretical model must
be guaranteed in the experimental apparatus. It means that the isolated condition at the
reminiscent surface needs to be reached for the success of the estimation techniques.
A good way to reach the isolation condition in a vertical direction is the use of a symmetric
experiment apparatus. Figure 18.11 presents this scheme.
In this case, the effect of no heat flux lateral loss is reached by placing insulating material

such as expanded polystyrene as shown in Figure 18.11. Two AISI304 stainless steel
samples were used in a symmetric assembly, both with thickness of 10 mm and lateral
dimensions of 139	 65 mm. The sample initially in thermal equilibrium at T0 is then
submitted to a unidirectional and uniform heat flux. The heat is supplied by a 318 V
electrical resistance heater, covered with silicone rubber, with lateral dimensions of
50	 50 mm and thickness of 0.3 mm. The heat flux are acquired by a transducer with
lateral dimensions of 50	 50 mm, thickness of 0.5 mm, and constant time less than 10 ms.
The transducer is based on the thermopile conception of multiple thermoelectric junction
(made by electrolytic deposition) on a thin conductor sheet (Guimarães et al., 1995).
The temperatures are measured using surface thermocouples (type K). The signals of

FIGURE 18.10
Absolute value of H for the original and cali-
brated pair input=output.

|H
|

0.014

0.012

0.010

0.008

0.006

0.004

0.002

0.000
0.000 0.002 0.004

Frequency (Hz)

Calibrated data
Original data

0.006 0.008

628 Thermal Measurements and Inverse Techniques

  



heat flux and temperatures are acquired by a data acquisition system HP Series 75000 with
voltmeter E1326B controlled by a personal computer.
Twenty independent runs were performed. In each of the experiments were acquired

1024 points at time intervals of 0.54 s. The time duration of heating, th, was approximately
120 s with a heat pulse generated at 90 V(DC).
Figure 18.12 shows the evolution of the input=output normalized signals in function of

time for one of the experimental of AISI304 sample.
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FIGURE 18.11
Schematic of experimental apparatus.

FIGURE 18.12
Input data of a typical run.
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Tables 18.1 and 18.2 present respectively the value estimated of a and k for the AISI304
stainless steel sample.
In Table 18.3, a summary of the simultaneous estimation of a and k of the AISI304 sample

is presented. In this table, the value obtained for a using the Flash method (Parker et al.,
1961) and the value of k from Incropera and DeWitt (1996) are also presented.
It can be observed that there is an excellent agreement between the values of this work and

the literature for the thermal diffusivity and the thermal conductivity (error less than 2%).
These results show the potential of the method proposed here. The comparison between

the experimental and estimated temperatures for a¼ 3.76	 10�6 m2=s and k is shown in
Figure 18.13. In this figure, a good agreement between the data can be observed; the
deviated are situated in the range of uncertainty measurement of thermocouples, which
in this work is 0.3 K.

18.4.1.2 Nonconductor Material Application

The thermal identification technique can also be applied to nonconductor solid materials.
In this case, a 1D model can be used. This section presents some results of and estimation
for polyvinyl chloride (PVC) polymers. More details about the 1D model and its respective
sensitivity analysis can be found in Borges et al. (2006).
A PVC sample with thickness of 50mmand lateral dimensions of 305	 305mm is initially

at temperature T0. For times t> 0, the sample is submitted to a unidirectional and uniform
heat flux on its upper surface. The heat is supplied by a 22 V electrical resistance heater,
covered with silicone rubber, with lateral dimensions of 305	 305 mm and thickness of 1.4
mm. The heat flux and temperature are acquired using sensor and instruments with the
same specification of that described here in the conductor material application.

TABLE 18.1

Statistical Data of the Average Value of a
(Initial Value, a¼ 1.0	 10�6 m2=s)

a	 106 (m2=s) Initial Sw Final Sw s	 108 (m2=s)

3.762 20 0.0016 4.0

TABLE 18.2

Statistical Data of the Average Value of k
(Initial Value of k¼ 10 W=m K)

k (W=m K) Initial SqT Final SqT s (W=m K)

14.64 14,700 18.3 0.31

TABLE 18.3

Summary of a and k for AISI304 Sample

Thermal Properties This Work References Error (%)

a	 106 (m2=s) 3.762 3.82 1.54

k (W=m K) 14.64 14.90 1.77

630 Thermal Measurements and Inverse Techniques

  



Fifty independent runs for PVC were realized and 1024 points were taken. The time
intervals, t, were 7.034 s, and the time duration of heating, th, was approximately 150 s with
a heat pulse generated at 40 V(DC).
Tables 18.4 and 18.5 present respectively the value estimated of a and k for the 50 runs of

PVC, with 99.87% confidence interval. In Table 18.6, a summary of the simultaneous

FIGURE 18.13
Comparison of an output of a typical run.
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TABLE 18.4

Statistical Data of the Average Value of a
(Initial Value, a¼ 1.0	 10�8 m2=s)

a	 107 (m2=s) Initial Sw Final Sw s	 1010 (m2=s)

1.24� 1.88 1.961 0.009243 7.06

TABLE 18.5

Statistical Data of the Average Value of k
(Initial Value of k¼ 0.01 W=m K)

k (W=m K) Initial SqT	 10�6 Final SqT s (m2=s)	 105

0.152 1.351 5.91 4.9

TABLE 18.6

Summary of a and k for PVC Sample with 99.87% Confidence Interval

a (m2=s) a	 107 (m2=s) (FM) k (W=m K) k (W=m K) (GHP)

1.24� 1.88% 1.28� 3.1% 0.152� 1.1% 0.157

Sources: Parker, W. J. et al., J. Appl. Phys., 32(9), 1679, 1961 (for FM, flash method);
NPL, Certificate of Calibration: Thermal Conductivity of a Pair of Polythene
Specimens. England unpublished: Technical Report No. X2321=90=021.
NPL, 1991 (for GHP, guarded hot plate).
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estimation of a and k of the PVC sample is presented. In this table, the comparison with the
values obtained for a by using the Flash method (Parker et al., 1961) and k by using the
guarded hot plate method (NPL, 1991) presented discrepancies of 3.22% and 3.30% for
a and k, respectively.
The comparison between the experimental and estimated temperatures for

a¼ 1.24	 10�7 m2=s and k¼ 0.152 W=m K is shown in Figure 18.14. A good agreement
between the data can be observed. It can be noted that the residuals in time domain
presented in Figure 18.15 are situated in the range of uncertainty measurement of thermo-
couples that in this work is 0.3 K.

FIGURE 18.14
Temperature evolution: experimental and calcu-
lated data.
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FIGURE 18.15
Temperature evolution: residuals of experimen-
tal and calculated data in time domain (Te,1�T1).
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Figure 18.16 also shows these residuals in frequency domain. It can be observed in both
domains that residuals are correlated, although they are small and do not significantly
affect the final estimates.

18.5 Experimental Determination of Thermal Conductivity
and Diffusivity Using Partially Heated Surface Method
without Heat Flux Transducer

18.5.1 Introduction

This section presents a new experimental technique to obtain the thermal conductivity of
conductor and nonconductor materials of small dimensions. As usual, the thermal con-
ductivity estimation involves a thermal model with a known heat flux input. However,
here the main contribution of this study is the use of inverse techniques to estimate the heat
flux input instead of measuring with heat transducers. It can be observed that the presence
of transducers represents an additional experimental limitation for small samples. Besides
the experimental difficulties, the smaller the transducer dimensions the more difficult it is
to obtain the calibration curves due to the low sensitivity.
The procedure proposed here is based on the following steps: (i) development of

experimental apparatus and thermal model considering a heat flux input in part of the
sample surface while the remaining surfaces are kept isolated; (ii) estimation of a dimen-
sionless heat flux, qþ(t), proportional to the heat flux input using inverse techniques;
(iii) estimation of thermal diffusivity; (iv) comparison between this heat flux, qþ(t),
and the total heat flux supplied by the heating element P=S1 to estimate the thermal
conductivity of the sample.

FIGURE 18.16
Temperature evolution: residuals of experimental
and calculated data in frequency domain (Te,1�T1).
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18.5.2 Direct Thermal Model

The thermal model is the same presented in Figure 18.17.
As shown before, the 3D thermal model can be obtained by the solution of the diffusion

equation (18.4).
However, in this new procedure, the following dimensionless quantities are defined as

u ¼ x
L
; v ¼ y

W
; w ¼ z

R
(18:16a)

m ¼ aref t
W2 ; Q(u, v,w,m) ¼ T(x, y, z, t)� T0

qref L
kref

, qþ ¼ þ q(t)
k

kref
qref

(18:16b)

where aref, kref, and qref are references quantities for thermal diffusivity, thermal conduct-
ivity, and heat flux input, respectively.
It can be observed that these quantities can assume any value, as, for example, unity

without lost of generality.
Applying the dimensionless definitions in Equations 18.4a through 18.4e, the dimension-

less thermal model can be obtained as

q2Q
qu
þ q2Q

qv
þ q2Q

qw
¼ qQ

qm
(18:17a)

In region <, subject to the boundary conditions,

� qQ
qv

����
v¼W
¼ qþ(t) in AP surface:

L1
L
� u � L2

L
and

R1

R
� w � R2

R
(18:17b)

� qQ
qv

����
v¼w
¼ 0 in A� AP (18:17c)

qQ
qu

����
u¼0
¼ qQ

qu

����
u¼L
¼ qQ

qv

����
v¼0
¼ qQ

qw

����
w¼0
¼ qQ

qw

����
w¼R
¼ 0 (18:17d)

q(t)

y

x
z

T2(t)T1(t)

Isolated surface
Heat flux (AP surface)

FIGURE 18.17
3D thermal equivalent model.
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and the initial condition,

Q(u, v,w, 0) ¼ 0 (18:17e)

where A is defined by (0� u� 1, 0� w � 1) and AP is region where the heat flux is applied.
Since qþ(t) is unknown, the inverse problem is characterized.

18.5.3 Inverse Problem

Different inverse problem techniques can be used for estimation of the dimensionless heat
flux qþ. This work will use the dynamic observer technique based on Green’s function,
described by Sousa (2006), that will be briefly described as follows.
The thermal model described by Equation 18.17 can be represented by a dynamic system

given by a block diagram (Blum and Marquardt, 1997) shown in Figure 18.18.
It can be observed from the block diagram that

1. The unknown dimensionless heat flux qþ(t) is applied to the conductor (reference
model), GH, and results in a measurement signal ve,M corrupted by noise N:

Qe,M ¼ QM þN ¼ GH 	 qþM þN (18:18)

2. Any solution algorithm determines the estimated dimensionless heat flux, qþ, such
that the estimated measured dimensionless temperatures predicted by a reference
model (which here is assumed to be known, so that ĜH¼GH) match the real

measured dimensionless temperature dQe,M (Equation 18.17). Reference model
obtaining is described in the next section.

3. The estimate value q̂þ is computed from the output data, Qe,M. Thus, the estimator
can be represented in a closed-loop transfer function of the feedback loop as shown
in Figure 18.18 (Sousa, 2006) by

q̂þ(s) ¼ GC

1þ GCGH
Qe,M (18:19)

FIGURE 18.18
Frequency–domain block diagram. (From Blum,
J. W. and Marquardt, W., Numer. Heat Transf. B,
Fundam., 32(4), 453, 1997.)
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or

q̂þ(s) ¼ GQ(s)qþ þ GN(s)N (18:20)

where symbol (^) denotes estimates values and GQ and GN are, respectively, given by

GQ(s) ¼ GCGH

1þ GCGH
(18:21)

and

GN(s) ¼ GQG�1H (18:22)

GQ(s) ¼ kcheb
(s� scheb, 1)(s� scheb, 2) � � � (s� scheb,nQ )

(18:23)

In Equation 18.20, GQ is referred to as the signal transfer function and GN is referred to as
the noise transfer function. The variable Q is the true value of dimensionless heat flux in
Laplace domain and N is the random noise due to the temperature measurements.
The transfer function GQ is chosen to have the behavior of type I Chebychev filter, and its

frequency response magnitude assumes the form

GQ(s) ¼ kcheb
(s� scheb, 1)(s� scheb, 2) � � � (s� scheb,nQ )

(18:24)

The poles scheb, i are computed using MATLAB1 software package. As mentioned, more
details of the observer procedure can be found in Blum and Marquardt (1997) and Sousa
(2006).
The optimization procedure can be resumed in the use of the two discrete-time difference

equations

q̂þ(k) ¼
Xnn
i¼0

biQM(k � i)�
Xnn
i¼0

aiq̂þ(k � i) (18:25)

and

q̂þ(k) ¼
Xnn
i¼0

biqþ(k � i)�
Xnn
i¼0

aiq̂þ(k � i) (18:26)

It is important to observe that in Equations 18.25 and 18.26, Qe,M are data related to the
measured temperature, and QM is related to the calculated data using the dimensionless
definition given by Equation 18.17.
Yet in Equations 18.25 and 18.26, ai and bi are coefficients obtained using Equations 18.22

and 18.23. Therefore, in order to complete the inverse procedure, the thermal model GH

must be identified. This identification is carried out here using Green’s functions. (Details
can be found in Sousa (2006) or Fernandes (2009).)
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18.5.4 Thermal Diffusivity Determination

18.5.4.1 Dynamic System and Equivalent Thermal Model

In order to obtain the thermal diffusivity, it is convenient to define a dimensional dynamic
model with an input, X(t), and output, Y(t), defined, respectively, as X(t)¼ qþ(t) and Y(t)¼
T1(t)�T2(t).
In this case, the same procedure described previously can be used to obtain the equiva-

lent thermal model as

T1( f )� T2( f ) ¼ H12( f )qþ( f ) (18:27)

where the variable f indicates that Fourier transform was applied to the variables T, H12,
and Q. As described previously, H12 represents the heat transfer function to the dynamical
model and can be also related to the Green’s function.
At this point, an observation must be made. The input of the system given by X(t)¼ q(t)

is not yet totally identified. In fact, the inverse procedure has identified only qþ(t), which is
proportional to this heat flux.
It means that one can write

q(t) ¼ qþ(t)
k

kref
qref
¼ Kqþ(t) (18:28)

where K represents the proportional factor between the quantity qþ(t) and the heat flux q(t).
It means that

H*( f ) ¼ KH( f ) ¼ T1( f )� T2( f )
q( f )

(18:29)

It can be observed that although the factor K affects directly the modulus ofH, no effect can
be verified in the phase factor. In this case, it can be demonstrated that the phase factor ofH
( f ) and that of H*( f ) are identical.
This fact indicates that the amplitude has a low sensitivity in relation to the amplitudes of

the signals X and Y, which in turn lead to a low sensitivity to deterministic errors such as
calibration curve uncertainties of the temperature sensors.
Since the functions H( f ) and H*( f ) are complex numbers and provided that Equation

18.27 is valid is easily demonstrated that both functions have the same phase factor as
follows:

w( f ) ¼ arctan
=H( f )
<H( f )

� �
¼ arctan

b
a

� �
¼ arctan

=H*( f )
<H*( f )

� �
¼ arctan

Kb
Ka

� �
¼ w*( f ) (18:30)

18.5.5 Simultaneous Determination of the Heat Flux and the Thermal Conductivity

Once thermal diffusivity and the dimensionless heat flux, qþ(t), have been determinated, it
remains to determinate the heat flux, q(t), and the thermal conductivity of the sample.
As mentioned, the basic idea is very simple. It consists of applying a heat flux generated

by a heater glued to a surface of the sample. In order that all the heat generated be
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absorbed by the sample, it is necessary for the surrounding to be a vacuum. Thus, the total
heat supplied to the sample can be obtained using the voltage and the current of the heater.
The only inconvenience of this process is due to the thermal capacity of the heater, such

that not all the electrical power supplied to the heater is immediately absorbed by the
surface of the sample.
Observing the history of the heat flux generated, P(t), at the heater and the history of the

admissive heat flux, q(t), at the sample surface as shown, it is possible to conclude that the
heat flux will be totally absorbed by the sample only after a certain time interval tf. Hence,
applying the principle of conservation of energy, we have

ðtf
0

q(t)dt ¼
ðtf
0

V(t)I(t)
AP

dt (18:31)

where V(t) and I(t) represent the voltage and the current supplied, respectively.
But using Equation 18.28 in Equation 18.31 allows the thermal conductivity k to be

obtained as

k ¼

ðtf
0

V(t)I(t)
AP

qref
kref

ðtf
0
qþ(t)dt

� �
dt

(18:32)

Once k has been determinated, Equation 18.28 can be used to determine q(t).

18.5.6 Experimental Apparatus

As observed before, the boundary conditions of the thermal problem (Equation 18.4 or
18.17) must be guaranteed. It means that the isolated condition (in all the surfaces where
the sample is not in contact with the heater) must be obtained for the success of the
technique. An efficient form of obtaining experimental isolation is to expose these surfaces
to an evacuated atmosphere.
The sample=heater assembly is inserted inside the vacuum chamber as shown schemat-

ically in Figure 18.19. Figure 18.20 shows the vacuum chamber.
This test investigates the thermal properties of an AISI304 stainless steel sample with

thickness of 10 mm and lateral dimensions of 139	 65 mm. The sample initially in thermal

Vacuum

(a) (b)

Vacuum

Sample

Resistive element heater

Thermocouples

Vacuum

Vacuum

Thermocouples

Dimensions in mm

55
2

54
52

FIGURE 18.19
Scheme of the sample=heater assembly: (a) frontal view and (b) superior view.
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equilibrium at T0 is then submitted to a unidirectional and uniform heat flux. The heat is
supplied by a 318 V electrical resistance heater, covered with silicone rubber, with lateral
dimensions of 50	 50 mm and thickness of 0.3 mm. The temperatures are measured using
surface thermocouples (type K).
Two thermocouples, type K, are attached to the frontal surface of the test plate (AISI304)

(Figure 18.19) using capacity discharge. Collection and storage of the data from the
thermocouples use a microcomputer-based data acquisition system (HP 75000 B E1326B),
abbreviated to DAS. The DAS, with a control software, sampled (multiplexed) each
thermocouple at intervals of 0.27 s (totaling 2048 points for each thermocouple). The
DAS was also used to acquire the voltage and current signals of the heater.
Twenty-one independent runs were realized. The time duration of heating, th, was

approximately 120 s with a heat pulse generated at 60 V (DC).
Figure 18.21 shows a typical signal of the power generated by the resistive element

heater on the conductive sample.

FIGURE 18.20
Experimental apparatus.

FIGURE 18.21
Typical signal power generated by an on=off
resistive heater element.
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Typical signal values of temperature are shown in Figure 18.22.
Figures 18.22 and 18.23 show the histories of the temperatures measured at the front

surface of the AISI304 sample, Te,1 and Te,2 and the output Y(t). Figure 18.24 shows the
dimensionless heat flux qþ(t) (input X(t)), estimated using the observer technique.
Using the input signals, X(t), and the output signals, Y(t), the spectral densities Sxx, Sxy

were obtained, and consequently the respond function H( f ) can be identified. Figure 18.25
shows the behavior of the phase factor of H( f ) in relation to the frequency.
As already described, the thermal conductivity of the sample can be obtained using

Equation 18.32.
Figure 18.26 and Table 18.7 show, respectively, the estimated and statistical values of k

for AISI304.

FIGURE 18.22
Temperature evolution for AISI304 sample.

0 100 200 300 400 500
Time (s)

28.0

29.0

30.0

31.0

32.0

33.0

34.0

Te
m

pe
ra

tu
re

 (°
C)

T1, e
T2, e

FIGURE 18.23
Output Y(t) given by difference of temperature
evolution for AISI304 sample.
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The statistical averages were calculated with 97.5% confidence interval, and the results
were compared with literature data (Incropera and DeWitt, 1996).
The value of thermal conductivity obtained then permits the determination of the heat

flux, q(t), as shown in Figure 18.27. Thermal diffusivity estimations are shown in Figure
18.28 and statistical data in Table 18.8.
Figure 18.29 shows the experimental temperatures and the estimated temperatures

(using a¼ 3.77� 0.029 m2=s and k¼ 14.99� 0.17 W=m K). Figures 18.30 and 18.31 show
the residuals for thermocouple 1 in time and frequency domain, respectively. Again, a
small correlation in the data that do not significantly affect the final estimates can be
observed.

FIGURE 18.24
Estimated dimensionless heat flux, qþ(t), aref ¼
10�6 m2=s, using k¼ 1.0 W=m K.
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Relation between phase factor and frequency.
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FIGURE 18.26
Estimated values of k for AISI304.
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FIGURE 18.27
Estimated heat flux, q(t).
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FIGURE 18.28
Estimated values of a for AISI304.
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FIGURE 18.29
Experimental and estimated temperature
evolution.
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18.5.7 Insulation Hypothesis Verification

18.5.7.1 Introduction

An important characteristic of this work is the estimation of thermal properties using
a small thermal gradient throughout a sample or between a sample and its neighboring.
In this sense, as previously pointed out in this chapter, the technique presented is able to
obtain thermal properties from a temperature difference below 3 K.

FIGURE 18.30
Residuals of estimated temperature and experi-
mental temperature (Te,1�T1).
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FIGURE 18.31
Temperature evolution: residuals of experi-
mental and calculated data in frequency domain
(Te,1�T1).
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An experimental apparatus must have enough sensitivity and reproduce the thermal
conditions assumed in the thermal model. Therefore, the boundary conditions present in
the theoretical model must be guaranteed in the experimental apparatus. This means that
the isolated condition at the reminiscent surface needs to be reached for the success of
the estimation technique. The aim of this section is to demonstrate the low influence of the
losses by convection heat transfer and thermal radiation and, consequently, the validity of
assumptions given by Equation 18.4.

18.5.7.2 Experimental Apparatus Design to Estimate the Heat Loss inside
the Vacuum Chamber

Figure 18.32 shows schematically the experimental apparatus designed to identify the
convection and radiation heat transfer loss from the sample into the chamber. An
AISI304 sample with thickness of 10 mm and lateral dimensions of 139	 65 mm initially
in thermal equilibrium at T0 is then submitted to a unidirectional and uniform heat flux.
A total heat rate, P, is supplied by a 318 V electrical resistance heater, covered with silicone
rubber, with lateral dimensions of 50	 50 mm and thickness of 0.3 mm. The magnitude of
P can be obtained just by multiplying the voltage difference versus current value. See
Figure 18.21 for details of a typical P(t) evolution.
In order to obtain the heat flux effectively delivered to the sample, q(t), a transducer with

lateral dimensions of 50	 50 mm, thickness of 0.5 mm, and constant time less than 10 ms is
inserted between the sample and the electrical resistance. The transducer is based on the
thermopile conception of multiple thermoelectric junctions (made by electrolytic depos-
ition) on a thin conductor sheet (Guimarães et al., 1995). The temperatures are measured
using surface thermocouples (type K). The signals of heat flux and temperatures are
acquired by a data acquisition system HP Series 75000 with voltmeter E1326B controlled
by a personal computer.
The heat transfer loss into the vacuum chamber by convection and=or radiation can then

be calculated by the difference between P=S1 and q(t).

P
AP
¼ q(t)þ qloss (18:33)

FIGURE 18.32
Scheme of the experimental apparatus
designed to identify the convection and
radiation heat transfer loss from the sam-
ple into the chamber.
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As mentioned, due to the existence of thermal inertial of both the electrical resistance and
the heat flux transducer, the heat flux will be absorbed by the sample only after a certain
time interval tf. Therefore, the energy loss by convection=radiation will be computed by
integrating Equation 18.33 in time interval tf, that is,

ðtf
0

P(t)dt ¼
ðtf
0

V1(t)	 I(t)dt ¼
ðtf
0

q(t)	 AP(t)dtþ
ðtf
0

qloss 	 AP(t)dt (18:34)

or

ðtf
0

qloss 	 AP(t)dt ¼
ðtf
0

V1(t)	 I(t)dt�
ðtf
0

q(t)	 AP(t)dt (18:35)

In this experiment, the total heat rate dissipated is

ðtf
0

P(t)dt ¼ 193:5J (18:36)

and the energy equivalent to the heat flux effectively delivered to the sample is
calculated as

ðtf
0

q(t)	 Ap(t)dt ¼ 190:3J (18:37)

Therefore, the values of the energy loss during all the experiment are situated below 2% of
the total energy supplied by the electrical resistance. This means that although heat loss
occurs, the insulated thermal boundary is a very good experimental hypothesis and can be
used with a minimum influence in the estimation results.
In order to validate the inverse estimation procedure, a comparison between the meas-

ured heat flux and the estimated heat flux is also carried out.
Figure 18.33 presents the heat flux measured by the transducer and the heat flux

estimated. It must be mentioned that this estimated heat flux is obtained only after
estimations of q(t), k, and a. Figure 18.34 shows the residuals between the respective
values.
A very good agreement between the data can be observed. It also can be noted that the

residuals, presented in Figure 18.34, have values below the uncertainty obtained in the heat
flux transducer calibration that is 3 (W=m2) for the sensor used.
The results observed in Figures 18.33 and 18.34 validate the technique presented

here, since they involve both the estimated heat flux q(t) using an inverse technique
based on dynamic observer method and the procedure for the determination of the thermal
properties.
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18.6 Use of 3D-Transient Analytical Solution Based on Green’s Function
to Reduce Computational Time in Inverse Heat Conduction Problems

The procedure to obtain the thermal properties involves two optimization problems
(inverse problem), which obtain qþ(t) and the respective properties. Both estimations
involve the evaluation of temperatures calculated using the thermal model, T1(t) and
T2(t), which represent the solution of the direct problem. From the viewpoint of applica-
tion of the experimental technique proposed by Borges et al. (2006), the choice of the
method of solution of the direct problem is open. In other words, whichever numerical

FIGURE 18.34
Measured and estimated heat flux residuals.
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method such as finite volume or finite elements or if possible analytical solutions can be
used. As mentioned, this study proposes the incorporation of analytical solutions in the
experimental technique of determination of thermal conductivity and thermal diffusivity
using the method of a partially heated surface without heat flux transducer proposed by
Borges et al. (2006) reducing the computational cost and increasing the precision of the
numerical calculations. In the following, the thermal model represented by Figure 18.2
and the obtaining of its analytical solution using Green’s function (Fernandes, 2009) are
presented.

18.6.1 Exact Solution of the Thermal Model Using Green’s Function

The thermal model proposed to be reproduced experimentally is given by a sample
initially at a uniform temperature T0. The sample is then subjected to a heat flux (W=m2)
while all other surfaces are maintained isolated. This problem is described in Section 18.4.1.
As discussed before, Equation 18.17 represents a direct problem of heat conduction if the

dimensionless heat flux qþ(t) is specified. On the other hand, the inverse problem is
established when qþ(t) is unknown. The various solution techniques of inverse problems
(or optimization problems) have as procedure the evaluation repetitive of direct problems,
always used with estimated or calculated values of heat flux density in an iterative process.
Thus, the proposed solution of the direct problem given by Equation 18.17 will be pre-
sented considering a known transient heat flux. In order to simplify the results, the
direct problem solution is presented in its dimensional form considering definitions in
Equation 18.16.
The solution of Equation 18.17 can be given in terms of Green’s function as in Beck

et al. (1992).

T(x, y, z, t) ¼
ðL
0

ðW
0

ðR
0

G(x, y, z, tjx0, y0, z0, 0)T(x0, y0, z0, 0)dx0dy0dz0

þ a

k

ðt
0

ðL2
L1

ðR2

R1

q(t)G(x, y, z, tjx0,W, z0, t)dx0dz0dt (18:38)

where G(x, y, z, tjx0, y0, z0, t)¼GX22.GY22.GZ22.

GX22 ¼ 1
L

1þ 2
X1
m�1

e�
m2

L2
p2a(t�t) cos

mpx
L

� 	
cos

mpx0

L

� �" #
(18:39)

GY22 ¼ 1
W

1þ 2
X1
n¼1

e�
n2

W2p
2a(t�t) cos

npy
W

� 	
cos

npy0

W

� �" #
(18:40)

GZ22 ¼ 1
R

1þ 2
X1
p¼1

e�
p2

R2
p2a(t�t) cos

ppz
R

� 	
cos

mpz0

R

� �24 35 (18:41)
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Therefore, the temperature can be obtained as (Fernandes, 2009)

T(x, y, z, t) ¼T0 þ a
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where m, n, and p are the number of terms required for the convergence of series.
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This equation has been applied in other simpler problem to compare with literature data.
These comparisons that can be found in detail in Fernandes (2009) assure the precision of
the analytical solution presented here.

18.6.2 DPT Code Using Analytical Solution

In the following will be presented results for the use of analytical solution in the thermal
diffusivity and conductivity estimation by using DPT code (Thermal Properties Determin-
ation). The comparison with the numerical solution is made using the 3D transient thermal
model shown in Figure 18.17. In this case, only part of the superior surface is heated. The
cast iron block has dimensions of L¼ 0.0805 m, W¼ 0.008 m, and Z¼ 0.06 m; and the
heated region, S1, is defined by 0< x< 0.005 m and 0< z< 0.005 m.
As mentioned, two thermocouples are used to measure the temperatures. The thermo-

couples T1 and T2 are located at (0.0378; 0.008; 0.003) and (0.0345; 0.008; 0.0438), respect-
ively. The results obtained numerically and analytically are compared in Figures 18.35
and 18.36.
Figure 18.35a shows the heat fluxes estimated using the analytical and numerical solu-

tions. The good agreement between them is clear. The maximum deviation between the
estimated heat fluxes is 3% (Figure 18.35b). Figure 18.36 shows the temperature evolution
at locations T1 and T2 using the respective estimated heat flux shown in Figure 18.35a.
The maximum deviation observed of 08C, 128C (0%, 4%) includes not only numerical

dispersion but also the influence of each heat flux on the solution (Figure 18.36b).
In this case, the main contribution is in the computational time as shown in Table 18.9.

The difference between the two is of order of 7500%. The analytical solution took 5 min and
the numerical solution took 6.4 h. This time corresponds to all procedures to obtain the
thermal properties, including the optimization by iteration.
The deviation in temperatures and heat fluxes was responsible for deviation in estimated

values of thermal conductivity and diffusivity of 1.7% and 2.6%, respectively.
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FIGURE 18.35
Heat flux for a cast iron sample: (a) estimated heat flux and (b) residuals.
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18.7 Conclusions

The experimental techniques proposed were shown to be efficient for the thermal proper-
ties identification of AISI304 sample. The procedure gives a great flexibility to the tech-
nique, allowing the technique to deal with sample of small dimensions and also to be
applied to conductor or nonconductor materials.
The great advantage of the dynamic observers technique is the easy and fast numerical

implementation for any 1D, 2D, or 3Dmodel. The robustness and low computational cost and
low error sensitivity give this procedure a great potential in inverse techniques application.
This study also shows the great contributions of the use of analytical solutions in inverse

problems, once the optimization algorithms usually have to calculate the direct problem
several times. The use of analytical solutions not only increases the precision but also
reduces ‘‘drastically’’ the computational time.
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TABLE 18.9

Comparison between Estimated Values of Thermal Diffusivity and Conductivity
and the Computational Time Using DPT with Numerical and Analytical Solutions

Solution Type a (m2=s)	 105 k (W=m K) Computational Time

Analytical 1.13� 0.023 42.59� 0.51 305.00 (0.085 h)

Numerical 1.10� 0.017 43.32� 0.39 23,040.00 (6.4 h)
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Estimated temperatures (T1 and T2) for a cast iron sample: (a) temperatures and (b) residuals.
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Nomenclature

Ap area of heat supply, m2

f frequency, Hz
G Green’s function, m2 K=W
GH heat conductor transfer function, m2 K=W
GN noise transfer function, m2 K=W
GQ signal transfer function, m2 K=W
h heat transfer coefficient, W=m2 K
H( f ) frequency response function, m2 K=W
Im(Sxy) imaginary component of the cross-spectral density function, K2

k thermal conductivity, W=m K
L, R, W plate dimensions, m
SH objective function based on difference between estimated and measured absolute

value of H
ST objective function based on difference between estimated and measured phase

temperature, K2

Sw objective function based on difference between estimated and measured phase
factor values, rad2

t time, s
T0 initial temperature, 8C
q heat flux, W=m2

qþ dimensionless heat flux
x, y, z Cartesian coordinates, m
X( f ) input signal in frequency domain, 8C
X(t) input signal in time domain, 8C
Y( f ) output signal in frequency domain, 8C
Y(t) output signal in time domain, 8C

Greek Symbols

a thermal diffusivity, m2=s
u temperature difference, 8C
m, n, v dimensionless Cartesian coordinates
r density, kg=m3

f heat flux, W=m2

w phase angle, rad
Q dimensionless temperature difference, 8C

Subscripts

1 relative to the thermocouple 1
2 relative to the thermocouple 2
E relative to experimental data
m relative to integer variables
M relative to discrete time
T relative to calculated data
ref relative to reference values
scheb poles of Chebyshev filter
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19.1 Introduction

The rear flash method (or ‘‘rear face pulsed method’’) is widely used to measure the
thermophysical properties of materials (Beck 1998, Maldague 2001). When only the front
face of the material is accessible for excitation and measurement, the method is called
‘‘front face pulsed method.’’ The objective of this chapter is to design such a method for the
characterization of the front face of a bilayer material. The two layers are conducting (steel)
and insulating (PVC) and they will be alternatively front and rear face. The measurements
will be realized with an infrared camera.
After a description of all the components of the experiment and the resulting measure-

ments, the corresponding model is described, with its associated parameters that contain
the searched thermophysical properties (diffusivity and effusivity). The minimization of
the ordinary least squares (OLS) objective function between measurements and model
response is presented (see Chapter 9). The optimal design of experiment-identification is
then detailed to define which parameters may be identified or must be fixed, and what is
the optimal duration of the experiment. Results are presented with simulated noisy data.
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19.2 Principles of Parameter Estimation from Experimental Data

19.2.1 Real System, Measurements, and Measurement Errors

The sample studied here is composed of two layers (steel and PVC) whose nominal
thermophysical properties are presented in Table 19.1. The experiment used in this chapter
to illustrate the different tools of parameter estimation is a front face pulsed photothermal
experiment. A radiative source provides a uniform energy densityQ on the front face of the
bilayer sample for a short duration (compared to the heat diffusion time of the sample’s
first layer). The sample is initially isotherm at T0 (see Figure 19.1). The decrease of the front
face temperature, consecutive to its sharp increase, is analyzed to deduce some thermo-
physical data of the sample. An infrared camera measures this front face temperature
decreasing with time T(t).
Two positions of excitation are possible: one on the steel side (‘‘steel=PVC’’ case) and the

other on the PVC side (‘‘PVC=steel’’ case). The two corresponding simulated perfect
signals (without measurement errors) are plotted in Figure 19.2 on log–log scales. After a
common t�1=2 decreasing regime, representative of heat diffusion in the semi-infinite-like
front layer, the two signals have different transitions, representative of the rear layer
encountered by heat. For the PVC=steel case, the rear layer is more effusive than the
front one while the cooling of the front surface is faster when compared to the steel=PVC
case. For this second case, after the t�1=2 regime, a quasi-constant temperature is obtained,
as if the sample was isolated, before convection acts to cool the sample.
The vector (n	 1) of experimental measurements y¼ [y1 � � � yi � � � yn]t is built by removing

the initial temperature to all temperature measurements (yi¼ y(ti)¼T(ti)�T0). Measure-
ments are thus described with respect to n various discrete values of time (the independent
variable time) t¼ [t1 � � � ti � � � tn]t (vector (n	 1)) with ti¼ idt, i¼ 1, . . . , n. The shortest time
step dt allowed by the infrared camera’s acquisition system is dt¼ 1=25 s¼ 40 ms. Let ei
be the (unknown) error associated with the measurement yi (i¼ 1, . . . , n), then the

TABLE 19.1

Thermophysical Properties of Each Layer

k
(W m�1 K�1)

rCp

(J m�3 K�1)
a

(m2 s�1)
b

(W s1=2 m�2 K�1) e (m)
e=k

(m2 K W�1)
e2=a
(s)

rCpe
(J m�2 K�1)

Steel 30.0 3.601	 106 8.33	 10�6 1.0394	 104 0.005 1.67	 10�4 3.00 18.0	 103

PVC 0.19 1.570	 106 0.121	 10�6 0.0546	 104 0.001 52.6 	10�4 8.26 1.57	 103

FIGURE 19.1
Principle of the front face pulsed photothermal experi-
ment.
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Radiative pulsed
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measurement errors vector (n	 1) is «¼ [e1 � � � ei � � � en]t. The first assumption on measure-
ment errors is that they are purely additive:

y ¼ yperfect þ « (19:1)

Here, yperfect represents the vector (n	 1) of (unknown) errorless measurements.* More-
over, measurement errors are assumed to be the realizations of a random variable with a
Gaussian distribution with zero mean, that is, E[«]¼ 0 (errors unbiased), E[�] being the
expected value operator (representing the mean of a large number of realizations of the
random variable). The covariance matrix (n	n) c ¼ E «� E[«]ð Þ «� E[«]ð Þt
 � ¼ E ««t½ � of
error measurements contains on its main diagonal, the variance s2

e of each measurement
that is supposed constant for each time ti, i¼ 1, . . . ,n. This variance may or may not be
known. Finally, measurement errors are assumed uncorrelated (error at time ti independ-
ent of error at time tj (E[ei ej]¼ 0 for i 6¼ j), then c is a diagonal matrix:

c ¼ diag s2
e , . . . ,s

2
e , . . . ,s

2
e

� � ¼ Is2
e (19:2)

In order to have a measure of the relative magnitude of measurement errors, its standard
deviation se is compared to the particular value of the ‘‘perfect’’ measurement at an early
time ts (i.e., a short time compared to the heat diffusion time of the first layer, typically
ts ¼ 0:1e21=a1). For such a short time, the first layer may be considered to be a semi-infinite
material for which the perfect measurement is given (for a 1D heat transfer) by

yperfect(ts) ¼
Q

b1
ffiffiffiffiffiffiffi
pts
p with b1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffi
k1rC1

p
¼ k1ffiffiffiffiffi

a1
p the effusivity of first layer (19:3)

* The objective of ‘‘direct’’ modelization is to give the best approximation of yperfect.

FIGURE 19.2
Example of simulated signals (Q is adjusted as
explained in (19.2.1)).
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A measure of the noise-to-signal ratio (or ‘‘normalized noise’’) is thus given by

se* ¼ se

yperfect(ts)
¼ seb1

ffiffiffiffiffiffiffi
pts
p
Q

¼
ffiffiffiffiffiffiffiffiffiffi
0:1p
p se

DT1,adiab
with DT1,adiab ¼ Q

rCp1e1
(19:4)

For a given energy density Q, and a given measurement standard deviation se (typically
se¼ 0.058C for the infrared camera used here), the noise-to-signal ratio will be thus
proportional to the thermal capacitance of the first layer rCp1e1 (according to Table 19.1,
signal will be about 10 times noisier for steel=PVC than for PVC=steel, for a given value
of Q). Here, Q will be adjusted in order to have yperfect tc ¼ 0:1e21=a1

� � ¼ 1 K; the variance se

will thus be directly equal to the noise-to-signal ratio se*.

19.2.2 The Signal Modelization and the Associated Parameters

The objective of such amodel is to give amathematical expression, notedh(t,b) of the perfect
measurements yperfect (t) mentioned above. This model is a function of the independent
variable (time) and of q parameters composing the parameters vector (q	 1) noted as
b¼ [b1 � � � bq]

t. The model vector (n	 1) is then given by h(b) ¼ h1(t1, b) � � �½
hi(ti, b) � � �hn(tn, b)�t. The thermal quadrupoles formalism (Maillet et al. 2000) is used to
give this mathematical expression. It helps to solve the heat equation in the Laplace domain
using a time Laplace transformation of temperatures and fluxes. Then, the Laplace inversion
is realized by Stehfest’s numerical method (Maillet et al. 2000) to provide the solution in the
time domain. This formalism is well adapted to the treatment of multilayer materials in
imperfect contact or otherwise. Linear boundary conditions of the convector-radiative type
(through the use of a unique convector-radiative coefficient h) are also easily taken into
account. The more general model that may be needed here is the front face temperature of a
finite length bilayer with an interface contact resistanceRc and a convector-radiative transfer
through a coefficient h supposed to be the same on each face (see the schematic representa-
tion of the physical model in Figure 19.3 and its quadrupolar representation in Figure 19.4).
The mathematical expression obtained in the Laplace domain (p is the Laplace variable in

s�1) is developed below. It shows that six ‘‘natural’’ parameters are present. Their expres-
sion and their nominal values are presented in Table 19.2 for the two cases PVC=steel and
steel=PVC.

h(p,b) ¼ �ufront(p,b) ¼ b2

b3
ffiffiffiffiffi
b1
p U

U þ V
(19:5)

FIGURE 19.3
Physical model.
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with

U ¼ (1þ b3b6)ch1ch2 þ
b6

b4
s1 þ b3b4

s1

� �
ch1sh2 þ b3

s1
sh1ch2 þ 1

b4
sh1sh2 (19:6)

V ¼ ch1ch2 þ 1
b3b4

s1ch1sh2 þ b6 þ
1
b3

� �
s1sh1ch2 þ b4 þ

b6

b3b4
s2
1

� �
sh1sh2 (19:7)

chi ¼ cosh (si), shi ¼ sinh (si) for i ¼ 1, 2 and s1 ¼
ffiffiffiffiffiffiffiffiffiffi
p=b1

q
, s2 ¼

ffiffiffiffiffiffiffiffiffiffi
p=b5

q
(19:8)

Parameters b1 and b5 are the inverse of the characteristic heat diffusion times of the front
and rear layers. Parameter b3 is the Biot number associated with the front layer. Parameter
b2 is the ‘‘semi-infinite’’ parameter present in (19.3). Parameter b4 is the front=rear effusiv-
ities ratio. Parameter b6 is the thermal contact resistance normalized by the thermal
resistance of the front layer. In cases where the aim is to characterize the front layer with
a rear layer supposed known, the parameters of interest will be b1 and b4. Parameter b5

will then always be supposed known. Special cases can be obtained from this general
model: perfect contact (b6¼ 0, 5 parameters left), same layers in imperfect contact (b5¼b1

and b4¼ 1, 4 parameters left), single layer (b5¼b1, b4¼ 1, and b6¼ 0, 3 parameters left),
semi-infinite rear layer (b5¼ 0, 5 parameters left), and isolated sample (b3¼ 0, 5 parameters
left). It can be seen that the model is nonlinear with respect to all its parameters except b2.
In order to take into account some fixed parameters in the parameter vector b, a division
into two subvectors, br (r	 1) (containing the parameters to estimate) and bc ((q� r)	 1)
(containing the fixed parameters) are made

b ¼ [br
..
.
bc]

t (19:9)
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FIGURE 19.4
Quadrupolar representation of the physical model (uair¼ 0).

TABLE 19.2

Nominal Values of the Natural Parameters in Each Configuration

b1 (s
�1) b2 (K s1=2) b3 (�) b4 (�) b5 (s

�1) b6 (�)

Expression (1 for front layer,
2 for rear layer)

a1
e21

Q
b1

he1
k1

b1
b2

a2
e22

Rck1
e1

Nominal value PVC=steel 0.121 1.611 0.053 0.053 0.333 0.0019

Nominal value steel=PVC 0.333 0.971 0.0017 19.03 0.121 0.06

Values of the convecto-radiative coefficient and the contact resistance are respectively h¼ 10 W m�2 K�1 and
Rc¼ 10�5 m2 K W�1.
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19.2.3 The Objective Function

Assuming the model has the right form (or ‘‘right structure,’’ given per the resolution of
the ‘‘right’’ partial differential equations describing the ‘‘right’’ physical phenomena) and
is calculated with the right values of parameters, then h(b)¼ yperfect and (19.1) becomes

y ¼ h(b)þ « (19:10)

Since the n measurement errors composing « are not known, the problem of finding the
values of the r components of br of b¼ [br ..

. bc]
t, given n measurements verifying (19.10),

is underdetermined (n equations, nþ r unknowns). The new problem consisting in min-
imizing the difference between measurements y and model h(b) (n equations, r unknowns,
n> r) is overdetermined, and its solution is needed to solve the minimization problem.
Without any a priori information on the parameters, and given the above assumptions for
measurements errors, the OLS estimator can be used.* It means that the objective function
to minimize in order to have an estimation of br, noted b̂r, is

SOLS(b̂r, bc) ¼ (y� h(b̂))t(y� h(b̂)) ¼
Xn
i¼1

(yi � hi(b̂))
2 with b̂ ¼ [b̂r

..

.
bc]

t (19:11)

The parameters bc are supposed to be fixed to their exact value. The study of the influence
of a systematic error (a bias) on these fixed parameters will be presented later. Thus, the
optimal value of b̂r will be the one that minimizes the scalar function SOLS(b̂r, bc); it will
have to verify

qSOLS(b̂r, bc)

qb̂r

¼ 0 (19:12)

19.2.4 Inverse Problem Resolution: Minimization of the Objective Function

For a nonlinear model, with respect to its parameters, the resolution of (19.12) is not
explicit in b̂r and needs to use an iterative method (Aster et al. 2005; Beck and Arnold
1977). The Gauss–Newton method is used here. It is a gradient type method with the
optimization of the parameters step based on the hypothesis of model linearity with

respect to b̂r near the solution. From an initial estimation b̂
(0)
r , a suit of estimations

b̂
(1)
r , . . . , b̂

(k)
r , . . . , b̂

(kþ1)
r , . . . , b̂

(K)
r is obtained, corresponding to the continuously decreas-

ing values of SOLS
�
b̂
(k)
r , bc

�
(k¼ 1, . . . , K) until a stop criterion, based on the relative

variation of b̂
(K)
r compared to b̂

(K�1)
r , is verified. The relation that gives the parameters

step from iteration k to kþ 1 is

b̂
(kþ1)
r ¼ b̂

(k)
r þ Db̂

(k)
r (19:13)

* It is here the more efficient, i.e. with the minimal variance.
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with

Db̂
(k)
r ¼ P(k)

r X(k)t
r (y� h(k))


 �
with h(k) ¼ h b̂

(k)
r

� 	
(19:14)

P(k)
r ¼ H(k)

r


 ��1
(19:15)

H(k)
r ¼ X(k)t

r X(k)
r with X(k)

r ¼ Xr b̂
(k)
r

� 	
(19:16)

The final value of the estimated parameters b̂
(K)
r , obtained for the fixed value bc, is noted as

b̂r,opt (bc). The main difficulty in the above algorithm, if ill-conditioned, lies in the inversion
of the matrixH (k)

r present in Equation 19.15. The matrix Xr (n	 r) is the sensitivity matrix to
estimated parameters. It is a part of the ‘‘complete’’ sensitivity matrix X, relative to all the
parameters (estimated br (r	 1) and the fixed bc ((q�r)	 1))

X ¼ [Xr ..
.
Xc] ¼

�
X1(t1) . . . Xr(t1)

..

.
. . . ..

.

X1(tn) . . . Xr(tn)

�
..
.

..

.

..

.

Xrþ1(t1) . . . Xq(t1)

..

.
. . . ..

.

Xrþ1(tn) . . . Xq(tn)

264
375

2664
3775 (19:17)

Column k contains the n values of the sensitivity coefficient of the model with respect to the
parameter bk, given by

Xk(ti) ¼ qhi(ti, b)
qbk

, k ¼ 1, . . . , q and i ¼ 1, . . . , n (19:18)

This coefficient is a measure of the ‘‘influence’’ of parameter bk on the response of the
model h(t, b). If the r sensitivity coefficients relative to the estimated parameters are of
‘‘high’’ magnitude and ‘‘independent’’ from each other, the conditioning of Pr will be
correct and the simultaneous estimation of the r parameters composing br will be possible.
The meaning of ‘‘high’’ and ‘‘independent’’ will be developed later.

Remark 19.1

If the model is linear with respect to its parameters, it can be written as follows:

h(b) ¼ Xb ¼ Xrbr þ Xcbc (19:19)

with Xr and Xc independent of b. In this case, the OLS estimator is found directly without
iteration, and is written as

b̂r ¼ Xt
rXr


 ��1
Xt

r(y� Xcbc) (19:20)

Note that OLS is more deeply presented in Chapter 7 and nonlinear estimation in Chapters
9 and 10.

Remark 19.2

When convergence is attained, a last iteration is realized in a sequential way. In this iteration,
a series of n estimations is built (one per time step), b(i)

r (i¼ 1, . . . , n), which enables the
appreciation of the stability of estimations with respect to each new measurement
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considered at each new time step. This suite converges toward b̂r,opt (bc). An estimation
is said to be acceptable if such a suite is stable along the last third of the total duration of
the experiment.

19.2.5 Confidence in Estimations (Variance and Bias of Estimator)

Let b̂r,opt (~bc) be the estimated parameters for a value of fixed parameters ~bc different from
their exact value bc. Let er be the vector (r	 1) of the error estimation (the difference
between estimated and exact values of br), and let ec be the deterministic error (the bias)
on the values of the fixed parameters:

er ¼ b̂r,opt(bc)� br (19:21)

ec ¼ ~b� bc (19:22)

Using the hypothesis of quasi-linearity of the model near b̂r,opt (~bc), one can write

b̂r,opt(~bc) 
 Ar,opt(y� Xc,opt~bc) with Ar,opt ¼ Pr,opt

 ��1Xt

r,opt (19:23)

and

Xt
r,opt ¼ Xt

r(b̂r,opt(~bc), ~bc) and Xt
c,opt ¼ Xt

c(b̂r,opt(~bc), ~bc)

Assuming br is not too far from b̂r,opt (~bc) (little estimation error er), one may develop
(19.10):

y ¼ h(b)þ « 
 Xr,optbr þ Xc,optbc þ « (19:24)

Combining (19.24) and (19.23), the error of estimation (19.21) may then be approached by

er ¼ b̂r,opt(~bc)� br 
 Ar,opt«� Ar,optXc,optec ¼ er1 þ er2 (19:25)

The first term er1¼Ar,opt« is the random contribution to the total error; it represents the error
due to measurement errors «whose covariance matrix c is given by (19.2). The second term
er2¼�Ar,opt Xc,opt ec is the nonrandom (deterministic) contribution to the total error vector
due to the deterministic error on the fixed parameters ec. The expected value of er1 is

E[er1] ¼ Ar,optE[«] ¼ 0 (19:26)

meaning that no systematic bias is introduced by the random measurement errors. The
covariance matrix of er1 is approached by

C1 ¼ cov(er1) ¼ E[er1etr1] 
 Ar,optE[««t]At
r,opt ¼ Ar,optcAt

r,opt ¼ Pr,opts
2
e (19:27)

The matrix Pr,opt given by (19.27) may thus be seen as the ‘‘amplification’’ of the measure-
ment errors matrix. The expected value of er2 is

E[er2] ¼ �Ar,optXc,optec 6¼ 0 (19:28)

if ec 6¼ 0, meaning that the estimation of br is biased because of the wrong values of the
fixed parameters bc. This bias is computed using the corresponding sensitivity coefficients
matrix Xc,opt. The covariance matrix ((q� r)	 (q� r)) of er2 error is C2¼ cov(er2)¼ 0 because
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ec is not a random error. Finally, the total bias associated with the estimation b̂r,opt(~bc) is
due to the biased value of ~bc, and its value is approached by

E[er] ¼ E[er2] ¼ �Ar,optXc,optec ¼ Pc,optec with Pc,opt ¼ �Pr,optXt
r,optXc,opt (19:29)

The matrix Pc,opt (r	 (q� r)) given by (19.29) may thus be seen as the ‘‘amplification’’ of the
bias on the fixed parameter ec. For a fixed value of ~bc, the covariance matrix Cr of the
estimations errors is

Cr ¼ cov(er) ¼ E (er � E[er])(er � E[er])
t
 � ¼ E er1etr1


 � ¼ cov(er1) ¼ C1 (19:30)

The covariance matrix components are

Cr ¼
s2
1 cov(er1, er2) . . . cov(er1, err)

s2
2 cov(er2, err)

. .
.

..

.

sym s2
r

26664
37775 (19:31)

Its main diagonal elements contain the individual variance of error associated with each
component of the estimated vector b̂r and the other elements are the covariance of crossed
errors. Expression (19.27) shows that a knowledge of the variance of measurement errors
s2
e is needed in order to compute the covariance matrix. If s2

e is not measured before the
experiment, an estimation of it may be obtained at the end of the estimation thanks to
the final value of the objective function SOLS (b̂r,opt, ~bc). Indeed, this estimation is based on
the fact that, at the end of the estimation, the only difference that subsists between
measurements and model (if its structure and its parameters are correct) must be the
measurement errors. This difference is called the residuals of estimation:

e(b̂r,opt, ~bc) ¼ y� h(b̂r,opt, ~bc) (19:32)

and have statistical properties close to those of measurement errors. A nonbiased estimation
of s2

e for the estimation of the p parameter from the use of nmeasurements is thus given by

ŝ2
e ¼

e(b̂r,opt, ~bc)
te(b̂r,opt, ~bc)

n� r
¼ SOLS(b̂r,opt, ~bc)

n� r
(19:33)

19.2.6 Confidence Intervals of Estimations

Since measurement errors are assumed to have a normal probability density, the quantity
(b̂r,opt(~bc)� br,k)=sk (k¼ 1, . . . , r) has the t1�a=2 (n� r) distribution. The quantity t1�a=2
(n� r) is the t-statistic for n� r degrees of freedom at the confidence level of 100(1�a)%
and sk (k¼ 1, . . . , r), that is, the standard deviation of the estimation b̂r,opt (~bc) is the square
root of the kth diagonal element of C¼Cr given by (19.31) and (19.27). Thus, for a fixed
value of ~bc, the 95% (a¼ 0.05) confidence interval (due to measurement errors) associated
with the estimation b̂r,opt (~bc) of the exact value br,k is

b̂r,opt,k(~bc)� CIkt1�0:975(n� r)sk, with CIk ¼ t1�0:975(n� r)sk, k ¼ 1, . . . , r (19:34)
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19.2.7 Correlation of Estimation Errors

The variance s2
i of the estimation error associated to b̂r,i may not be arbitrarily low

independently of s2
j (j 6¼ i) if cov(eri, erj) 6¼ 0 because sisj � cov(eri, erj) (estimations b̂r,i and

b̂r,j are said to be correlated). The correlation level between estimations b̂r,i and b̂r,j is thus
measured by the quantity

rij ¼
cov(eri, erj)

sisj
¼ Cr,ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cr,iiCr,jj
p ¼ Pr,ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pr,iiPr,jj
p , i, j ¼ 1, . . . , r (19:35)

that lies between �1 and 1. One considers that estimations are highly correlated when
jrijj � 0.9 (Beck and Arnold 1977). This quantity is independent of the magnitude of
measurement errors.

19.3 Identifiability of Parameters and Design of Experiment

19.3.1 The Qualitative Sensitivity Coefficients Analysis

The reduced sensitivities Zk (k¼ 1, . . . , q) of the model h(b) with respect to its parameters are
built as

Zk(ti) ¼ bkXk(ti) ¼ bk
qhi(ti, b)

qbk
¼ qhi(ti, b)

qbk
bk

, k ¼ 1, . . . , q and i ¼ 1, . . . , n (19:36)

where Xk is the sensitivity coefficient given by (19.18). Equation 19.36 shows that these
reduced sensitivity coefficients Zk have the same unit as the model. They may be seen as
the absolute variation of the model h induced by a relative variation of bk. If that model
variation is less than the magnitude of the measurement errors, it means that the influence
of the considered parameter on the model response will not be accurately measurable.
Consequently, the estimation of this parameter through the use of experimental measure-
ments, if it is possible, will be highly inaccurate. Rapid information may then be given by
comparing the magnitude of each reduced sensitivity coefficient to the magnitude of noise
measurement, with respect to the independent variable (time).
The reduced sensitivity coefficients compose the reduced sensitivity matrix as

Z ¼ [Zr ..
.
Zc]

�
X1(t1) . . . Xr(t1)

..

.
. . . ..

.

X1(tn) . . . Xr(tn)

�
..
.

..

.

..

.

Xrþ1(t1) . . . Xq(t1)

..

.
. . . ..

.

Xrþ1(tn) . . . Xq(tn)

264
375

2664
3775 ¼ XB (19:37)

where

B ¼ diag(b) ¼
b1 0 0

0 . .
.

0
0 0 bq

264
375 ¼ diag(Br ..

.
Bc) ¼ diag(b1, . . . , br, brþ1, . . . , bq)

This reduced sensitivity matrices are also divided into two submatrices Zr (n	 r) and
Zc (n	 (q� r)), containing respectively the reduced sensitivity coefficients of the model

664 Thermal Measurements and Inverse Techniques

  



with respect to the parameters br and bc. The reduced sensitivity coefficients are plotted for
the PVC=steel case in Figure 19.5 and for steel=PVC in Figure 19.6.

PVC=steel case (Figure 19.5): Sensitivity to b6 (contact resistance) is less than the other. Its
estimation will be difficult if the noise-to signal-ratio s* is less than 10�3. Parameters b4

(effusivities ratio) and b5 (heat diffusion frequency of rear layer) seem to have the same
influence on the model along time (their correlation coefficient presented later is over 0.9).
It would be difficult to simultaneously identify the properties of the rear and front layers if

FIGURE 19.5
Absolute value of reduced sensitivity
coefficients for PVC=steel case. See
Table 19.2 for parameter numbers.
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FIGURE 19.6
Absolute value of reduced sensitivity
coefficients for steel=PVC case. See
Table 19.2 for parameter numbers.
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the rear layer was unknown. Sensitivity to the Biot number is relatively low. In this case, b5

and b6 will be fixed to their nominal value, while b1, b2, b3, and b4 will be estimated.

Steel=PVC case (Figure 19.6): Sensitivity to b6 (contact resistance) is again less than the other.
Its estimation will be difficult if the noise-to-signal ratio s* is less than 10�4. Sensitivity to b4

(convection losses) is very low for short times and increases up to the other sensitivities for
longer times. This parameter will be fixed to its nominal value. Correlations are more
difficult to apprehend here except for long times when many coefficients seem to have the
same transient regime. The study of the components of the correlation matrix defined later
will help to detect the problems. The parameter b5 is still fixed.

19.3.2 Quantitative Criteria

The objective here is to present some quantitative criteria that may be used in order to
apprehend the feasibility of the simultaneous identification of several parameters, for their
nominal value. All these criteria are based on the analysis of the two amplification matrices
(of variance of measurement errors (Pr (19.27)) and of the bias on the fixed parameters
(Pc (19.29)) and the components of the correlation matrix (rij (19.35)), all defined from the
Hessian matrix Hr ¼ Xt

rXr. In fact, we will work with analogue matrices, but built from
the reduced sensitivity matrix Z. The reduced Hessian matrix Jr relative to the parameter to
be estimated is then

Jr ¼ Zt
rZr ¼ BrHrBr (19:38)

The reduced amplification of the measurement errors matrix Rr is written as

Rr ¼ J�1r ¼ B�1r H�1r B�1r ¼ B�1r PrB�1r (19:39)

The square root of the diagonal elements of Rr is the term of amplification of noise-to-signal
ratio that will give the relative standard deviation of each estimation composing b̂r:

ffiffiffiffiffiffiffiffi
Rr,ii

p ¼ sr,ii=br,i

se*
, i ¼ 1, . . . , r (19:40)

One optimal experiment criterion may thus consist in searching to reduce such amplifica-
tion terms corresponding to the parameter of interest in b̂r (b̂r,1 and b̂r,4 containing the
diffusivity and effusivity of the front layer for instance). The elements of the correlation
matrix are written as

rij ¼
cov(eri, erj)

sisj
¼ Cr,ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Cr,iiCr,jj
p ¼ Pr,ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Pr,iiPr,jj
p ¼ Rr,ijffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Rr,iiRr,jj
p , i, j ¼ 1, . . . , r (19:41)

They are the same when they are calculated with reduced sensitivities or ‘‘normal’’
sensitivities. Another possible criterion to observe in order to search for the best condition
number of the Hessian matrix is to try to limit the possible correlations between parameters
by trying to reduce some rij. Some parameters may then have to be fixed because of their
very high correlation with others. If some parameters have to be fixed to an arbitrary value,
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one should try to limit the amplification of their possible bias. The relative bias on
estimations B�1r er, caused by a relative bias on fixed parameters B�1c ec, is given by

B�1r er ¼ Rc(B�1c ec) (19:42)

with

Rc ¼ � Zt
rZr


 ��1Zt
rZc ¼ �RrZt

rZc (19:43)

Rc is thus the amplification matrix (p	 (q� r)) of a relative bias on fixed parameters.
Element Rc,ij is the amplification of the relative bias on a fixed parameter number j for
the evaluation of the relative bias on the estimated parameter number i.
All the preceding criteria will now be observed with respect to the independent variable

(time) in order to search for a more interesting duration of experiment for estimation, in the
two cases PVC=steel and steel=PVC. It is shown that under the hypothesis of a high
number of measurements n, and for a constant time step dt, the quantity

gt,i(tn) ¼
ffiffiffiffiffiffiffiffi
Rr,ii

dt

r
¼ sr,ii=br,i

se*
1ffiffiffiffi
dt
p , i ¼ 1, . . . , r (19:44)

is only dependent on the duration of the experiment tn.* This quantity is plotted in Figures
19.7 and 19.8. It enables, for a given time step and a given noise-to-signal ratio, the

* Discrete summations that compose the elements of Jr and Rr can be approached by integrals whose evaluation is
independent of time sampling.

FIGURE 19.7
PVC=steel case: Amplification of meas-
urement errors with respect to the dur-
ation of experiment tn (Equation 19.44).
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discovery of the value of the relative standard deviation of the estimation br,ii and the
duration of the experiment for which it will be minimum.

PVC=steel case (Figures 19.7, 19.9, and 19.10): Figure 19.7 shows that these coefficients
always decrease with the duration of the experiment until a quasi-constant value, indicat-
ing that ‘‘long experiments’’ will minimize the amplification of measurement errors. For
the PVC=steel, measurement errors will cause greater inaccuracy in the estimation of
effusivity (b4) than in the estimation of diffusivity (b1). The estimation of the Biot number
(b3) will be highly inaccurate, this is due to its low sensitivity (see Figure 19.5). Figure 19.9
shows that correlation coefficients (given by (19.41)) are far from 0.9 for long enough

FIGURE 19.8
Steel=PVC: Amplification of measure-
ment errors with respect to the duration
of the experiment (Equation 19.44). Bold
lines: estimation of b1, b2, b4. Thin lines:
estimation of b1, b2, b3, b4.
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FIGURE 19.9
PVC=steel case: Correlation coefficients
with respect to the duration of the
experiment tn.
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experiments. A duration of 40 s seems to be a good compromise. Figure 19.10 shows the
relative biases on estimations B�1r er ((19.42)) due to a relative bias of 1% on each fixed
parameter b5 and b6 (inverse of diffusion time of the rear layer and normalized contact
resistance). They all have attained a fixed value for long times. These values have to be
multiplied by the real value of bias ec if it is not equal to 1%.

Steel=PVC case (Figures 19.8, 19.11, and 19.12): The coefficients of the amplification of
measurement errors (Figure 19.8) also decrease with time, which makes long experiments
seem better. The problem here comes from the correlation between the parameters plotted
in Figure 19.11. They are, for many of them, most of the time over 0.9, especially the

FIGURE 19.10
PVC=steel case: Amplification of 1%
bias on each fixed parameter with
respect to the duration of the experi-
ment tn.
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FIGURE 19.11
Steel=PVC case: Correlation coefficients
with respect to the duration of the
experiment tn.
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coefficient r14 between the two parameters of interest, that is, even sometimes very near 1.
The only durations of experiment that enable a slight decrease of this correlation are
around 7–8 s, and not at all for long periods. Unfortunately, for these durations, very
high correlations exist between b3 and b1, and between b3 and b4.
We then finally choose to fix the parameter b3 (Biot number) to its nominal value in order

to try to estimate b1, b4, and b2. We will choose a duration of experiment of 8 s. Figure
19.12 shows the relative biases on estimations B�1r er (19.42) due to a relative bias of 1% on
each fixed parameter b2, b5, and b6.

19.4 Identifications with Simulated Noisy Measurements

Simulated measurements have been used here to test the optimal experiment designed
above.

PVC=steel case (Table 19.3): The first identification tested is for the following conditions:
noise-to-signal ratio se* ¼ 5%, dt¼ 1=25 s, n¼ 1000 (tn¼ 40 s). It gives correct estimations of
b1 and b4 with confidence intervals of respectively 7.5% and 13.6% (diffusivity is more
accurate than effusivity). Relative bias induced by a bias of 10% on fixed parameters b5 and
b6 are respectively �0.2% and �5% (still better for diffusivity than for effusivity).
But b3 is very badly estimated, with a huge relative confidence interval (174%). This was

suspected during the design of the experiment. Two solutions are then tested.
The first is to work with a lower noise-to-signal ratio (se* ¼ 1%); this solution implies

some experiment modifications (energy density Q larger or the repetition of the same
experiment to provide a mean signal) that are not always possible. In this case, estimations
are better, and confidence intervals are reduced (1.5% and 2.7%), even for the Biot
number (18%).

FIGURE 19.12
Steel=PVC: Amplification of 1% bias on
each fixed parameter with respect to the
duration of the experiment tn.
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The second solution is to fix the parameter whose estimation is inaccurate to its nominal
value, and to evaluate the influence of a bias on this fixed value on the estimations. The
results are that b1 and b4 are much better estimated with lower confidence intervals (1.5%
and 2.7%) and with an acceptable bias (�1% and�3.8%) despite a 10% biased value of each
fixed parameter.

Steel=PVC case (f)—Fixed (Table 19.4): Remembering that for a given energy density Q of
heat source, the noise-to-signal ratio is better in this case than in the PVS=steel case, we use
here a value of 1% for se* ¼ 1%.
Table 19.4 shows that in these conditions, an estimation of b1 and b4 is possible in spite of

their relatively high correlation, if b3 is fixed. The confidence interval associated to b4 is
relatively large (17.5%) and can only be reduced with a lower noise-to-signal ratio. Fixed
parameters do not induce biases that are too large on estimations, the larger being again for
b4 (3%).

TABLE 19.4

Results of Estimation for the Steel=PVC Case

b1 (s
�1) b2 (K s1=2) b3 (�) b4 (�) b5 (s

�1) b6 (�)

Expression (1 for front layer,
2 for rear layer)

a1
e21

Q
b1

he1
k1

b1
b2

a2
e22

Rck1
e1

Nominal value steel=PVC 0.333 0.971 1.7	 10�3 19.03 0.121 0.060
Initial value 0.360 (e) 1.100 (e) 2	 10�3 (f) 21.00 (e) 0.13 (f) 0.068 (f)

Identified 0.339 0.969 — 18.2 — —

Confidence interval 2.5% 0.4% — 17.5% — —

Bias (fixed parameters) 0.3% 0.003% 10% (f) �3% 10% (f) 10% (f)

(e) Estimated. (f) Fixed.

TABLE 19.3

Results of Estimation for the PVC=Steel Case

b1 (s
�1) b2 (K s1=2) b3 (�) b4 (�) b5 (s

�1) b6 (�)

Expression (1 for front layer,
2 for rear layer)

a1
e21

Q
b1

he1
k1

b1
b2

a2
e22

Rck1
e1

Nominal value PVC=steel 0.121 1.611 0.053 0.053 0.333 0.0019
Initial value se* ¼ 5% 0.150 (e) 1.800 (e) 0.060 (e) 0.060 (e) 0.366 (f) 0.0021 (f)

se* ¼ 5% 0.150 (e) 1.800 (e) 0.060 (f) 0.060 (e) 0.366 (f) 0.0021 (f)

se* ¼ 1% 0.150 (e) 1.800 (e) 0.060 (e) 0.060 (e) 0.366 (f) 0.0021 (f)

Identified se* ¼ 5% 0.128 1.598 0.027 0.045 — —

se* ¼ 5% 0.123 1.612 — 0.0057 — —

se* ¼ 1% 0.124 1.612 0.053 0.051 — —

Relative confidence interval se* ¼ 5% 7.5% 2% 174% 13.6% — —

se* ¼ 5% 4.4% 1% — 9.5% — —

se* ¼ 1% 1.5% 0.4% 18% 2.7% — —

Relative bias due se* ¼ 5% �0.2% 0.003% 0.6% �5% 10% (f) 10% (f)

to fixed parameters se* ¼ 5% �1% 0.2% 10% (f) �3.8% 10% (f) 10% (f)

se* ¼ 1% �0.2% 0.003% 0.3% �5% 10% (f) 10% (f)

(e) Estimated. (f) Fixed.
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19.5 Conclusion

As a complement to Chapter 9, some useful tools applied in parameter estimation have been
presented and illustrated in the case of the thermophysical characterization of a bilayer
material by a front face pulsed experiment. The design of this experiment is greatly helped
by the study of the reduced sensitivity coefficients of the model with respect to all its
parameters. These coefficients are the base of all optimization criteria used here: the mini-
mization of noise errors amplification during estimation, theminimization of the correlation
between parameters and the minimization of bias induced by fixed parameters. These tools
have helped to choose the parameter to be fixed and to evaluate the optimal duration of the
experiment. In our test case, the contact resistance was too low to be identified, and the Biot
number has always been fixed. Results have been verified with simulated measurements.

Nomenclature

a thermal diffusivity, m2 s�1

b effusivity, W s1=2 m�2 K�1

Cp thermal capacity, J kg�1 K�1

dt time step, s
e thickness, m
E[�] expected value operator
gt,i amplification of measurement standard deviation for a given dt,

Equation 19.38, s�1=2

h convector-radiative coefficient, W m�2 K�1

n number of measurements
p Laplace variable, s�1

q total number of parameters
Q energy density, J m�2

r number of parameters to estimate
Rc contact thermal resistance, m2 K W�1

SOLS ordinary least squares objective function, 8C2

t time, s
tc short time for normalization of measurement errors
tn duration of experiment, s
T temperature, 8C
T0 initial temperature, 8C
Xi(t) sensitivity coefficient of model with respect to parameter bi, 8C [bi]

�1

y(t) measurements, 8C
Zi(t) reduced sensitivity coefficient of model with respect to parameter bi, 8C

Symbols

b exact parameter
b̂ estimated parameter
~b fixed parameter
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ei error measurement at ith time step, 8C
h(t) model, 8C
r mass density, kg m�3

rij correlation coefficient between errors on parameters bi and bj

se standard deviation of measurement errors, 8C
se* normalized standard deviation of measurement errors
ufront Laplace transform of heating T–T0

Matrix and Vectors

B ¼ diag(b) diagonal matrix of parameters b (q	 q)
C covariance matrix of estimations (r	 r)
er error vector on estimations (r)
ec error vector on fixed parameters (q� r)
H Xt X Hessian matrix (q	 q)
J Zt Z reduced Hessian matrix (q	 q)
P H�1 (q	 q) amplification matrix of measurement errors
R J�1 (q	 q) reduced amplification matrix of measurement errors
X sensitivity matrix (n	 q)
y measurements vector (q)
Z reduced sensitivity matrix (n	 q)
b parameters vector (q)
h model vector (n)
c covariance matrix of error measurements (n	 n)

Subscripts

r relative to estimated parameters
opt relative to optimal parameters
c relative to fixed parameters

Abbreviation

OLS ordinary least squares
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20.1 Introduction

The analysis of diffusion problems in heterogeneous media involves formulations with
spatially dependent thermophysical properties in different ways, such as large-scale vari-
ations in functionally graded materials (FGM), abrupt variations in layered composites,
and random variations due to local concentration fluctuations in dispersed phase systems
(Lin 1992, Divo and Kassab 1998, Fudym et al. 2002, Chen et al. 2004, Kumlutas and
Tavman 2006, Fang et al. 2009). For instance, composite materials consisting of a dispersed
reinforcement phase embedded in a bulk matrix phase have been providing engineers with
increased opportunities for tailoring structures to meet a variety of property and perform-
ance requirements. As the composite material morphology in the realm of applications
presents endless possibilities of design tailoring, manufacturing processes, and even self-
structuring, the characterization of their physical properties is to be made almost case to
case (Progelhof et al. 1976, Tavman 1996, Tavman and Akinci 2000, Danes et al. 2003,
Kumlutas et al. 2003, Weidenfeller et al. 2004, Serkan Tekce et al. 2007).
The usefulness of such materials in heat transfer applications is nevertheless limited by

the precise knowledge of the corresponding thermophysical properties and boundary
condition coefficients that are fed into the corresponding models, and quite often need to
be determined by the appropriate inverse problem analysis (Flach and Ozisik 1989, Huang
and Ozisik 1990, Lesnic et al. 1999, Divo et al. 2000, Huang and Chin 2000, Rodrigues et al.
2004, Huttunen et al. 2006, Huang and Huang 2007). Among the various available solution
techniques of inverse problems (Beck and Arnold 1977, Alifanov 1994, Ozisik and Orlande
2000, Kaipio and Somersalo 2004, Zabaras 2006), a fairly common approach is related to
the minimization of an objective function that usually involves the quadratic difference
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between measured and estimated values, such as the least squares norm, or some vari-
ations with the inclusion of regularization terms. Although very popular and useful in
many situations, the minimization of the least squares norm is a non-Bayesian estimator.
A Bayesian estimator is basically concerned with the analysis of the posterior probability
density, which is the conditional probability of the parameters given the measurements,
while the likelihood is the conditional probability of the measurements given the param-
eters (Kaipio and Somersalo 2004). This work illustrates the use of Bayesian inference,
already discussed in detail in Chapter 12, in the estimation of spatially variable equation
and boundary condition coefficients in diffusion problems, by employing the Markov
chain Monte Carlo (MCMC) method (Migon and Gamerman 1999, Kaipio and Somersalo
2004, Gamerman and Lopes 2006, Fudym et al. 2008, Orlande et al. 2008, Paez 2010). The
Metropolis–Hastings algorithm is applied for the sampling procedure (Metropolis et al.
1953, Hastings 1970), implemented in the Mathematica platform (Wolfram 2005). This
sampling procedure used to recover the posterior distribution is in general the most
expensive computational task in solving an inverse problem by Bayesian inference, since
the direct problem is calculated for each state of the Markov chain.
In the context of variable properties identification, the use of a fast, accurate, and robust

computational implementation of the direct solution is extremely important. The accurate
representation of the heat conduction phenomena requires a detailed local solution of the
temperature distribution, generally with the aid of discrete numerical solutions with
sufficient mesh refinement and computational effort and=or semi-analytical approaches
for specific or simplified functional forms. Analytical solutions of linear diffusion problems
have been analyzed and compiled in Mikhailov and Ozisik (1984), where seven different
classes of heat and mass diffusion formulations were systematically solved by the classical
integral transform method. The obtained formal solutions are applicable to a very broad
range of problems in heat and mass transfer. Later on, the classical integral transform
approach gained a hybrid numerical–analytical implementation, referred to as the gener-
alized integral transform technique (GITT) (Cotta and Ozisik 1986, Cotta 1990, 1993, 1998,
Cotta and Mikhailov 1997, Cotta and Mikhailov 2006), offering more flexibility in handling
nontransformable problems, including among others, the analysis of nonlinear diffusion
and convection–diffusion problems. The methodology to be employed here forms the basis
of the mixed symbolic–numerical computational code called ‘‘UNified Integral Trans-
forms’’ (UNIT) (Sphaier et al. 2009), which was intended to bridge the gap between simple
problems that allow for a straightforward analytical solution, and those more complex and
involved situations that would otherwise require expensive commercial software systems.
The open source UNIT code is then an implementation and development platform for
researchers and engineers interested in the hybrid integral transform solutions of diffusion
and convection–diffusion problems.
Thus, the integral transformation approach discussed above becomes very attractive for

combined use with the Bayesian estimation procedure, since all steps in the method are
determined analytically at once by symbolic computation, and the single numerical repeti-
tive task is the solution of an algebraic matrix eigenvalue problem (Naveira-Cotta et al.
2009). Also, instead of seeking the function estimation in the form of a sequence of local
values for the variable coefficients, an alternative path is followed based on the eigenfunc-
tion expansion of the coefficients to be estimated themselves (Naveira-Cotta et al. 2009,
2011a,b), and then seeking the estimation of the corresponding series coefficients.
Another novel aspect in the present work is the alternative analysis of the inverse problem

in the transformed temperature field instead of employing the directly measured tempera-
ture data along the domain (Naveira-Cotta et al. 2011b). Thus, the experimental temperature
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values at each time value are first integrally transformed to yield transformed temperature
values of increasing order. This procedure is particularly advantageous when a substantial
amount of experimental measurements are available, such as in thermographic sensors,
permitting a remarkable data compression after the integral transformation process.
Typical applications were selected to illustrate the robustness of the proposed combin-

ation of methodologies related to the estimation of thermal properties in two-phase
dispersed media, complementing in scope what has been discussed in Chapters 1 and 2.
Simulated experimental results were used in inverse analysis allowing for the inspection of
the identification problem behavior in terms of the parameters to be estimated.

20.2 Direct Problem: Integral Transforms

We consider a one-dimensional form of the general formulation on transient heat conduc-
tion presented in Naveira-Cotta et al. (2009), for the temperature field Tm(x, t), in a region
x 2 [0, Lx]. The formulation includes space variable thermal conductivity and heat capacity,
as shown in problem (20.1). The volumetric heat capacity w(x)¼ r(x)cp(x) and the conduct-
ivity k(x) are thus responsible for the information related to the heterogeneity of the
medium. The heat conduction equation with initial and boundary conditions are given by

r(x)cp(x)
qTm(x, t)

qt
¼ q

qx
k(x)

qTm(x, t)
qx

� �
� heff(x)

Lz
Tm(x, t)� T1ð Þ þ q(x, t)

Lz
, 0 < x < Lx; t > 0

(20:1a)

Tm(x, 0) ¼ T1 (20:1b)

qTm(x, t)
qx

����
x¼0
¼ 0, t > 0 (20:1c)

qTm(x, t)
qx

����
x¼Lx
¼ 0, t > 0 (20:1d)

Problem (20.1) covers a typical one-dimensional transient thermophysical properties experi-
mental setup for a thermally thin plate, including prescribed heat flux at one surface and
convective heat losses at the opposite surface, as illustrated in Figure 20.1, and based on a

FIGURE 20.1
Schematic representation of the experimental
setup for the determination of thermophysical
properties, employed in direct=inverse problem
solutions.

Applied heat
flux, q(x,t)

0

Lx

Lz z

heff (x)

k(x), ρcp(x)
Tm(x,t)

T∞

x
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lumped formulation across the sample thickness. The space variation of the temperature
distribution is then promoted by the variation of the applied heat flux, and eventually of the
effective heat transfer coefficient. The exposed plate surface is required so as to allow for
temperature measurements via infrared thermography (Fudym et al. 2008). Before provid-
ing the integral transform solution of problem (20.1), a simple filtering solution is employed
for the improved convergence behavior of the eigenfunction expansions, in the form

T(x, t) ¼ T1 þ T*(x, t) (20:2)

Here, the term ‘‘filtering’’ stands for the extraction of analytical information from the
original problem formulation, aimed at minimizing the effects of boundary and equation
source terms in the convergence behavior of the filtered potentials. A more complete
analytical filter may be preferred (Cotta 1993, Cotta and Mikhailov 1997) that fully
homogenizes the original equation (20.1a), eliminating the source terms, but the above
choice was already quite effective in the present situation.
The filtered temperature problem formulation is then given by

w(x)
qT*(x, t)

qt
¼ q

qx
k(x)

qT*(x, t)
qx

� �
� d(x)T*(x, t)þ P(x, t), 0 < x < Lx; t > 0 (20:3a)

T*(x, 0) ¼ 0 (20:3b)

qT*(x, t)
qx

����
x¼0
¼ 0, t > 0 (20:3c)

qT*(x, t)
qx

����
x¼Lx
¼ 0, t > 0 (20:3d)

where

w(x) ¼ r(x)cp(x) (20:3e)

d(x) ¼ heff(x)
Lz

(20:3f)

P(x, t) ¼ q(x, t)
Lz

(20:3g)

The formal exact solution of problem (20.3) is then obtained with the classical integral
transform method (Mikhailov and Ozisik 1984), and is written as

T(x, t) ¼ T1 þ
X1
i¼1

~ci(x)
ðt
0

gi(t
0
)e�m

2
i (t�t

0
)dt

0
(20:4)

where the eigenvalues mi and eigenfunctions ci(x), are obtained from the eigenvalue
problem that contains the information about the heterogeneous medium, in the form

d
dx

k(x)
dci(x)
dx

� �
þ m2

i w(x)� d(x)
� �

ci(x) ¼ 0, x 2 [0, Lx] (20:5a)
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with boundary conditions

dci(x)
dx

¼ 0, x ¼ 0 (20:5b)

dci(x)
dx

¼ 0, x ¼ Lx (20:5c)

Also, the other quantities that appear in the exact solution (20.4) are computed after solving
problem (20.5), such as

~ci(x) ¼
ci(x)ffiffiffiffiffi
Ni
p , normalized eigenfunctions (20:6a)

Ni ¼
ðLx
0

w(x)c2
i (x)dx, normalization integrals (20:6b)

gi(t) ¼
ðLx
0

P(x, t)~ci(x)dx, transformed source terms (20:6c)

It is quite desirable to employ a flexible computational approach to handle eigenvalue
problems with arbitrarily variable coefficients, such as problem (20.5). Thus, the GITT is
here employed in the solution of the Sturm–Liouville problem (20.5) via the proposition of
a simpler auxiliary eigenvalue problem, and by expanding the unknown eigenfunctions in
terms of the chosen basis (Naveira-Cotta et al. 2009). Also, the variable equation coeffi-
cients are themselves expanded in terms of known eigenfunctions (Naveira-Cotta et al.
2009), so as to allow for a fully analytical implementation of the coefficient matrices in the
transformed system. The solution of problem (20.5) is thus proposed as an eigenfunction
expansion, in terms of a simpler auxiliary eigenvalue problem, given by

d2Vn(x)
dx2

þ l2nVn(x) ¼ 0, x 2 [0, Lx] (20:7a)

with boundary conditions

dVn(x)
dx

¼ 0, x ¼ 0 (20:7b)

dVn(x)
dx

¼ 0, x ¼ Lx (20:7c)

that is chosen to allow for an analytical solution of the auxiliary problem, with a normal-
ized eigenfunction, eigenvalues, and norms given by

~Vn(x) ¼ cos (lnx)ffiffiffiffiffiffiffi
Mn
p , ln ¼ np

Lx
, with n ¼ 0, 1, 2, . . . ,

M0 ¼ Lx and Mn ¼ Lx
2
, with n ¼ 1, 2, . . . ,

(20:8a�d)
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The proposed expansion of the original eigenfunction is then given by

ci(x) ¼
X1
n¼1

~Vn(x)ci,n, inverse (20:9a)

ci,n ¼
ðLx
0

ci(x)~Vn(x)dx, transform (20:9b)

The integral transformation is thus performed by operating Equation 20.5a withÐ Lx
0

~Vn(x)� dx to yield, after some manipulation (Naveira-Cotta et al. 2009), the following
algebraic problem in matrix form:

(A� nB)c ¼ 0, with n ¼ m2 (20:10a)

c ¼ fcn,mg (20:10b)

B ¼ fBn,mg (20:10c)

Bn,m ¼
ðLx
0

w(x)~Vn(x)~Vm(x)dx (20:10d)

A ¼ fAn,mg (20:10e)

An,m ¼
ðLx
0

~Vm(x)
d
dx

k(x)
d~Vn(x)
dx

" #
dx�

ðLx
0

d(x)~Vn(x)~Vm(x)dx (20:10f)

The algebraic problem (20.10a) can be numerically solved to provide results for the eigen-
values and eigenvectors upon truncation to a sufficiently large finite orderM, which will be
combined by the inverse formula (20.9a), to provide the desired original eigenfunctions
(Mikhailov and Cotta 1994, Sphaier and Cotta 2000, Naveira-Cotta et al. 2009).
It is also of interest to express the variable coefficients themselves as eigenfunction

expansions (Naveira-Cotta et al. 2009, 2011a,b). This is particularly advantageous in the
evaluation of the algebraic system coefficients, An,m and Bn,m. All the related integrals can
then be expressed in terms of eigenfunctions, allowing for straightforward analytical
evaluations. For instance, the coefficient w(x) can be expanded in terms of eigenfunctions,
together with a filtering solution to enhance convergence, in the following form:

w(x) ¼ wf (x)þ
X1
k¼1

~Gk(x)wk, inverse (20:11a)

wk ¼
ðLx
0

ŵ(x) w(x)� wf (x)

 �

~Gk(x)dx, transform (20:11b)

where ŵ(x) is the weighting function for the chosen normalized eigenfunction ~Gk(x). For
instance, the eigenfunction basis may be chosen by employing the same auxiliary problem
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equation, but with first-order boundary conditions throughout, while the filtering function
wf(x) would be a simple analytic function that satisfies the boundary values for the original
coefficients. Again, the sense of filtering in this context would be the extraction of analytical
information from the original functional behavior, here in terms of the property values at
the boundaries. Then, once the transformed coefficients have been obtained through the
transform formula, Equation 20.11b, computations may be carried on with the inverse
expression for the variable coefficient (Equation 20.11a). The two remaining coefficients are
equally expanded, in terms of eigenfunctions, to yield

k(x) ¼ kf (x)þ
X1
k¼1

~Gk(x)kk, inverse (20:11c)

kk ¼
ðLx
0

ŵ(x) k(x)� kf (x)

 �

~Gk(x)dx, transform (20:11d)

d(x) ¼ df (x)þ
X1
k¼1

~Gk(x)dk, inverse (20:11e)

dk ¼
ðLx
0

ŵ(x) d(x)� df (x)

 �

~Gk(x)dx, transform (20:11f)

The coefficient matrices may then be rewritten in terms of the expanded functions, such as
for the elements of matrix B:

Bn,m ¼
ðLx
0

wf (x)~Vn(x)~Vm(x)dxþ
X1
k¼1

wk

ðLx
0

~Gk(x)~Vn(x)~Vm(x)dx (20:12a)

and for matrix A:

An,m ¼
ðLx
0

~Vm(x)
d
dx

kf (x)
d~Vn(x)
dx

" #
dxþ

X1
k¼1

ðLx
0

~Vm(x)
d
dx

~Gk(x)
d~Vn(x)
dx

" #
dx

24 35kk
�
ðLx
0

df (x)~Vn(x)~Vm(x)dx�
X1
k¼1

ðLx
0

~Gk(x)~Vn(x)~Vm(x)dx

24 35dk (20:12b)

Also, the normalization integrals are then computed from

Ni ¼
X1
n¼1

X1
m¼1

ci,nci,m

ðLx
0

wf (x)~Vn(x)~Vm(x)dxþ
X1
k¼1

ðLx
0

~Gk(x)~Vn(x)~Vm(x)dx

24 35wk

8<:
9=; (20:12c)

This procedure shall also be handy in the function estimation task, when the transformed
coefficients of the series in Equations 20.11a,c,e will be the parameters to be estimated.
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The present study is also aimed at advancing the solution of the inverse problem in the
transformed temperature field, from the integral transformation of the experimental tem-
perature data, thus compressing the experimental measurements in the spatial domain into
few transformed modes (Naveira-Cotta et al. 2011b). Once the experimental temperature
readings have been obtained, one proceeds to the integral transformation of the tempera-
ture field at each measured time. For this purpose, the temperature measurements can be
interpolated in the spatial domain, generating the continuous functions Texp(x, t), which are
then integrally transformed according to the integral transform pair as follows:

Transform Texp, i(t) ¼
ðLx
0

w(x)~ci(x) Texp(x, t)� T1

 �

dx (20:13a)

Inverse Texp(x, t) ¼ T1 þ
XNT

i¼0
~ci(x)Texp, i(t) (20:13b)

20.3 Inverse Problem: Bayesian Inference

A variety of techniques is nowadays available for the solution of inverse problems (Beck
and Arnold 1977, Alifanov 1994, Ozisik and Orlande 2000, Kaipio and Somersalo 2004,
Zabaras 2006). However, one common approach relies on the minimization of an objective
function that generally involves the squared difference between measured and estimated
variables, like the least-squares norm, as well as some kind of regularization term. Despite
the fact that the minimization of the least-squares norm is indiscriminately used, it only
yields maximum likelihood estimates if the following statistical hypotheses are valid: the
errors in the measured variables are additive, uncorrelated, normally distributed, with zero
mean and known constant standard-deviation; only the measured variables appearing in
the objective function contain errors; and there is no prior information regarding the values
and uncertainties of the unknown parameters.
Although very popular and useful in many situations, the minimization of the least-

squares norm is a non-Bayesian estimator. A Bayesian estimator (Kaipio and Somersalo
2004) is basically concerned with the analysis of the posterior probability density, which is the
conditional probability of the parameters given the measurements, while the likelihood is
the conditional probability of the measurements given the parameters. If we assume the
parameters and the measurement errors to be independent Gaussian random variables,
with known means and covariance matrices, and that the measurement errors are additive,
a closed form expression can be derived for the posterior probability density. In this case,
the estimator that maximizes the posterior probability density can be recast in the form of a
minimization problem involving the maximum a posteriori objective function. On the other
hand, if different prior probability densities are assumed for the parameters, the posterior
probability distribution may not allow an analytical treatment. In this case, MCMC
methods are used to draw samples of all possible parameters, so that inference on the
posterior probability becomes inference on the samples. In this work, we illustrate the use
of Bayesian techniques, as discussed in Chapter 12, for the estimation of parameters in heat
conduction within heterogenous media, via MCMCmethods (Migon and Gamerman 1999,
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Kaipio and Somersalo 2004, Gamerman and Lopes 2006, Fudym et al. 2008, Orlande et al.
2008, Paez 2010), as applied to the simultaneous identification of thermophysical proper-
ties and boundary condition coefficients. The Metropolis–Hastings algorithm (Metropolis
et al. 1953, Hastings 1970) is employed for the sampling procedure, implemented in the
Mathematica platform (Wolfram 2005).
Consider the vector of parameters appearing in the physical model formulation as

PT � P1, P2, . . . , PNp

h i
(20:14a)

where Np is the number of parameters. For the solution of the inverse problem of estimat-
ing P, we assume available the measured temperature data given as

(Y� T)T ¼ ~Y1 �~T1, ~Y2 �~T2, . . . ,~YNt �~TNt

� 	
(20:14b)

where ~Yi contains the measured temperatures for each of the Nx sensors at time ti, i¼ 1, . . . ,
Nt, that is,

(~Yi �~Ti) ¼ Yi1 � Ti1, Yi2 � Ti2, . . . ,YiNx � TiNxð Þ for i ¼ 1, . . . ,Nt (20:14c)

so that we have Nm¼Nx Nt measurements in total. In the present transient state estimation
procedure, the sensors are assumed to be distributed along the plate length and the
measurements are taken at various time values within the measurement period.
Bayes’ theorem can then be stated as (Paez 2010)

pposterior(P) ¼ pðP Yj Þ ¼ p(P)p(YjP)
p(Y)

(20:15)

where
pposterior(P) is the posterior probability density, that is, the conditional probability of the

parameters P given the measurements Y
p(P) is the prior density, that is, a statistical model for the information about the

unknown parameters prior to the measurements
p(YjP) is the likelihood function that gives the relative probability density (loosely

speaking, relative probability) of different measurement outcomes Y with a fixed P
p(Y) is the marginal probability density of the measurements, which plays the role of a

normalizing constant

In this work, we assume that the measurement errors are Gaussian random variables,
with known (modeled) means and covariances, and that the measurement errors are
additive and independent of the unknowns. With these hypotheses, the likelihood function
can be expressed as

p(YjP) ¼ (2p)�M=2jWj�1=2 exp � 1
2
Y� T(P)½ �TW�1 Y� T(P)½ �


 �
(20:16)

where W is the covariance matrix of the measurement errors.
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When it is not possible to analytically obtain the corresponding marginal distributions,
one needs to use a method based on simulation (Migon and Gamerman 1999, Gamerman
and Lopes 2006). The inference based on simulation techniques uses samples to extract
information about the posterior distribution p(PjY). The numerical method most used to
explore the space of states of the posteriori is the Monte Carlo approach. The Monte Carlo
simulation is based on a large number of samples of the probability density function (in
this case, the function of the posterior probability density p(PjY)). Several sampling strat-
egies are proposed in the literature, including the Monte Carlo method with the Markov
chain (MCMC), adopted in this work, where the basic idea is to simulate a random walk in
the space of p(PjY) that converges to a stationary distribution, which is the distribution of
interest in the problem.
A Markov chain is a stochastic process {P0, P1, . . . }, such that the distribution of Pi, given

all previous values P0, . . . , Pi�1, depends only on Pi�1. That is, it interprets the fact that for a
process satisfying the Markov property of Equation 20.17, given the present, the past is
irrelevant to predict its position in a future instant (Gamerman and Lopes 2006):

p Pi 2 Að jP0, . . . ,Pi�1Þ ¼ p Pi 2 Að jPi�1Þ (20:17)

The most commonly used MCMC method algorithms are the Metropolis–Hastings, here
employed, and the Gibbs sampler (Migon and Gamerman 1999, Gamerman and Lopes
2006). The Metropolis–Hastings algorithm uses the same idea of the rejection methods, that
is, a value is generated from an auxiliary distribution and accepted with a given probabil-
ity. The Metropolis–Hastings algorithm uses an auxiliary probability density function,
q(P*jP), from which it is easy to obtain sample values. Assuming that the chain is in a
state P, a new candidate value, P*, is generated from the auxiliary distribution q(P*jP). The
new value P* is accepted with probability given by Equation 20.18, where the ratio that
appears in this equation was called by Hastings as the ratio test, and today it is called the
ratio of Hastings ‘‘RH’’:

RH(P,P*) ¼ min 1,
p P*ð jYÞq P*ð jPÞ
p Pð jYÞq Pð jP*Þ

� �
(20:18)

where p(PjY) is the a posteriori distribution of interest. An important observation in
Equation 20.18 is that we only need to know p(PjY) up to a constant, since we are working
with ratios between densities.
In practical terms, the simulation of samples of p(PjY) by using the Metropolis–Hastings

algorithm can be outlined as follows (Gamerman and Lopes 2006):

1. Boot up the iterations counter of the chain i¼ 0 and assign an initial value P(0).

2. Generate a candidate value P* of the distribution q(P*jP).
3. Calculate the probability of acceptance of the candidate value RH(P,P*) by Equa-

tion 20.18.

4. Generate a random number u with uniform distribution, that is, u � U(0, 1).

5. If u � RH, then the new value is accepted and we let P(iþ1)¼P*. Otherwise, the
new value is rejected and we let P(iþ1)¼P(i).

6. Increase the counter of the number of states from i to iþ 1 and return to step 2.
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The transition core q(P*jP) defines only a proposal for a movement that can be confirmed
by RH(P,P*). For this reason, it is usually called the proposal or density distribution. The
success of the method depends on the not-so-low acceptance rates and proposals that are
easy to simulate. The method replaces a difficult to generate p(PjY) by several generations
of the proposal q(P*jP). In this study, we have chosen to adopt a symmetrical proposal
density, that is, q(P*jP)¼ q(PjP*) for all (P*,P). In this case, Equation 20.18 reduces to the
ratio of the posterior densities calculated at the previous and proposed chain positions, and
does not depend on q(P*jP).
If the inverse problem is solved with the integral transformed measured temperatures as

given by Equation 20.13a, we have to reformulate the likelihood function given by Equa-
tion 20.16. Thus, we compare in Equations 20.19, the likelihood expressions as traditionally
obtained directly from the temperature measurements, Equation 20.19a, and as calculated
from the transformed temperature fields, Equation 20.19b, both weighted by the adequate
experimental standard deviations in each field, which were assumed constant.
Likelihood in the temperature field is

/ exp � 1
2

XNo: Sensors

s

XNo: Measur:

m

1
s2
s

Texp(xs, tm)� Tcalc(xs, tm)
� �2" #

(20:19a)

Likelihood in the transformed temperature field is

/ exp � 1
2

XNT

i

XNo: Measur:

m

1
s2
i

Texp, i(tm)� Tcalc, i(tm)
� �2" #

(20:19b)

where NT is the number of modes used in representing the transformed temperature.

20.4 Results and Discussions

Two applications are considered below to illustrate the alternative approaches of estimat-
ing the space variable properties, either directly with measured temperature data or with
integrally transformed experimental temperatures. The first inverse problem solution
illustrated here involves the analysis of an abrupt variation of particles concentration in a
two-phase dispersed system (see also Chapter 1). In order to examine the accuracy and
robustness of the proposed inverse analysis, we have made use of simulated measured
transient temperature data along the length of the domain. Such measurements were
obtained from the solution of the direct (forward) problem by specifying the functions
and values for the filler concentration distribution and thermophysical properties. The
simulated data were disturbed by an error with a zero mean and a constant and known
variance. For the results of the inverse analysis to be presented below, we have employed
the parameter values shown in Table 20.1 for the generation of the simulated measured
data, as extracted from Kumlutas and Tavman (2006) and Tavman (1996) for a polyethyl-
ene matrix filled with alumina particles.
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The abrupt variation of the concentration of the filler into the matrix is governed by the
parameter g in the following function:

f(x) ¼ fx¼0 þ (fx¼Lx � fx¼0)d(x) (20:20a)

d(x) ¼ 1
1þ e�g(x�xc)=Lx

(20:20b)

with xc being the transition position between the regions of low and high concentrations of
the filler. For g sufficiently large, the two property values at the boundaries are approxi-
mately recovered. Equation 20.20b thus provides a continuous transition, more or less
abrupt depending on the value of the parameter g, between two limiting values.
From the availability of the filler concentration distribution along the domain, Equation

20.20a, the heat capacity along the space coordinate is deterministically made from the
theory of mixtures. Thus, the coefficient w(x) is considered as known in the direct problem
analysis to produce simulated experimental data, given as

w(x) ¼ 1þ rdcpd
rmcpm

� 1
� �

f(x) (20:21)

For thermal conductivity determination, the volumetric content of the filler is not suffi-
ciently informative to yield a good prediction of this physical property (Tavman 1996,

TABLE 20.1

Parameter Values Used to Generate Simulated Measurement Data for Cases
1–3 Extracted from Kumlutas and Tavman (2006) and Tavman (1996)

Length Lx¼ 0.04 m

Percentual filler concentration at x¼ 0 f0¼ 0

Percentual filler concentration at x¼Lx fL¼ 45

Matrix properties (HDPE) rm¼ 968 kg=m3

cpm¼ 2300 J=kg 8C
km¼ 0.545 W=m 8C

Filler properties (Alumina) rd¼ 3970 kg=m3

cpd¼ 760 J=kg 8C

kd¼ 36 W=m 8C

Effective thermal conductivity model Lewis and Nielsen (A¼ 1.5; fm¼ 0.637)

Parameters in filler concentration function g¼ 25 m�1

xc=Lx¼ 0.2

Effective heat transfer coefficient heff¼ 16.7 W=m2 8C
Parameters in applied heat flux function gq¼ 100 m�1

xc,q=Lx¼ 0.5

q0¼ 0

qL¼ 598 W=m2

Ambient and initial temperature T1¼ 238C

Plate thickness Lz¼ 0.003 m

Sources: Kumlutas, D. et al., J. Thermoplast. Compos. Mater., 19, 441, 2006; Tavman, I.H.,
J. Appl. Polym. Sci., 62, 2161, 1996.
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Kumlutas and Tavman 2006), especially for the higher concentration values. Many theor-
etical and empirical models have been proposed to predict the effective thermal conduct-
ivity of two-phase dispersed systems, and comprehensive review articles have discussed
the applicability of many of these models.
In Lewis and Nielsen (1970), a model is proposed that attempts to include the effect of the

shape of the particles and the orientation or type of packing for a two-phase system. The
resulting expression for effective thermal conductivity is given as

kc ¼ km
1þ ABf
1� Bfc

� �
, where B ¼ kd=kmð Þ � 1

kd=kmð Þ þ A
and c ¼ 1þ 1� fm

f2
m

 !
f (20:22a�c)

The values of A and fm are suggested in Lewis and Nielsen (1970) for a number of different
geometric shapes and orientations, such as A¼ 1.50 for spheres and fm¼ 0.637 for random
packing.
Figure 20.2a through c illustrate the behavior of the filler concentration distribution

employed in the simulations that follow, besides the corresponding behavior of the
dimensionless heat capacity and thermal conductivity according to Equations 20.21 and
20.22, by using g¼ 25 m�1 and xc=Lx¼ 0.2.
The estimations in the present work involved the coefficients of the eigenfunction

expansion of w(x) and k(x) and the two values of each coefficient at the boundaries used
in the linear filter function of the expansion process. The effective heat transfer coefficient
(to be estimated in the form of the parameter d, see Equation 20.3f) was considered to be
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FIGURE 20.2
Sample behavior of the (a) filler concentration distribution, (b) thermal capacity, and (c) thermal conductivity,
according to Table 20.1 (cases 1–3).
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constant in the present inverse analysis. Thus, the parameters and the number of param-
eters to be estimated are given by

P ¼ wx¼0, wx¼L, w1, w2, w3, . . . ,wNw , kx¼0, kx¼L, k1, k2, k3, . . . , kNk , d

 �

,

with NP ¼ Nw þNk þ 5 (20:23a)

where

w(x) ¼ wf (x)þ
XNw

k¼1
~Gk(x)wk (20:23b)

k(x) ¼ kf (x)þ
XNk

k¼1
~Gk(x)kk (20:23c)

The prescribed heat flux is also considered to be governed by an abrupt behavior in the
space coordinate, such as in Equations 20.20, practically reproducing a step function with
gq¼ 100 m�1 and xc,q=Lx¼ 0.5, for heating in half of the plate length. The two extreme
values for the heat flux were taken as q0¼ 0, as in Table 20.1, and qL¼ qw. The heat flux qw
was not estimated in the present analysis due to linear dependency with the remaining
parameters. Therefore, the other parameters were all divided by the assumed value of qw,
in light of the linearity of the problem formulation. This does not impose restrictions on the
estimation of the other parameters, which can be recovered by multiplying the estimated
values by the available value of qw.
In the proposed inverse approach, the truncation orders of the thermal capacity and

conductivity expansions, Nw and Nk, respectively, control the number of parameters to be
estimated. The convergence analysis of thew(x) and k(x) expansions, Equations 20.23b and c,
is shown in Figure 20.3a through c, for three different truncation orders,Nw¼Nk¼ 4, 7, and
10. It can be observed that the expansions with these three increasing truncation orders are
able to recover the behavior of the chosen thermal properties, following the abrupt change in
filler concentration. On the other hand, the results for the lowest truncation order,
Nw¼Nk¼ 4, still show some oscillation around the exact functions, while for Nw¼Nk¼ 7,
a much closer agreement between the expanded and the exact functions is observed and
practically full convergence is achieved with the largest truncation order (Nw¼Nk¼ 10).
Before addressing the estimation of the unknown parameters, the behavior of the

determinant of the information matrix JT J (Ozisik and Orlande 2000) needs to be analyzed
in order to inspect the influence of the number of parameters to be estimated in the solution
of the inverse problem. The sensitivity matrix J is defined as

J(P) ¼ qTT(P)
qP

� �T
¼

qT1

qP1

qT1

qP2

qT1

qP3
� � � qT1

qPNP

qT2

qP1

qT2
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qT2

qP3
� � � qT2
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..
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.
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(20:24)
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The sensitivity coefficients Jij ¼ qTi

qPj
give the sensitivity of Ti with respect to changes in the

parameterPj. A small value of themagnitude of Jij indicates that large changes inPj yield small
changes in Ti. It can be easily noticed that the estimation of the parameter Pj is extremely
difficult in such cases, because basically the same value for Ti would be obtained for a wide
range of values of Pj. In fact, when the sensitivity coefficients are small, jJT Jj 
 0, and the
inverse problem is ill-conditioned (see Chapter 7). It can also be shown that jJT Jj is null if any
column of J can be expressed as a linear combination of other columns. Therefore, the
maximization of the determinant of the information matrix can be used for the design of the
experiment, in a procedure called the D-optimum experimental design (Beck et al. 1977,
Ozisik and Orlande 2000). The reduced sensitivity coefficients obtained from the multiplica-
tion of the original sensitivity coefficients by the parameters that they are referred to, are
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FIGURE 20.3
Convergence behavior of the thermal conductivity and heat capacity expansions; cases 1–3 (original function-solid
line, expansion-dashed line): (a) Nw and Nk¼ 4, (b) Nw and Nk¼ 7, and (c) Nw and Nk¼ 10.
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preferred for the analysis of linear dependence and smallmagnitudes. Such is the case because
the reduced sensitivity coefficients can be directly compared in magnitude to the measured
variables (Beck et al. 1977, Ozisik and Orlande 2000). The analysis of the determinant of the
information matrix presented below was performed with reduced sensitivity coefficients.
Based on possible experimental procedures, we will consider the following two cases for

the analysis of the determinant of the information matrix: (i) variation of the number of
parameters to be estimated with a fixed number of spatial measurements (sensors) and a
fixed frequency of measurements (Figure 20.4a) and (ii) variation of the number of spatial
measurements (sensors) with a fixed frequency of measurements and a fixed number of
parameters (Figure 20.4b).
Figure 20.4a shows the evolution in time of the information matrix determinant for a

total of 12,000 measurements (Nx¼ 40 along the domain, and Nt¼ 300 in time). The three
curves stand for an increasing number of parameters, NP¼ 13, 19, and 25 (from top to
bottom), which correspond respectively to Nw¼Nk¼ 4, 7, and 10, plus the two end values
of thermal capacity and conductivity that are filtered from the expansion and the param-
eter d. Clearly, the gradual increase on the number of parameters decreases the value of the
determinant. Therefore, it has been observed, as expected, that increasing the number of
parameters significantly affects the conditioning of the estimation procedure.
Figure 20.4b presents the information matrix determinant for the case of NP¼ 19 param-

eters, but with a variable number of equally spaced measurements along the domain
(Nx¼ 160, 40, and 4, from top to bottom). The lowest value of Nx has been considered to
inspect the possibility of employing traditional temperature measurement techniques, such
as thermocouples, while the higher values represent a thermographic type of temperature
measurement. This figure shows that the determinant of the sensitivity matrix significantly
decreases by reducing the number of measurements along the domain.
A relevant aspect in the use of the eigenfunction expansion coefficients as a parameter

estimation procedure is the definition of maximum and minimum values for the coeffi-
cients to be estimated, from the corresponding maximum and minimum values of the
thermal capacity and conductivity, wmax, kmax and wmin, kmin. For instance, the parameter-
ized form of the thermal conductivity used in this application is given by

k(x) ¼ kx¼L � kx¼0
L

� �
xþ kx¼0 þ

XNk

k¼1
kk~Gk(x) (20:25a)
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which can be rewritten as

XNk

k¼1
kk~Gk(x) ¼ k(x)� kx¼L � kx¼0

L

� �
xþ kx¼0 (20:25b)

Operating with
ðL
0

~Gi(x) dx on both sides of the above equation, we have

ki ¼
ðL
0

~Gi(x)k(x)dx� kx¼L � kx¼0
L

� �
gi � kx¼0fi (20:26a)

where

gi ¼
ðL
0

x~Gi(x)dx (20:26b)

f i ¼
ðL
0

~Gi(x)dx (20:26c)

Thus, for a bounding maximum or minimum k(x), kb¼ kmin or kb¼ kmax, respectively,
we have

ki, b ¼ (kb � kx¼0)fi � kx¼L � kx¼0
L

� �
gi (20:27)

Since the values of the thermal capacity or conductivity at the boundaries are not known
a priori, to either maximize or minimize the values of the transformed coefficients in
Equation 20.27, we need to take into consideration the signs of the coefficients gi and fi.
Thus, from the analysis of the expression above, and the specific forms of the transformed
quantities, gi and fi for odd or even indices, one may get conservative upper and lower
limits for the expansion coefficients, ki,max and ki,min.
The parameters were estimated by using the Metropolis–Hastings algorithm as

described above. To estimate the maximum and minimum ranges for each parameter,
we have conservatively adopted as the upper limit, the filler thermal capacity and con-
ductivity, wmax(x)¼wd and kmax(x)¼ kd, and as the lower limit the matrix capacity and
conductivity wmin(x)¼wm and kmin(x)¼ km. Alternatively, the theoretical models previ-
ously discussed could have been used to narrow the intervals [wmin, wmax] and [kmin, kmax],
but at the present stage of tools demonstration, we have preferred to employ the wider
range. As initial states in the Markov chain for the coefficients w(x) and k(x), we have
considered a constant function given by the average value of the coefficients in the range
defined by their upper and lower bounds.
Gaussian distributions were provided as priors for each of the coefficients to be esti-

mated. In building the priors for the thermophysical properties, we have assumed a
Gaussian uncertainty for the filler concentration distribution, with a standard deviation
of 20% of the exact value, which was then propagated to the thermal capacity and
conductivity prior distributions.
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The proposal densities used for the generation of candidates for the parameters at each
state of the Markov chain were also Gaussian with a standard deviation of 1% of the
standard deviation of the Gaussian priors. With the lower and upper bounds computed as
described above, the prior densities were null outside these limits for each parameter. Such
bounds are presented in Table 20.2, together with the exact and initial states of the Markov
chain for each parameter.
Three illustrative cases were analyzed below, aiming at the validation and demonstration

of the proposed methodology, which are summarized in Table 20.3. Note that case 1
involves idealized conditions with NT¼ 15 and Nw¼Nk¼ 4 (NP¼ 13 parameters), in both
the simulated results and the inverse analysis. In addition, the simulated temperature data
were generated with 0.18C of uncertainty, and uncertainties in the filler concentration prior
were not considered. The priors for the thermal capacity and conductivitywere then allowed

TABLE 20.2

Exact Values, Initial States in the Markov Chain, and the Lower
and Upper Bounds for Each Parameter (Cases 1–3)

Parameter Exact Initial State Pmin Pmax

heff, W=m2 8C 16.694 18.364 10 20

kx¼0, W=m 8C 0.54897 0.60386 0.545 5.7856

kx¼L, W=m 8C 2.2929 2.5221 0.545 5.7856

k1, W=m 8C 0.10972 0.12069 �0.9436 0.9436
k2, W=m 8C 0.00204 0.00225 �0.2359 0.2359

k3, W=m 8C �0.02825 �0.03108 �0.3145 0.3145

k4, W=m 8C �0.02661 �0.02927 �0.1180 0.1180

k5, W=m 8C �0.01328 �0.01461 �0.1887 0.1887

k6, W=m 8C �0.00107 �0.00118 �0.07864 0.07864

k7, W=m 8C 0.00485 0.00534 �0.1348 0.1348

wx¼0, J=m
3 8C 2.2288	 106 2.4517	 106 2.226	 106 2.938	 106

wx¼L, J=m
3 8C 2.5823	 106 2.8405	 106 2.226	 106 2.938	 106

w1, J=m
3 8C 25,047.5 27,552.2 �128,155 128,155

w2, J=m
3 8C 4,370.18 4,807.2 �32,038.7 32,038.7

w3, J=m
3 8C �2,701.11 �2,971.23 �42,718.2 42,718.2

w4, J=m
3 8C �4,449.02 �4,893.93 �16,019.3 16,019.3

w5, J=m
3 8C �3,613.83 �3,975.21 �25,630.9 25,630.9

w6, J=m
3 8C �1,955.27 �2,150.79 �10,679.6 10,679.6

w7, J=m
3 8C �512.218 �563.44 �18,307.8 18,307.8

TABLE 20.3

Definition of Input Data for Test Cases 1–3

Input Data Case 1 Case 2 Case 3

NT, Nw, Nk (simul. data) 15, 4, 4 50, 14, 14 50, 14, 14

NT, Nw, Nk (inverse sol.) 15, 4, 4 15, 7, 7 15, 7, 7

NP (inverse sol.) 13 19 19
Std. dev. priors (w, k, heff) 40%, 40%, 20% 40%, 40%, 20% 40%, 20%, 20%

Exp. uncertainty 0.18C 0.58C 0.58C
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to have a standard deviation of 40%, while the effective heat transfer coefficient prior
included a standard deviation of 20%. Cases 2 and 3 are closer to the actual thermophysical
properties identification task in the present application, where the number of parameters to
be estimated was increased to NP¼ 19, with Nw¼Nk¼ 7, and the uncertainty on the tem-
perature measurements was of 0.58C. For cases 2 and 3, the simulated measurements were
computed with NT¼ 50 terms in the temperature expansion, and Nk¼ 14 terms in both
coefficient expansions for k(x) and w(x). The difference between the two cases is that the
standard deviation of the Gaussian prior for the thermal capacity was lowered to 20% in
case 3, which lies on the fact that the uncertainty on such property is less affected by changes
on the filler concentration, as well as less sensitive to the thermal conductivity models.
By using a burn in period of 10,000 states and a total of 50,000 states in the Markov

chains, estimates for the parameters were obtained given by the sample average of the
remaining 40,000 states. Table 20.4 summarizes the estimates obtained for each parameter
for the three cases examined. As expected, case 1 provided the best estimates because it
was aimed at validating the constructed computational procedure, where the inverse crime
was allowed for and the uncertainty of the simulated temperature data was very low
(0.18C). Cases 2 and 3 both involved the same uncertainty of 0.58C in the simulated data,
but now the number of parameters has been increased. The prior for the heat capacity was
allowed to have a smaller standard deviation in the last case, being reduced from 40% to
20%. Some improvement was then observed from cases 2–3, in particular for the estimated
coefficients in the thermal capacity expansion. It should be recalled, that since the inverse
crime has been avoided for the two last cases, the solution approach is not expected to
exactly recover the same parameters employed to generate the simulated data.

TABLE 20.4

Estimated Parameter Values with 50,000 States in Markov Chains Obtained
by Neglecting the First 10,000 States (Cases 1–3)

P Exact Case 1 Case 2 Case 3

heff, W=m2 8C 16.694 16.690 16.692 16.692

kx¼0, W=m 8C 0.54897 0.55742 0.56523 0.57677
kx¼L, W=m 8C 2.2929 2.3041 2.3023 2.3359

k1, W=m 8C 0.10972 0.10801 0.10723 0.10327

k2, W=m 8C 0.00204 0.00225 0.00205 0.00232

k3, W=m 8C �0.02825 �0.02912 �0.02969 �0.03080
k4, W=m 8C �0.02661 �0.02636 �0.02728 �0.02658
k5, W=m 8C �0.01328 — �0.01275 �0.01351
k6, W=m 8C �0.00107 — �0.00111 �0.00105
k7, W=m 8C 0.00485 — 0.00580 0.00589
wx¼0, J=m

3 8C 2.2288	 106 2.2341	 106 2.2814	 106 2.2471	 106

wx¼L, J=m
3 8C 2.5823	 106 2.5872	 106 2.6184	 106 2.5947	 106

w1, J=m
3 8C 25,047.5 24,264.8 15,923.9 22,196.6

w2, J=m
3 8C 4,370.18 4,928.48 4,892.01 5,009.25

w3, J=m
3 8C �2,701.11 �3,156.08 �2,405.1 �2,622.2

w4, J=m
3 8C �4,449.02 �5,132.59 �4,654.52 �4,857.93

w5, J=m
3 8C �3,613.83 — �3,912.02 �4,337.8

w6, J=m
3 8C �1,955.27 — �2,367.64 �2,283.89

w7, J=m
3 8C �512.22 — �610.09 �529.54
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Figures 20.5 through 20.7 summarize the estimated functions for the two properties, their
exact original and expanded variations, together with the curves of the confidence intervals
at a degree of 99% of confidence, for the three cases examined, respectively. Clearly, case 1
(Figure 20.5) provides the best set of results, offering further evidence of the algorithm
verification. It is noticeable from Figure 20.5a and c that the exact functions, k(x) and w(x),
expanded with four terms, are fully recovered by the inverse analysis, also with
Nw¼Nk¼ 4. The thin solid line represents the exact original function for the coefficients,
which is not to be recovered, but shown just for reference purposes.
In Figure 20.6a through d, related to case 2, we illustrate the behavior of the estimation of

the properties with expansions of Nw¼Nk¼ 7, which clearly provide a much better
reproduction of the original functions (thin solid line), practically overwritten by the
exact expansions to these same orders. Fairly large standard deviations of 40% were
provided for the priors on both k(x) and w(x), so as to challenge the proposed approach,
and still quite reasonable estimates were achieved. Only for the thermal capacity estima-
tion some deviations are noticeable at the two boundary positions. The exact value for
wx¼ 0 is 2.22878	 106 J=m3 8C and for wx¼ L, it is 2.58226	 106 J=m3 8C, while the estimation
provides the values 2.28139	 106 J=m3 8C and 2.61837	 106 J=m3 8C, with 99% confidence
intervals [2.22093	 106, 2.34185	 106] J=m3 8C and [2.58306	 106, 2.65367	 106] J=m3 8C,
at x¼ 0 and x¼ L, respectively, which clearly include the exact boundary values. Case 3
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FIGURE 20.5
Estimated functions in case 1: (a) k(x)—exact (solid thin), exact expanded (solid thick), and estimated (dashed);
(b) k(x)—exact (solid thin), confidence bounds (solid thick), and estimated (dashed); (c) w(x)—exact (solid thin),
exact expanded (solid thick), and estimated (dashed); (d) w(x)—exact (solid thin), confidence bounds (solid
thick), and estimated (dashed).
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(Figure 20.7) results in a more accurate estimation, also obtained with Nw¼Nk¼ 7, but with
a reduction on the standard deviation to 20% in the thermal capacity prior. Such a
reduction promotes a noticeable improvement on the estimated thermal capacity function
(Figure 20.7c), with respect to the previous case (Figure 20.6c). The estimation of the
thermal capacity boundary values now provides 2.24709	 106 J=m3 8C and 2.59468	 106

J=m3 8C, with the 99% confidence intervals [2.21344	 106, 2.28073	 106] J=m3 8C and
[2.57038	 106, 2.61898	 106] J=m3 8C, at x¼ 0 and x¼ Lx, respectively. The estimation of
the thermal conductivity function was fairly accurate in both cases 2 and 3, while the
estimates for the heat transfer coefficient were very accurate throughout the cases ana-
lyzed.
The second selected test configuration, aimed at demonstrating inverse analysis with the

transformed temperatures, deals with a thermally thin plate of thickness Lz¼ 1 mm heated
by an electrical resistance on one of its surfaces, up to a fraction xc¼ Lx=3 of its total length,
Lx¼ 12 cm. The opposite surface of the plate experiences heat losses by both natural
convection and radiation, here taken into account in a linearized form, while all lateral
bounderies are considered to be insulated. This problem was thus modeled as a one-
dimensional transient heat conduction formulation, given by Equations 20.1, and repre-
sented in Figure 20.1, after lumping in the transversal direction. The power dissipated in
the resistance per unit area was considered to be known, qinf, and the spatial distribution of
the applied heat flux was also available, being uniform up to x¼ xc and zero for x> xc,
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FIGURE 20.6
Estimated functions in case 2: (a) k(x)—exact (solid thin), exact expanded (solid thick), and estimated (dashed);
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while an exponential function in time, f(t), modeled the delay due to the thermal capaci-
tance of the resistance assembly, that is,

qw[x, t] ¼ q[x] f [t] (20:28a)

q[x] ¼ qinf 0 < x < Lx=3

0 Lx=3 < x < Lx



(20:28b)

f [t] ¼ 1� ae�bt (20:28c)

We then seek the simultaneous estimation of the thermal capacity, thermal conductivity,
effective heat transfer coefficient, and coefficients of the time delay of the applied heat flux,
respectively, w(x), k(x), heff(x), a and b.
In the present inverse problem analysis, the test case was chosen in the form of a

polymeric matrix (HDPE) with alumina nanoparticles (Al2O3) dispersed in the matrix,
with the concentration distribution governed by an exponential function, and the
sample has essentially just the polymer at x¼ 0% and 60% of nanoparticles at x¼ Lx. The
polymer has thermal capacity and conductivity, respectively, of wm¼ 2.2264	 106 J=m3 8C
and km¼ 0.545 W=m 8C, while the alumina nanoparticles have thermophysical properties
given by wp¼ 3.0172	 106 J=m3 8C and kp¼ 36 W=m 8C. By employing the theory of
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FIGURE 20.7
Estimated functions in case 3: (a) k(x)—exact (solid thin), exact expanded (solid thick), and estimated (dashed);
(b) k(x)—exact (solid thin), confidence bounds (solid thick), and estimated (dashed); (c) w(x)—exact (solid
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mixtures and the Lewis and Nielsen correlation (Kumlutas et al. 2003, Kumlutas and
Tavman 2006) to compute the effective thermal capacity and conductivity throughout
the domain, we obtain at x¼ Lx the effective values wx¼Lx ¼ 2:7008	 106 J=m3 8C and
kx¼Lx ¼ 9:078 W=m=�C. In the present test case, the thermophysical properties were chosen
to vary in the following exponential forms:

k(x) ¼ k0 exp 2bk 1� x
Lx

� �� �
, bk ¼ 1:4064 (20:29a)

w(x) ¼ w0 exp 2bw 1� x
Lx

� �� �
, bw ¼ 0:0966 (20:29b)

which are illustrated in Figure 20.8a and b for the thermal conductivity and capacity,
respectively.
The effective heat transfer coefficient was also estimated, accounting for natural convec-

tion and linearized radiation at the horizontal plate, yielding the behavior shown in Figure
20.9a. Figure 20.9b illustrates possible behaviors for the time lag in the applied heat flux, by
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Spatial behavior of thermophysical properties (cases 4–6): (a) thermal conductivity and (b) thermal capacity.
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varying the parameter a and fixing b¼ 0.005. The remaining data that defines the next test
cases are provided in Table 20.5, with which the simulated experimental data were
generated.
The filter functions were chosen in such a way to incorporate the values of the coeffi-

cients at the two boundaries, x¼ 0 and Lx, (kx0, kxL, wx0, wxL and dx0, dxL), which are
unknown and should be estimated together with the eigenfunction expansion coefficients,
so as to make the boundary conditions of the chosen eigenfunction homogeneous. For the
thermophysical properties k(x) and w(x), we have again employed a simple linear filter
without any sort of prior information on the coefficients variation. For the heat loss
coefficient, d(x), a more informative filter was adopted in the form of a steep variation
approaching a step function, since this behavior is physically expected, in light of the
functional form of the applied heat flux.
For the generation of the simulated data, we have employed 50 terms in the eigenfunc-

tion expansions (NT¼ 50) for temperature and 10 terms (Nk¼ 10, Nw¼ 10, and Nd¼ 10) in
the expansions of k(x), w(x), and d(x). Two different levels of experimental error were
examined, namely, with an uncertainty of 0.018C for validation purposes, and an uncer-
tainty of 0.58C as a more realistic error level (corresponding to a standard deviation of
almost 0.28C).
The integral transformation process on the experimental data was performed according to

Equation 20.13a, after interpolating the experimental points with cubic splines in the spatial
domain. In the inverse analysis that follows, 241 sensors were employed in the integral
transformation of the simulated experimental data, such as in a thermographic type meas-
urement. A considerable compression on the experimental data set is then achieved, as
illustrated in Table 20.6, where the total number of experimental points is shown for a
fixed number of sensors (241), available for the estimation procedure when performed
directly in the temperature field or for the estimation on the transformed temperature
field, by varying the number of terms in the temperature eigenfunction expansion
(NT¼ 10, 20, and 40). It can be noticed that a reduction of more than 10 times is achieved
when the plain temperature data is replaced by the transformed temperature field with the
truncation order of NT¼ 20.
Figure 20.10 and Table 20.7 present the determinant of the information matrix by

using the integral transformed data in the inverse analysis. The three curves shown in

TABLE 20.5

Data Employed to Generate
Simulated Experimental Data
for Cases 4–6

tfinal 3600 s

Lx 0.12 m

Ly 0.04 m

Lz 0.001 m

xc 0.04 m

E 0.97

A 0.7

B 0.005 s�1

qinf 1030.9 W=m2

T1 23.48C
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TABLE 20.6

Comparison of the Number of Experimental Points for the Estimation
in the Temperature Field and in the Transformed Temperature Field (Cases 4–6)

Number of Time
Measurements, Nt

Total Number of
Experimental Points, Nm

Number of spatial measurements, Nx

241 120 25,680
200 48,200

300 72,300

Number of modes in temperature
expansion

NT¼ 10 120 1,200

200 2,000

300 3,000
NT¼ 20 120 2,400

200 4,000

300 8,000

NT¼ 40 120 4,800

200 8,000

300 12,000

FIGURE 20.10
Determinant of the information matrix
for estimation in the transformed tem-
perature field (from top to bottom,
NT¼ 40, 20, and 10 terms).
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TABLE 20.7

Analysis of the Determinant of the Information Matrix with the Estimation
in the Transformed Temperature Field with Different Temperature
Transformation Modes and Different Number of Measurements in Time

Number of Sensors Nx¼ 241, NP¼ 15

Number of Time
Measurements

Determinant

Nt NT¼ 10 NT¼ 20 NT¼ 40

120 9.34	 1073 3.50	 1076 2.17	 1078

200 4.19	 1077 1.69	 1080 1.09	 1082

300 8.35	 1079 3.63	 1082 2.80	 1084
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Figure 20.10 correspond from top to bottom to NT¼ 40, 20, and 10. We can notice that an
increase in the number of time measurements leads to a large increase in the values of the
determinant, as a result of the increase on the number of experimental points in the
transformed domain. On the other hand, by doubling the number of modes available for
the transformed data, a relatively small increase is observed in the determinant values for a
fixed number of measurements in time. Therefore, we preferred to perform the inverse
problem solution by keeping NT¼ 10 modes.
Figure 20.11a shows simulated experimental temperature data with the 0.58C uncertainty

level, for selected times along the plate. For the sake of comparison, Figure 20.11b illus-
trates the time evolution of the first 10 transformed temperature fields, with the abscissa
represented by the number of time intervals, again for the 0.58C uncertainty case. This
figure shows the more significant role of the first five transformed potentials.
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(a) Simulated temperature data for selected times along the plate, for the 0.58C uncertainty and (b) simulated
transient variation of the transformed temperature data up to NT¼ 10 and for the 0.58C uncertainty (numeric
symbols indicate the transformed temperature mode).
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The three test cases examined in this second example are summarized in Table 20.8. Test
case 4 was chosen for verification purposes, since the temperature uncertainty was kept
very low, 0.018C, and the experimental data were generated with the same number of
terms in the expansions that were employed in the estimations, that is, NT¼ 10, Nk¼ 3,
Nw¼ 3, and Nd¼ 1, respectively for T(x, t), k(x), w(x), and d(x). Case 4 involves the estima-
tion in the original temperature field, for the sake of comparison against the other
estimations with the transformed temperature measurements. For the more realistic test
cases 5 and 6, the experimental data were generated with NT¼ 50, Nk¼ 10, Nw¼ 10, and
Nd¼ 10, while the estimation was performed with the same reduced number of terms as in
test case 4, in order to avoid the inverse crime. The difference between these two cases lies
on the type of prior information provided for the boundary values of the thermophysical
properties, that is, uniform distributions for case 6 or normal (Gaussian) distributions for
case 5. In all three cases, a noninformative prior (uniform) was utilized for the transformed
coefficients of the two thermophysical properties and of the heat loss coefficient, besides
the two heat flux parameters a and b. The uniform prior was defined with the minimum
and maximum allowable limits in the search procedure, as detailed in Table 20.9. In case 5,

TABLE 20.9

Input Data for Estimation (Cases 5 and 6)

P Prior Exact Min Max Initial

kx0, W=m 8C Uniform or normal (s¼ 5%) 9.0780 0.463 10.440 8.6157

kxL, W=m 8C Uniform or normal (s¼ 5%) 0.545 0.463 10.440 0.5028

k1, W=m 8C Uniform �0.6677 �3.111 3.111 �0.7256
k2, W=m 8C Uniform �0.1111 �0.778 0.778 �0.1082
k3, W=m 8C Uniform �0.04091 �1.037 1.037 �0.04433
wx0, J=m

3 8C Uniform or normal (s¼ 5%) 2.701	 106 1.892	 106 3.106	 106 2.686	 106

wxL, J=m
3 8C Uniform or normal (s¼ 5%) 2.226	 106 1.892	 106 3.106	 106 2.282	 106

w1, J=m
3 8C Uniform �2,894.68 �378,487.0 378,487.0 �2,810.39

w2, J=m
3 8C Uniform �34.942 �94,621.8 94,621.8 �33.045

w3, J=m
3 8C Uniform �107.57 �126,162.0 126,162.0 �104.67

hx0, W=m2 8C Normal (s¼ 20%) 26.620 13.310 53.241 26.601

hxL, W=m2 8C Normal (s¼ 20%) 5.7286 2.8643 11.457 6.2323

h1, W=m2 8C Uniform 0 �3	 10�12 3	 10�12 0

a*¼ aqinf W=m2 Uniform 721.65 0 1,237.1 700.89
b, s�1 Uniform 0.005 0 0.1 0.00521

TABLE 20.8

Test Cases Examined (Second Example, Cases 4–6)

Prior
Case Field NT Nt Nx kx0, kxL, kj, wx0, wxL, wj, dx0, dxL, dj, a, b

Test case with temperature uncertainty of 0.018C

4 Temperature 10 120 61 N, N, U–N, N, U–N, N, U–U, U

Test cases with temperature uncertainty of 0.58C

5 Transformed 10 200 241 N, N, U–N, N, U–N, N, U–U, U

6 Transformed 10 200 241 U, U, U–U, U, U–N, N, U–U, U

N, normal (Gaussian) prior; U, uniform prior.
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for the values of thermophysical properties and of the heat loss coefficient at the bound-
aries, Gaussian prior distributions were adopted, centered at the expected values for
each parameter, with a standard deviation of 5% of the respective exact value for the
kf (x) and wf (x) boundary values and of 20% for the df (x) boundary values. Table 20.9
also presents the expected exact values, the upper and lower allowable bounds, and the
initial states in the Markov chain used in the inverse analysis for each parameter in cases
5 and 6.
Table 20.10 presents the results obtained for test cases 4–6. The exact values of the

parameters are well recovered in these test cases. However, one may observe a better
estimation for the parameters in test cases 5 and 6, which made use of integral trans-
formed measured data. Therefore, the data compression through the integral transform-
ation of the measured data, which was introduced in this work, does not affect the spatial
information conveyed by the local temperature measurements, and is still capable of
resulting in very accurate estimations for the parameters. The analysis of the results for
the more challenging test cases 5 and 6, with uncertainty of the temperature measurements
of 0.58C, reveals that better estimates are achievedwith the use of the Gaussian priors for the
thermal properties (test case 5). This in fact does not represent practical limitations, since in
most real situations, some sort of information is in general available to be somehow
accounted for in the Gaussian prior, either from previously obtained direct measurements
of the thermophysical properties or from theoretical considerations in terms of the constitu-
ents. Nevertheless, the results obtained for test case 6, with essentially noninformative
uniform prior distributions for the thermal properties, demonstrate that the present
approach, even in such cases, can still provide reasonable estimates in terms of the
unknown coefficients. This is also clear from the excellent agreement achieved between
the experimental and estimated temperatures, for both test cases 5 and 6, as demonstrated
in Figure 20.12a and b, respectively, for times t¼ 120, 600, and 1200 s.

TABLE 20.10

Estimated Parameters

P Exact Test Case 4 Test Case 5 Test Case 6

kx0, W=m 8C 9.078 10.281 9.3645 10.404

kxL, W=m 8C 0.545 0.592 0.5186 0.7424

k1, W=m 8C �0.668 �0.804 �0.6742 �0.8135
k2, W=m 8C �0.111 �0.147 �0.1015 �0.1197
k3, W=m 8C �0.0409 �0.0494 �0.02804 �0.03674
wx0, J=m

3 8C 2.7009	 106 2.872	 106 2.791	 106 3.093	 106

wxL, J=m
3 8C 2.2264	 106 2.308	 106 2.290	 106 2.258	 106

w1, J=m
3 8C �2894.7 �3025.4 �2789.49 �2823.6

w2, J=m
3 8C �34.942 �38.779 �31.272 �32.303

w3, J=m
3 8C �107.57 �124.94 �107.78 �110.12

hx0, W=m2 8C 26.620 26.503 26.551 26.434

hxL, W=m2 8C 5.7286 6.023 5.9186 6.2039

h1, W=m2 8C 0 �1.31	 10�13 1.316	 10�15 �4.700	 10�14

a*¼ aqinf W=m2 721.65 701.08 710.44 677.37

b, s�1 0.005 0.00510 0.00505 0.00519
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20.5 Conclusions

The combined use of integral transforms and Bayesian inference was illustrated for the
inverse problem of simultaneously estimating the space variable thermal capacity and
conductivity in two-phase dispersed systems, undergoing a transient one-dimensional
heat conduction process. The direct problem solution was analytically obtained with the
classical integral transform technique, while the related eigenvalue problem, that carries
the information on the medium heterogeneities, was solved with the GITT.
The inverse problem solution was based on the MCMC method. The Metropolis–

Hastings algorithm was employed for the sampling procedure, all implemented in the
Mathematica symbolic computation platform. Instead of seeking the function estimation in
the form of a set of local values, an alternative approach was employed by using eigen-
function expansions of the thermal properties themselves. This approach significantly
reduces the number of parameters to be estimated in comparison to the strategy of
employing local values. Gaussian and uniform distributions were used as priors with
fairly large standard deviations, together with simulated experimental data with added
uncertainty, in order to demonstrate the robustness of the inverse analysis.
The results obtained with simulated temperature data reveal that the proposed inverse

analysis approach can provide accurate estimation of the thermophysical properties variation
and is robustwith respect tomeasurement errors, even for noninformative prior distributions.
Also introduced here is the use of experimental information in the transformed domain,

that is, the discrete temperature measurements along the space coordinate are integrally
transformed into a small set of modes that represent the experimental transformed temper-
atures. A significant data compression is achieved through this transformation procedure,
thus accelerating the inverse problem algorithm, without loss of information in the recon-
struction of the local information on the spatial behavior of the thermophysical properties.
The approach implemented here, should in principle be directly extendable to multidimen-
sional situations, following thewell-established application of the direct problem solution in
two- and three-dimensional problems, thus taking further advantage of the abundant
spatially distributed data set available through thermographic temperature measurements.
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(a) Comparison between experimental (circles) and estimated temperatures (solid lines) at different times for test
case 5 and (b) comparison between experimental (circles) and estimated temperatures (solid lines) at different
times for test case 6.
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Nomenclature

a coefficient in the time lag function of the applied heat flux (Equation 20.28c)
b coefficient in the time lag function of the applied heat flux (Equation 20.28c)
cp specific heat (Equation 20.1a)
d(x) heat loss operator coefficient (Equation 20.3a)
f(t) time lag function in applied heat flux (Equation 20.28a)
heff(x) effective heat transfer coefficient (Equation 20.1a)
k(x) space variable thermal conductivity (Equation 20.1a)
Lx plate length
Lz plate thickness
M truncation order in the eigenvalue problem expansion
Mn normalization integrals in the auxiliary eigenvalue problem
NT truncation order in temperature expansion
Nw, Nk truncation orders in coefficients expansions, w(x) and k(x), respectively
NP number of parameters to be estimated
Nx number of measurements along the spatial domain (sensors)
Nt number of measurements in time
Nm total number of measurements
Ni normalization integrals in the original eigenvalue problem
P vector of unknown parameters
P(x, t) source term (Equation 20.3a,g)
qw(x, t) applied heat flux (Equation 20.1a)
qinf heat flux dissipated from electrical resistance (Equation 20.28b)
t time variable
T vector of estimated temperatures
Tm(x, t) temperature distribution
w(x) thermal capacity (Equation 20.3a)
wf (x) filter for thermal capacity expansion
W covariance matrix of the measurement errors
x space coordinate
Y vector of measurements

Greek Letters

g parameter in the heat flux or the linear dissipation coefficient spatial variation
e emissivity
l eigenvalues of the auxiliary problem
m eigenvalues of the original problem
r density
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c eigenfunctions of the original problem
V eigenfunctions of the auxiliary problem

Subscripts and Superscripts

d dispersed phase (filler) properties
f filtering function in coefficients expansion
i, n, m order of eigenquantities
_ integral transform
� normalized eigenfunction
m matrix phase properties
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21.1 Introduction

Radiative transfer in participating media is important in many industrial applications. In
many processes, radiative heat transfer is the main form of transfer. This situation is well
illustrated either by porous materials or media containing particles, which play a key role
in radiative transfer process. Some examples are fluidized and packed beds, combustors,
surface pigmented coatings, soot and fly ash, sprayed fluids, porous sintered materials,
microspheres, ceramic foam, and fibrous insulations (Moura et al., 1998a).
In recent years, many works on semitransparent media (STM) have been carried out

considering the medium without interface, that is, the distance among the particles is
important so that the porosity is extremely high. Consequently, the effects of reflection
and refraction at interfaces cannot be considered. However, many materials, such as
ceramic, thin films, coatings, and metals with low porosity, are far from being considered
with unit refractive index. Besides the direction change due to refraction, in some problems
it is necessary to take into account the increase of local blackbody emission by a factor of
the refractive index squared.
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In addition, some works can be found referring the study of radiative transfer within
materials without unitary refractive index. Special conditions at interfaces must then
be taken into account due to refraction (Hottel et al., 1968, Wu et al., 1994, Liou and
Wu, 1996).
Baillis and Sacadura (2000) present a review on the determination of radiative properties

in STM. Two different techniques can be used to evaluate the radiative transfer in STM. The
first one considers radiative transfer as a term that must be added into the heat conduction
equation (Tong and Tien, 1980). Although this method is simpler, it always demands the
determination of experimental parameters and these parameters are restricted to the range
of experimental analysis. The second technique consists of using the radiative transfer
equation (RTE) coupled to the heat conduction equation and=or Navier Stokes equations.
The solution of RTE requires the knowledge of the radiative properties of the medium.
These properties can be determined using two different techniques: (i) using the Maxwell
equations (electromagnetic field), when it is necessary to know the morphologic param-
eters and the spectral optical properties of the medium; (ii) measuring the radiative
intensities field emitted, transmitted, and=or reflected by a sample with an experimental
device and identifying the radiative properties by inversion techniques. The first one is
normally used when morphologic parameters and the spectral optical properties are easier
to define such as spherical or cylindrical geometries and glass materials. The second one is
more adequate to the complex geometries and=or heterogeneous materials. The second
approach is the aim of this work.
Even if analytical or numerical techniques are available to solve the coupled heat transfer

in participating media, some difficulty remains in determining the radiative properties
of STM.
Tong and Tien (1980) employ a radiative conductivity model considering radiation as a

conductive process. Although the expressions are simple, most of them contain a param-
eter that has to be experimentally determined.
The works of Cunnington and Lee (1996), Boulet et al. (1996), and Doermann and

Sacadura (1996) calculate spectral radiative properties using the electromagnetic theory
and knowing the porosity, particle size, particle shape, spectral optical properties, and
particle orientation distribution. Hendricks and Howell (1996) have calculated the radia-
tive properties of reticulated porous ceramics with inverse analysis techniques, based on
discrete ordinates radiative models and measurements of hemispherical reflectance and
transmittance. Hahn et al. (1997) have also measured the hemispherical reflectance and
transmittance to determine radiative properties of ceramic materials by using a three-flux
approximation. Silva Neto and Özisik (1992) have analyzed the estimation of optical
thickness, albedo, and the coefficients of Legendre phase function for anisotropic scatter-
ing from simulated measurements. The direct problem is solved by PN approximation
and one of the boundaries is subjected to an isotropic incident radiation. An analysis with
different number of terms in the phase function show strong deviations from exact phase
function shape for a number of coefficients greater than four. Nicolau et al. (1994), using
measurements of the spectral bidirectional transmittance and reflectance, have deter-
mined fiber radiative properties. They solved the RTE using the discrete ordinates
method (DOM) with a fine angular quadrature to take into account the highly forward
and backward peaked scattering, which is commonly observed for fiber or foam materials.
The phase function has been approximated by a combination of two Henyey–Greenstein
(HG) functions coupled with an isotropic component. The choice of this phase function is
made because the identification of the high orders of classical Legendre polynomial values
is very difficult.
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21.2 Radiative Transfer Equation

The RTE, which describes the variation of the spectral radiation intensity Il (in a solid angle
V, function of optical depth t) in an absorbing-emitting-scattering medium, can be written
as follows:

1
bl

VrIl(t,V)þ Il(t,V) ¼ (1� vl)Ibl (t)þ
vl

4p

ð
V0¼4p

Il(t,V)pl(V0,V)dV0 (21:1)

where
bl is the spectral extinction coefficient
vl is the spectral albedo
pl is the spectral phase function
Ibl is Planck’s blackbody function (in order to simplify the notations, the subscript l can

be omitted in the text)

These properties are those of a pseudo-continuum medium equivalent, in terms of radia-
tive transport, to the real dispersed material.
The RTE in a plane parallel geometry with azimuthal symmetry can be written as follows

(Özisik, 1973):

m
qIl(t,m)

qt
þ Il(t,m) ¼ S(t,m) in

0 � t � t0

�1 � m � 1



(21:2)

where

S(t,m) ¼ (1� vl)Ilb[Tp(t)]þ vl

2

ð1
�1

p(m,m0)lIl(t,m
0)dm0 (21:3)

and the phase function can be expressed by a Legendre polynome

p(m,m0)l ¼
XN
n¼0

an,lPn, l(m)Pn,l(m0); a0 ¼ 1 (21:4)

An explicit formulation for inverse radiative problems in participating medium has been
derived and discussed in Chapter 15.

21.2.1 Boundary Conditions

Different strategies can be considered to identify radiative properties (Figure 21.1). We will
analyze five experimental devices, consequently five boundary condition cases (Moura
et al., 1998a):

Case a: normally incident collimated beam onto the sample with bidirectional trans-
mittance and reflectance measurements

Case b: collimated beam with different angles of incidence onto the sample with
hemispherical transmittance and reflectance measurements

Case c: diffuse irradiation onto the sample with bidirectional transmittance and
reflectance measurements
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Case d: measurements of bidirectional radiation flux emitted by a hot sample (self-
emission)

Case e: inclined incident collimated beam onto the sample with bidirectional trans-
mittance and reflectance measurements

21.2.2 Phase Function

The phase function due to particles randomly oriented in space depends only on the
scattering angle, up, which is the angle between the incident and the scattered radiation.
A classical approach to represent the phase function consists of developing this function in
a limited series of Legendre polynomials. Unfortunately, the phase function expansion by
Legendre polynomials for fibers or foams needs a large number of expansion coefficients.
The phase functions for fibrous or foam media always exhibit a strong peak in the

direction of incident radiation and a fair backscattering, showing that the scattering is
highly anisotropic. An alternative solution requires the use of simpler phase functions,
such as HG, or a combination of different phase functions (Nicolau et al., 1994, Hendricks
and Howell, 1996). In the current work, we employ a combined phase function proposed
by Nicolau et al. (1994):

p(ud) ¼ f1f2pHG, g1 (ud)þ (1� f1)f2pHG, g2 (ud)þ (1� f2) (21:5)

where the parameters g1 and g2 govern the shape of HG functions (pHG, g1 and pHG, g2 ) in
the forward and backward directions (Figures 21.2 and 21.3). f1 is the weighting factor
between forward and backward anisotropy in the phase function, f2 is the weighting
factor between anisotropic and isotropic scattering.

Detector

Integrating 
sphere 

Sample

Case a Case b

Case d Case e

Case c

FIGURE 21.1
Different experimental measurement conditions. (From Moura, L.M. et al., Identification of thermal radiation
properties of dispersed media: Comparison of different strategies, Proceedings of the 11th IHTC, August 23–28,
Korea, 1998a.)
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21.3 Discrete Ordinate Method

The discrete ordinate method (DOM) was initially used by Schuster (1905) and Schwarzs-
child (1906) for studying radiative transfer in stellar atmospheres (apud Siegel and Howell,
2002), and later, Chandrasekar (1960) extended the formulation to astrophysics problems.
Carlson and Lathrop in 1968 have developed a solution to the neutron transport equation.

FIGURE 21.2
Phase function ( f1¼ 0.9, g1¼ 0.84, f2¼ 0.95,
g2¼�0.6). (From Moura, L.M. et al., Identifica-
tion of thermal radiation properties of dispersed
media: Comparison of different strategies, Pro-
ceedings of the 11th IHTC, August 23–28, Korea,
1998a.)
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FIGURE 21.3
Anisotropic phase function to 100,000 statistical realizations. g1 ¼ 0:86, g2 ¼ 0:8, f1 ¼ 0:96, f2 ¼ 0:96. (From Xavier
Filho, O. and Moura, L.M., A comparative analysis between the Monte Carlo method and the discrete ordinate
method applied to solve the radiative transfer equation, Proceedings of the 19th International Congress of Mechanical
Engineering, 2007.)
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The majority of works uses the RTE formulation presented by Chandrasekhar (1960) and
Özisik (1973). These techniques of solution of the RTE can be found in Moura et al. (1997,
1998c). The RTE solution by DOM is constituted of two stages: (i) an angular discretization,
where the integral term of RTE is substituted by a radiative intensities weighted sum in the
angular directions; in this way, the integro-differential equation is transformed into a set of
first-order ordinary partial differential equations; (ii) a space discretization, considering
control volumes, for solution of the partial differential equations. In Chapter 15, the DOM
method is used to solve the set of differential equation by the explicit method. Considering
a ‘‘cold media,’’ Equation 21.2 can be rewritten as follows:

Iiþ1=2, j ¼ 1
(1þ faj)

faj
v

2b

XN
n¼1

wn(pnjIiþ1=2, n)

" #
þ Ii, j

" #
(21:6)

where iþ 1=2 represents the control volume center coordinate, f is the interpolation func-
tion that can be: upwind ( f¼ 1), linear ( f¼ 1=2), integral ( f is function of the aj calculated
from integration of RTE) or exponential ( f is function of the aj calculated from the solution
of RTE) (Moura et al., 1998c), w is the weight and aj is

aj ¼
Dtiþ1=2

mj
(21:7)

where Dt is the optical thickness of the control volume.

21.4 Monte Carlo Method

Radiative heat transfer by Monte Carlo method (MCM) is based on probability concepts
applied to the physical phenomena, such as emission, reflection, and absorption of the
photon. When solving RTE by MCM, radiative energy is not treated as a continuous energy
flux but is considered a pack of photons, each with a fixed amount of energy. To quantify
the radiative energy attenuation in a monochromatic source, Beer’s law is considered,
which expresses the attenuation of radiant energy inside a volume. In the MCM, Beer’s
law can be modified to express the radiative energy extinction probability emitted from a
point in the media (or surface) and to travel over the distance, s (Yang et al., 1995):

Rs ¼ 1� ebs (21:8)

where
Rs is the random number
b is the extinction coefficient
s is the distance traveled by the photon up to when it is absorbed or scattered

If the value of s is bigger than the distance taken from the photon point emission then the
photon was absorbed or scattered. To determine if the photon is absorbed or scattered, a
uniform random number for scattering albedo, Rv, is used. If Rv is bigger than albedo the
photon is absorbed, otherwise the photon is scattered (Brewster and Tien, 1992). The Monte
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Carlo algorithm for an anisotropic media with a collimated beam incident onto a slab
surface has the following steps (Xavier Filho and Moura, 2007):

1. Determine the direction of propagation by the photon inside the solid angle of the
incident beam onto the face of the slab.

2. Determine by Equation 21.8 if it was absorbed, scattered, or remains in its trajec-
tory.

3. If the photon is absorbed or has reached the boundaries, it will initiate a new
photon analysis.

4. Verify the absorption or scattering criteria. If the photon was scattered, to choose a
new direction (random choice by the phase function and to repeat step 2, con-
sidering the current position of the photon).

Repeat these steps for a number of photons to assure accuracy.
An isotropic and conservative (unitary albedo, v¼ 1) case is used to compare the MCM

and DOM. The solution of MCM was implemented in Xavier Filho and Moura (2007).
Figure 21.4 presents the results to this case. The P1 solution presented by Modest (2003) is
used as a reference.
Modest (2003) shows that the analytical solution is close to the P1 solution. In such a way,

the P1 solution is compared with MOD and MCM solutions as a function of the optical
thickness. Two different divergence angles of the incident beam, uo, two different spatial
discretizations of the control volumes, dx, and two different numbers of packages, np, are
used to investigate a probable influence of these parameters on the MCM solution. It can be
observed that they don’t present a significant influence in the nondimensional flux.
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FIGURE 21.4
Comparison between DOM and MCM for a nondimensional radiative heat flux in a purely scattering layer with a
normal collimated irradiation and isotropic scatter. (From Xavier Filho, O. and Moura, L.M., A comparative
analysis between the Monte Carlo method and the discrete ordinate method applied to solve the radiative transfer
equation, Proceedings of the 19th International Congress of Mechanical Engineering, 2007.)
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As presented by Modest (2003), Lataillade et al. (2002), and Eymet et al. (2005), the MCM
errors (difference between MCM and reference solution) increase strongly with the optical
thickness. They presented a boundary-based net-exchange MCM applied to solve a scat-
tering media of optically thick absorption (and=or for quasi-isothermal configurations).
They presented to the MCM the number of statistical realizations needed in order to get a
1% standard deviation over the slab emission value as a function of slab total optical
thickness. They showed that the number of statistical realizations increase strongly with
the optical thickness. In case of very short photon mean free paths, most bundles are
absorbed in the vicinity of their emission positions, which means that only very few
bundles effectively participate in distant radiative transfers. The consequence is that
MCM based on bundle transport formulations requires very large numbers of statistical
realizations for sufficiently accurate radiative exchange estimations. The computational
costs impose constraints to geometrical grid sizes that cannot be reduced sufficiently for
the optically thin assumption to be valid. They presented the exchange formulation in
order to reduce the number of statistical realizations to the acceptable values. It can also be
observed that the DOM presents a close agreement with the reference solution.

21.5 An Experimental Device (Nicolau et al., 1994, Moura, 1998)

An experimental device used to measure infrared bidirectional transmittance and reflect-
ance is schematically shown in Figure 21.5. The objective is to determine the fraction of the
infrared incident collimated beam reflected by the sample (the range 2.0�16.0 mm of
wavelength region is considered). The spectrometer is a FTS 60 A (Bio-Rad Inc.) type,
based on Fourier transform spectroscopy. The source of radiation, characterized by a
blackbody emission spectrum at 13008C, is a tungsten filament inside a silica tube. An
entrance slit with four movable holes (1.2, 2.7, 4, 7 mm diameter) determines the solid angle

FTIR spectrometer

SM, spherical mirror
PM, plane mirror

Incident 
beam

Sample

Normal 
direction

Infrared 
detector

SM3

θ

Turn table

Source

Beam splitter

PM 
movable

PM

PM 
fixed

SM1
SM2

PM

Laser
PM

Laser
detector

Diaphragm

FIGURE 21.5
Experimental device using an FTIR spectrometer to measure reflectance. (FromNicolau, V.P. et al., Int. J. Heat Mass
Transfer, 37, 311, 1994; Moura, L.M., Identification des proprietes radiatives des materiaux semi-transparent en
situation de non-symetrie azimutale du champ radiatif, PhD diss., INSA, Lyon, 1998. With permission.)
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of the infrared collimated beam. The Michelson interferometer principle is used so that the
exit infrared beam can be measured by a detector as a function of path difference between
the fixed and movable mirrors (Figure 21.5). The detection system, composed of a spherical
mirror collecting the beams and concentrating them on a quantic detector, HgCdTe, is
mounted on a goniometric arm to allow bidirectional reflection measurements and detec-
tion of reflected radiation. Both the spectrometer and the detection system are purged with
dry air and connected to a data acquisition system.
The experimental arrangement presented allows the measurement of spectral reflectance.

Two measurements are carried out: one without the sample (to know the incident energy)
and the other with the sample (reflected energy). The ratio between the reflected and
incident energies provides the reflectance.

21.6 Parameter Identification

The five different strategies described in Section 21.2.1 (cases a, b, c, d, and e) can be used in
order to determine the radiative properties of a semitransparent sample. For each strategies
and sample thickness, the model described above in which the material radiative proper-
ties (to¼b‘, v, g1, f1, g2, f2) should be given, is used to calculate the theoretical transmit-
tances and reflectances, Tt(u,f). The experimental bidirectional transmittances and
reflectances, Ted(u,f) for an incident radiation, the experimental hemispherical transmit-
tance Teh, and the experimental directional emittance, eed(u,f), are defined by the following
expressions:

Ted(u,w) ¼ I(u,w)
Io dvo

Teh ¼
Ð 2p
0 I(u,w) cos u dV

Io dvo

eed(u,w) ¼ I(u,w)
Ib

(21:9)

where
I is the transmitted, reflected, or emitted intensity
Io is the intensity of the beam incident onto the sample within a solid angle, dvo

Ib is the blackbody emission intensity

The irradiation is presented only inside the solid angle, dvo.
For cases a, b, and e, dvo depends on the experimental device, for case c, dvo is the half

hemisphere (2p).
The identification of the radiative parameter, x̂k, is based on the minimization of the

quadratic error between the measured, Ten, and calculated, Ttn, transmittances and reflect-
ances over the N measurements for the K parameters:

F(x̂k) ¼
XN
n¼1

[Ttn(x̂k)� Ten]2, k ¼ 1, . . . ,K (21:10)

where x̂k represents the radiative parameter vector that must be identified.
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In cases a, c, d, and e the summation, Equation 21.10, is performed on different bidirec-
tional measurements. In case b, the summation is on the hemispherical transmittance and
reflectance measurements for the different angles of incidence onto the sample.
The method adopted to achieve this minimization is the Gauss linearization method that

minimizes F(x̂k) by setting the derivatives to zero with respect to each of the unknown
parameters, x̂k. As the system is nonlinear, an iterative process is performed over m
iterations (Nicolau et al., 1994).

XN
n¼1

qTtn

qx1

� �2XN
n¼1
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XN
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qxKXN
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37775
mþ1

¼ �

XN
n¼1
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qx2
- - - - - - - - - - - - - - - -XN
n¼1

(Ttn � Ten)
qTtn

qxK

2666666666664

3777777777775

m

(21:11)

The different methods and tools for nonlinear estimation are discussed in depth in
Chapters 8 through 11.
The solution of this system gives the increments Dxk¼1,...,K to be added to each parameter,

xk, at each step of the iterative process, as follows:

xmþ1k ¼ xmk þ akDx
m
k , k ¼ 1, . . . ,K (21:12)

where ak is an under-relaxation coefficient for the parameter k to assure convergence.
Convergence is obtained when Dxmk xmk

�
is less than a convergence tolerance.

The matrix on the left-hand side is composed of the sensitivity coefficient products
calculated from the theoretical model, and it does not directly depend on the experimental
values. This matrix, M, can be used in the sensitivity analysis to verify possible linear
dependences between the sensitivity coefficients calculated for each parameter. The calcu-
lation of a condition number, CN, of this matrix can be used to determine the degree of ill-
posedness of the identification problem (McCormick, 1992):

CN(M) ¼ M�1
�� �� � Mk k (21:13)

where the norm Mk k is calculated from the elements Mk0, k, as

Mk k ¼ max
k0¼1,K

XK
k¼1

Mk0 , k (21:14)

The CN is greater than one. The larger the CN is, the worse ill-conditioned the system is.
Small changes in the right-hand side of Equation 21.5, i.e., in the measurements, result in
very large change in the solution vector, i.e., the increments Dx̂k. It is then almost impos-
sible to simultaneously determine all of the unknown parameters. Poor conditioning
occurs when at least two of the sensitivity coefficients are quasi-linearly dependent or
when at least one is very small or very large compared to the others.

718 Thermal Measurements and Inverse Techniques

  



The performances of the five cases are shown in Figures 21.6 through 21.18. The CN as a
function of optical thickness (to) and the signal intensity measured for different directions
and=or optical thickness for the four cases are analyzed. It should be noted that the diffuse
intensities are very small compared to the incident intensity; this poses a real practical
difficulty in measuring the intensity. The six parameters case corresponds to the determin-
ation of ((x̂k)k¼1,..., 6 ¼ v, g1, f1, f2, g2, to). The five parameters case correspond to the deter-
mination of ((x̂k)k¼1,..., 5 ¼ v, g1, f1, f2, g2) and so on. Obviously, the CN depends on the
choice of the parameters to identify. For this reason, the optical thickness is left as the

FIGURE 21.6
Condition number for case a. (From
Moura, L.M. Identification des proprietes
radiatives des materiaux semi-transparent
en situation de non-symetrie azimutale du
champ radiatif, PhD diss., INSA, Lyon,
1998.)
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FIGURE 21.7
Bidirectional transmittance and reflect-
ance for case a. (From Moura, L.M.
et al., Identification of thermal radiation
properties of dispersed media: Com-
parison of different strategies, Proceed-
ings of the 11th IHTC, August 23–28,
Korea, 1998a.)
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last parameter. Indeed, the optical thickness can be determined directly by Beer’s law or
with corrections to subtract the scattered intensity from the total intensity in the incident
direction (Nicolau et al., 1994).
The fifth parameter is g2. Nicolau et al. (1994) showed that this parameter induces a

smaller variation of radiation intensity than the variations of the other parameters. One
suitable possibility is to set g2¼ g1. This analysis depends on the values of the radiative
properties. Here, we consider the values given by Nicolau et al. (1994) for fiber insulation
(Table 21.1).
As expected, the increase in the number of parameters simultaneously identified results

in an increase of the CN (Figures 21.6, 21.11, 21.14, 21.15, and 21.17).
Figures 21.6 through 21.9 correspond to case a. In Figure 21.6 the CN is represented. The

estimated value of to increases suddenly for values greater than 6. It is due to the extinction

FIGURE 21.8
Transmittance and reflectance functions
for to¼ 5.
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of collimated intensity for the optically thick samples. This figure also indicates that the
optimal interval of to is between 5 and 8.
Figure 21.7 shows the bidirectional transmittances versus the azimuthal angle for differ-

ent optical thicknesses. It shows that the collimated intensity is important for optically thin
samples. A change in the transmittance and reflectance shape is also noted for optically
thin samples. This can be used if an estimation is performed to take into account several
different thicknesses. The reflectance increases suddenly and presents a semi-infinite

FIGURE 21.10
Hemispherical transmittance and reflect-
ance under normal incidence (case b).
(From Moura, L.M. et al., Identification
of thermal radiation properties of dis-
persed media: Comparison of different
strategies, Proceedings of the 11th IHTC,
August 23–28, Korea, 1998a.)
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FIGURE 21.11
Condition number for case b. (From
Moura, L.M. et al., Identification of ther-
mal radiation properties of dispersed
media: Comparison of different strat-
egies, Proceedings of the 11th IHTC,
August 23–28, Korea, 1998a.)
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medium behavior for to greater than 15. It should be noted that the solid angle of incidence
is on the order of 10�3. This results in a signal intensity 105 smaller than the signal intensity
of the incident beam for a bidirectional transmittance of 10�2.
Tables 21.2 and 21.3 present the numerical identification analysis (simulated) and Fig-

ures 21.8 and 21.9 the respective graphical representation.
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In Figures 21.10 and 21.11, case b is presented. The measurements over 12 directions
are used in the summation of Equation 21.10. The hemispherical transmittance and reflect-
ance are considered with a normal incident beam. Moreover, 10 hemispherical transmit-
tances are considered with an oblique incident beam onto the sample. The directions
considered are between 58 and 508with a step of 58. The error is calculated by the expression

Error (%) ¼ xk(correct) � xk(estimated)
xk(correct)

	 100 (21:15)

FIGURE 21.14
Condition number for case c. (From
Moura, L.M. et al., Identification of ther-
mal radiation properties of dispersed
media: Comparison of different strat-
egies, Proceedings of the 11th IHTC,
August 23–28, Korea, 1998a.)
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FIGURE 21.15
Condition number for case d. (From Moura,
L.M. et al., Identification of thermal radiation
properties of dispersed media: Comparison
of different strategies, Proceedings of the 11th
IHTC, August 23–28, Korea, 1998a.)
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FIGURE 21.16
Directional emittance for case d. (From
Moura, L.M. et al., Identification of ther-
mal radiation properties of dispersed
media: Comparison of different strat-
egies, Proceedings of the 11th IHTC,
August 23–28, Korea, 1998a.)
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Condition number for case e.
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Bidirectional transmittance and reflectance for case e and uI¼ 458, v¼ 0.95, g2¼�0.6, f1¼ 0.9, f2¼ 0.95. (From
Moura, L.M., Identification des proprietes radiatives des materiaux semi-transparent en situation de non-symetrie
azimutale du champ radiatif, PhD diss., INSA, Lyon, 1998.)

TABLE 21.1

Radiative Properties Used
in This Analysis

Radiative Properties

v 0.95
g1 0.84

f1 0.9

g2 �0.6
f2 0.95

TABLE 21.2

Identification Results to to¼ 5

Correct Value Initial Value to Inverse Error (%) to Direct Error (%)

v 0.95 0.85 0.931 2.0 0.973 �2.4
g 0.95 0.8 0.951 �0.1 0.914 3.8

f1 0.9 0.98 0.900 0.0 0.861 4.3

f2 0.95 0.98 0.966 �1.7 0.990 �4.2
vo 5.0 — 5.019 �0.4 3.965 20.7

Number of iterations — — 13 — 10 —

CN — — 100 — 85 —
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Figures 21.12 through 21.14 correspond to case c. In this case, the bidirectional transmit-
tances and reflectances are considered in the estimation procedure. Table 21.4 presents the
numerical identification analysis (simulated) for a sample test. Measurements of reflectance
under a diffuse incidence should be difficult to accomplish experimentally. Unfortunately,
identification with only transmittance measurements showed a poor CN. CN for case c,
Figure 21.14, presents better results for optically thin samples. Generally, case c is less well
conditioned than case a.
Case d presents an inverse behavior of case c. Generally, the CN is greater for the

optically thick samples, except for two parameters (Figure 21.15). The directional emittance
increases with the sample thickness and becomes nearly constant for values of thickness
greater than about to¼ 20. The signal also increases with the absolute temperature of the
sample. The radiative properties can change with the temperature. An advantage of case d
is that radiative properties can be obtained for different sample temperatures. But the
sample temperature must be sufficiently high in order to have enough energy to measure
the directional emission (Figure 21.16).
Case e is shown in Figures 21.17 and 21.18 and it presents a better result when compared

with case a. The anisotropic conditions improved the identification method.
The optical thickness could be identified using a direct model, like a Beer’s law model

or a second-order model (Nicolau et al., 1994). The second-order model uses a second-
order polynomial to determine the diffuse transmittance in the directions near the
incident beam and extrapolate these values to the direction of incidence. For a divergence
angle of the incident beam uo¼ 0.388, it was shown that the optical thickness was
estimated correctly for values going up to 20. However, the accuracy of the estimation
depends on the divergence angle of the incident beam and the anisotropy of the phase
function. Figures 21.19 and 21.20 show the errors using direct models to determine the
optical thickness for two different coefficients g1. Figure 21.19 shows that the second-
order model gives better identification than Beer’s law to anisotropy factor, g1¼ 0.86.
However, when the anisotropy factor increases, g1¼ 0.95, the optical thickness identifica-
tion can present uncertainties higher than 20% (especially when the divergence angle of
the incident beam is close to unity) (Figure 21.20). For this reason, the optical thickness
should be identified by inverse method. Increasing one parameter in the identification
procedure it will increase the ill-conditioned of the identification procedure. To assure
convergence, an under-relaxation coefficient, ak, is used. This parameter should increase
the number of iterations.

TABLE 21.3

Identification Results to to¼ 15

Correct Value Initial Value to Inverse Error (%) to Direct Error (%)

v 0.95 0.85 0.920 3.2 0.881 7.3

g 0.95 0.8 0.942 0.8 0.923 2.8
f1 0.9 0.98 0.871 3.2 0.765 15.0

f2 0.95 0.98 0.939 1.2 0.819 13.8

vo 15.0 — 12.344 17.7 8.524 43.2

Number of iterations — — 78 — 15 —

CN — — 2.8	 106 — 2100 —
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21.7 Radiative Transfer in a Medium with Refractive Index and Specular
Reflection at the Boundaries

In recent years, many works on RTE solutions have been carried out considering the
medium without interface, consequently, to the high porosity medium with the radiative
index close to unity. However, many usual materials like coatings, glasses, and thin films

FIGURE 21.19
Optical thickness ratio for v¼ 0.95,
g1¼ 0.86, f1¼ 0.9, f2¼ 0.95, g2¼�0.6.
(Moura, L.M., Identification des pro-
prietes radiatives des materiaux semi-
transparent en situation de non-symetrie
azimutale du champ radiatif, PhD diss.,
INSA, Lyon, 1998.)
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FIGURE 21.20
Optical thickness ratio for v¼ 0.95,
g1¼ 0.95, f1¼ 0.9, f2¼ 0.95, g2¼�0.6.
(Moura, L.M., Identification des proprietes
radiatives des materiaux semi-transparent
en situation de non-symetrie azimutale du
champ radiatif, PhD diss., INSA, Lyon,
1998.)
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present refractive index higher than unity, n> 1. Conventional paints transmit or absorb
most of the incident infrared radiation. A coating can be optimized to produce interesting
effects in the thermal performances. Respecting the color of the coating on the visible range,
the scattering on the infrared radiation can be changed in order to improve the reflection.
This effect can be applied to automobiles, oil and gas tanks, and building coatings. In some
countries, minimum building separation distances must be respected by consideration of
the fire radiant flux (Berdahl, 1995).
The radiative behavior of the medium, n> 1, needs special interface conditions that must

be used to take into account the refractive index (Hottel et al., 1968, Wu et al., 1994, Liou
and Wu, 1996). Furthermore, when using the DOM, a special discretization must be
employed to consider the changes of the radiation direction, even when the radiation
beam has a normal incidence.
Hottel et al. (1968) analyzed the effects of Fresnel reflection at the interface of a slab

containing anisotropic scattering medium using the DOM. In 1970, Hottel et al. compared
the measurements of monodisperse polystyrene spheres confined between two parallel
glass slides with the values predicted fromMie theory. Orel et al. (1990) measured the solar
absorptance by Fourier transform infrared (FTIR) spectroscopy of paint coatings for solar
collectors. Wu et al. (1994) analyzed a radiative transfer problem in an isotropic media with
no unit refractive index and Fresnel boundaries. They used a set of DOM quadratures to
treat the strongly angular dependence of the radiative intensity around the critical angles.
Oppenheim and Feiner (1995) investigated the polarized infrared (IR) reflectivity of

painted and rough surfaces. Values of the bidirectional reflectance function are measured
for sandblasted aluminum, concrete, painted metal, and asphalt surfaces. In the same year,
Berdahl presented a study on the pigments that reflect the infrared radiation from fire. He
used the Mie theory to analyze the radiative transfer by the particles of titanium dioxide,
iron oxide, chromium oxide, and silicon, with particle diameters of 1–2 mm. Shah and
Adroja (1996) measured the diffuse reflectance of titanium dioxide pigment dispersions in
the visible region. They used the Mie theory to predict the reflectance. Theoretical and
experimental values of the reflectance are compared with reasonable agreement.
Liou and Wu (1996) analyzed the radiative transfer in a two-layer scattering medium

with Fresnel conditions. They used the DOM with composite quadratures to take into
account the refractive index differences. Their results presented the effects of the albedo
and the refractive index.
More recently, Abdallah and Le Dez (2000) analyzed by the ray-tracing method the

intensity of radiation emitted from a nonscattering semitransparent plate with a refractive
index varying with position. Lemonnier and Le Dez (2002) analyzed the same problem
now using the DOM and achieved good agreement. In this case, the directions of radiation
propagation in the medium vary greatly due to the variable refractive index. Lacroix et al.
(2002) analyzed a similar problem, but now considering the conduction heat transfer
coupling. Garcia et al. (2008) studied the Fresnel boundary and interface conditions for
multilayered media. They use an ‘‘analytical’’ discrete ordinates method, ADOM, pre-
sented by Barichello and Siewert (1999).
Traditionally, in literature there are two different major materials involving refractive

index solutions: metallic and dielectric materials (Özisik, 1973, Modest, 2003, McCluney,
1994, Siegel and Howell, 2002). All these solutions are obtained from Maxwell equations,
Planck (1914), and Hulin et al. (1998). In this case, the coating can be considered like a
dielectric material. This method involves the use of Snell equation to obtain the angular
quadratures of DOM due to the refractive index considerations. Even when there is a
normal incidence onto the sample, the solid angle of the incident beam changes. This must
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be taken into account in the quadrature setup, and the use of classic quadratures, like
Gauss and Radau, is not possible. Moura et al. (1999) showed that in the higher aniso-
tropical materials, the small variations in the solid angle of the incident beam can result in
significant errors on phase function identification. In this way, it is recommendable to use
adaptive quadratures, and consequently the quadrature weights, with respect to solid
angle of the incident beam.
Wu et al. (1994) and Liou and Wu (1996) have used a linear transformation to correct the

quadratures to consider the refractive index changes in the directions m (m¼ cos u) and the
quadrature weights, w, are written as

m0j ¼
(mj þ 1)

2
, w0j ¼

wj

2
(21:16)

ð1
0

f (m0) dm0 ¼
ð1
�1

f
mþ 1
2

� �
dm (21:17)

The divergence angle, u
0
2, inside the medium is obtained by the incident divergence angle,

u2, by the following equation:

u
0
2 ¼ arcsen

sen u2
n2

n1

� �
(21:18)

Figure 21.21 presents a sketch of the physical conditions analyzed. A collimated incident
beam irradiates the coating surface. The coating substrate can have specular or diffuse
reflection. Figure 21.22 shows the hemispherical bidirectional function of the optical
thickness to albedo, v¼ 0.95, and the phase function g1¼ 0.84, g2¼�0.6, f1¼ 0.9, and
f2¼ 0.95. The hemispherical reflectance decreases with the refractive index and with optical
thickness. For the optical thickness up to 10, the hemispherical reflectance remains con-
stant. This limit will be defined as optical thickness limit (OPL point).
Figure 21.23 shows the surface specular reflectivity to a media with refraction index, n2,

bigger than n1. Between 308 and 53.138, the Brewster angle can be observed and for angles
greater than 53.138, the reflection is 100% (critical angle). With the increase of the refraction
index, the increase of the critical angle and the reduction of the divergence angle of the
incident beam can be observed.
Figure 21.24 presents the CN considering the identification of the refraction index with

the values listed in Table 21.5. Figure 21.25 shows the comparative results for this case.

FIGURE 21.21
Physical conditions.
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FIGURE 21.22
Hemispherical reflectance function of
optical thickness for v¼ 0.95.
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n = (1.25)–1, θć= 53.13o, θo = 2.0o
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FIGURE 21.23
The interface specular reflectivity function of the incidence for different refractive indexes.
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FIGURE 21.24
Condition number (CN) function of the optical thickness for n¼ 1.5, v¼ 0.95, g¼ 0.84, f1¼ 0.9, and f2¼ 0.95.

TABLE 21.4

Identification Results of Five Parameters for Case c

Parameter True Value Initial Value Estimated Value j«aj (%) j«Sj(%)

v 0.95 0.85 0.948 0.08 0.18

g 0.84 0.8 0.862 0.64 2.66

f1 0.90 0.98 0.869 0.09 3.49

f2 0.95 0.98 0.927 0.24 2.46

TABLE 21.5

Identification Results to a Medium with Refractive Index
for to¼ 5 and n¼ 1.5

Parameter
Correct
Value

Initial
Value

Identified
Value

Standard Deviation
(95%)

Bias
(%)

n 1.5 1.3 1.520 0.16 1.3

v 0.95 0.85 0.950 0.009 �0.03
g 0.84 0.8 0.842 0.019 0.20

f1 0.9 0.8 0.902 0.016 0.19

f2 0.95 0.8 0.943 0.053 �0.67
to 5.0 28 order 5.023 0.028 0.46
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21.8 Parameter Identification for Packed Spheres Systems

Radiative heat transfer through randomly packed spheres system has received much
attention due to its many industrial applications. Baillis and Sacadura (2000) have
reviewed in a recent work a number of theoretical and experimental studies reported in
the literature. These studies have shown that radiative heat transfer involves complex
radiative interactions between the individual spheres due to the close packed system
(Tien, 1988). Results of previous studies have led to a better understanding of the radiative
heat transfer mechanism in a packed spheres system.
To this end, Brewster and Tien (1982) applied a two-flux model to calculate the hemi-

spherical transmittances of a packed bed of spheres with the radiative properties predicted
from uncorrelated scattering theory. Yang et al. (1983) utilized a MCM to simulate the
energy bundle traveling through the voids of bed, showing a strong dependence of the
packing structure and the size and emissivity of constituent spheres on the thermal
radiative properties.
Kamiuto (1990) has proposed an heuristic correlated scattering theory for packed bed

consisting of relatively large spheres. Their results showed that the transfer calculations
based on correlated scattering theory provide better agreement with the experimental
results than their previous transfer calculations based on uncorrelated scattering theory.
Singh and Kaviany (1992) have presented an approach for modeling-dependent scatter-

ing radiative heat transfer in beds of large spherical particles, having shown that the
dependence properties for a bed of opaque spheres can be obtained from their independent
properties by scaling the optical thickness, while leaving the albedo and the phase function
unchanged. The scaling factor was found to depend mainly on the porosity and was almost
independent of the reflectivity. They also concluded from this study that the results
obtained from the Kamiuto correlated scattering theory do not generally show good
agreement with the results obtained from the MCM.
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FIGURE 21.25
Bidirectional transmittance and reflectance for n¼ 1.5.
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Jones et al. (1996) measured the spectral directional distribution of radiation intensity,
using a direct radiometric technique, at the exposed boundary of a packed bed of opaque
spheres. Intensity exiting the bed was numerically simulated using a discrete ordinate
solution to the RTE, with radiation-conduction combined mode solution of the coupled
energy conservation equation. Radiative properties were computed using the correlated
scattering theory for large size parameter from Kamiuto (1990). The measured intensity
results showed good agreement with computed results in near-normal directions, though
agreement in near-grazing directions is poor. With these results, they concluded that either
radiative transfer near the boundaries of this medium might not be adequately represented
by a continuous form of the RTE, or that the properties derived from correlated scattering
theory were insufficient.
Taking into account these conclusions from previous works, this study aims to compare

the measured reflectance to theoretical predictions for a dispersion of oxidized bronze
spherical particles. Theoretical prediction of directional spectral reflectance of absorbing
and scattering sample in the infrared range is calculated by a radiative model that uses the
discrete ordinates method to solve the RTE.
Radiative properties for the packed spheres systems are computed using the correlated

scaling factor theories for large size parameter and for large porosity proposed by Singh
and Kaviany (1992) and Kamiuto (1990). The extinction and scattering coefficients are
calculated for opaque particle diameters lying from 100 to 400 mm. These models require
the knowledge of morphological characteristics (particle dimensions and porosity) and
hemispherical spectral reflectivity. The first can be obtained from morphological analysis,
but the solid hemispherical spectral reflectivity is very difficult to obtain directly. An
identification method (Gauss linearization) is used to identify this parameter.
This method uses experimental and theoretical results of directional spectral reflectance

of randomly packed bed of spheres (Figure 21.26, Moura et al., 1998b). The discrete
ordinates method associated to the control volume is used to solve the RTE.
The radiative properties of packed bed that are required for solving the RTE are the

spectral volumetric scattering and absorption coefficients and the spectral phase function.
They can be obtained from the radiative properties of the packed bed particles by adding
up the effects of all the particles of different sizes (Brewster, 1992). Consequently, the
radiative properties can be determined from the following parameters: particle diameter
(d), the volume fraction ( fv), and the particle spectral hemispherical reflectivity (rl). Indeed,
when the particle size x is much larger than unity and when the refractive index is not too
small (xjñ� 1j� 1), then the series expansions used to evaluate the expression in Mie
theory converge very slowly. For these cases, it is preferable to use geometric optics theory

FIGURE 21.26
Microscopic analysis obtained from packed spheres sam-
ple (Poral30), with a magnification of 45. (Moura, L.M.
et al., Parameter identification for packed spheres systems:
Solid hemispherical spectral reflectivity, Proceedings of the
LATCYM 98, Argentina, 1998b.)
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to predict the radiative properties. The details of the independent radiative properties
prediction model are given by Brewster (1992). If a packed bed consists of large diffuse
spheres, then the uncorrelated radiative properties become

bu ¼
1:5 fv
d

(21:19)

vu ¼ rl (21:20)

p(m) ¼ 8
3p

� � ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m2

p
� m cos�1 m

� 	
(21:21)

Sing and Kaviany (1992) showed scaling factors so that the independent radiative proper-
ties can be scaled to give the dependent properties of the particulate media. The scaling
factor g is assumed to be scalar and scales the optical thickness leaving the phase function
and the albedo unchanged. The scaling factor is defined by the following expression:

bc ¼ gbu (21:22)

The values of g for rl¼ 0.9 and fv< 0.7 can be fitted as

g ¼ 1þ 1:84 fv � 3:15 f 2v þ 7:2 f 3v (21:23)

Since the effect of reflectivity on g is small (Sing and Kaviany, 1992), Equation 21.22 can be
used to obtain the value for other reflectivities. The parameters d and fv can be easily
determined from microscopic analysis and photographs (Figure 21.26). The main difficulty
remains to determine rl. The spectral hemispherical reflectivity cannot be obtained from
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FIGURE 21.27
Comparison of measured and predicted spectral reflectance of the Poral30. (Moura, L.M. et al., Parameter
identification for packed spheres systems: Solid hemispherical spectral reflectivity, Proceedings of the LATCYM
98, Argentina, 1998b.)
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direct measurement. Moreover, it cannot be accurately obtained from literature because of
the great dispersion of the reported data. So it is preferable to determine rl by using an
identification method. Figure 21.27 shows spectral directional comparison between meas-
urement and computation prediction for packed spheres sample (named Poral30).

21.9 Conclusion

The problem of identification of radiative properties for dispersed materials such as foams,
fibers, coatings, and packed beds has been investigated. The main difficulty is the necessity
to employ few parameters, capable of representing the real (physical) medium. An analysis
of the CN for different strategies has shown the advantages and limitations of each of them.
The optimal optical thickness can be determined for the different strategies. If the sample

thickness is imposed by experimental constraints, we can choose the best strategy to identify
the radiative parameters. However, the CN cannot be used only to choose the better
strategies. Some high condition number for a strategy can show better results than another
strategy and an analysis of the identificationmust be performed to reach general conclusions.

Nomenclature

a Legendre polynomial coefficient
d particle diameter
dvo solid angle of collimated incident beam
dx thickness of the control volumes
f interpolation function
fv volume fraction
f1 weighting factor between forward and backward anisotropy in the phase function
f2 weighting factor between anisotropic and isotropic scattering
g anisotropic parameter for Henyey–Greenstein phase function
g1 anisotropic parameter in the forward directions
g2 anisotropic parameter in the backward directions
I radiative intensity
Ib Planck’s blackbody function
Io intensity of the beam incident onto the sample
IC1 radiative intensity incidence
K number of parameters to identify
lx thickness
m iterations
M sensitivity matrix
N number of measurements
n real refractive index
ñ complex refractive index
np number of packages
p phase function
Rs random number
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s distance traveled by a beam
S source function
T transmittance and reflectance
Tp temperature
w weight
x particle size

Greek Variables

b extinction coefficient
g scaling factor
e emissivity
u polar angle
uo divergence angle of the incident beam
uI incidence angle
up angle between incidence and scatter direction
m cos u
rl particle spectral hemispherical reflectivity
t optical coordinate
to optical thickness
f azimuth angle
x parameters to identify
w, j,h direction cosines
v albedo
V solid angle

Subscripts

l wavelength
I incidence
i position
j direction
HG Henyey–Greenstein function
t theoretical
e experimental
k parameter

Superscripts
0 new angular position
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Index

A

Adjoint methods
CGM (see Conjugate gradient method)
conjugate directions and parameter, 434–435
inverse 1-D boundary heat source problem,

409–411
inverse 2-D boundary heat source problem

boundary heat flux, 411–413
sensitivity analysis, 413
single matrix equation, 413
spatial domain, 410, 412
state vector size, 414
steady-state equations, 410
2-D steady-state heat conduction

process, 410
temperature field and contour plots,

411–412
inverse problem formulation, 408
Lagrange multiplier technique, 407

Analytical discrete ordinates (ADO) method
computational aspects, 558–559
isotropic case, 554
thermal radiation problems, 542–543

Ant colony optimization (ACO), 301
Artificial neural networks (ANNs), 306
Atmospheric pollution, Rio de Janeiro

GP, 448
interpolated surface, 449, 451
metropolitan region map, 446–447
monitoring station, 446, 448
PM10 concentrations, 445–448
posterior distributions, 448–450

Auxiliary transducer method, 181

B

Bayesian estimator, 676, 682
Bayesian inference

Gibbs sampling, 453
heat transfer, 449–450
MATLAB, 453
MCMC algorithms, 452
Metropolis–Hastings steps, 452–453
partial differential equation, 451
prior and posterior distributions, 438–439

Bayesian method, 284–285
Bayes’ rule, 304

Beck’s function specification method, 156
Beer’s law

anisotropy factor, 726
MCM, 714
optical thickness, 720, 726

Bézier surface, 580–581
Bimetallic circuit, 174, 176–177
Black box model, 36
Boltzmann–Gibbs–Shannon’s

entropy, 296
Boltzmann transport equation (BTE), 15–16
Boundary element method (BEM), 459
British coal mining disasters, 444–445
Broyden–Fletcher–Goldfarb–Shanno (BFGS)

method, 371
BTE. See Boltzmann transport equation

C

Casimir limit, 14
Cauchy and Lévy distributions, 290
CEDIP-ORION type, 522
CGM. See Conjugate gradient method
Cholesky decomposition, 246
Complete direct model (CDM), 320
Computational fluid dynamics (CFD)

software, 488
Comsol Multiphysic software

heat source definition, 582
inverse problem results, 589
mathematical model, 579

Configuration effective conductivity
effective thermal conductivity, 73
extremizing property, 75–77
k0epq properties, 74–75
nondimensional effective conductivity, 74
periodic cell, 73

Conjugate gradient method (CGM)
application, 415
conjugation coefficient, 415–416
convergence history, 367–368
convergence rate, 365
descent condition, 414
descent direction, 414, 416
Fletcher–Reeves version, 366–368, 415
gradient methods, 414
heat transfer coefficient, 367
Hestenes–Stiefel version, 415
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inverse 1-D boundary heat source problem
gradient equation, 422
Green’s function, 419, 423
iterative regularization principle, 424
Lagrange multiplier, 422
LS-criterion, 422–423
parameter function, 424
semi-infinite heat conducting body, 419
standard algebraic equations, 423–424
temperature response, 419
triangular variation function, 419–421

inverse 2-D boundary heat source problem,
424–426

iterative procedure, 367–368
iterative process, 365
Lagrangian technique, LS-criterion

Fletcher–Reeves version, 419
Jacobian matrix, 418
Lagrange multiplier, 418
mathematical model, 417–418
nonlinear model equations, 418

linear inverse problems, 417
nonlinear problem

adjoint problem, 428
applications, 427
boundary and initial conditions, 426
conjugation coefficients, 430
descent directions, 430
diffusion coefficient and spatial

distribution, 431
diffusion equation, 426
directional derivatives, 428–429
function estimation approach, 426
gradient components, 429–430
Hilbert space, 429
iterative procedure, 430
Lagrange multiplier, 428–429
limiting process, 427–428
nonintrusive sensors, 431–432
objective functional expressions, 431
objective functional reduction, 433–434
Powell–Beale’s version, 434
random errors, 432–433
sensitivity function, 427

non-orthogonality, 367
nonorthogonality iteration, 416
non-quadratic functions, 365
Polak–Ribiere version, 366, 415
Powell–Beale’s version, 366–367, 416
restarting strategy, 416
single-variable function, 415

Correlation matrix, 323

D

Differential evolution method, 376–377
Direct problem and experimental setup

Darcy velocity, 609
downstream locations, thermal response, 611
granular catalyst beds, temperature

control, 608
one-temperature model dispersion heat

equation, 609
thermal dispersion tensor, 609
thermal properties, granular medium,

610–611
thermocouples granular medium and

location, 609–610
Discrete ordinates method (DOM)

angular quadrature, RTE, 710
discretization, 728
MCM, 715
radiative transfer, stellar atmospheres, 713
ray-tracing method, 728
RTE solution, stages, 714
Snell equation, 728
statistical realizations, 716

Discrete ordinates solution
arbitrary constants determination, 552–553
derivation, 548–549
first-order ordinary differential system, 549
full-range quadrature scheme, 551
half-range quadrature scheme, 553
matrix notation, 549
separation constants, 551
two eigenvalue problems, 550–551

DOM. See Discrete ordinates method
Dynamic and thermal equivalent system

input=output dynamic system, 620
thermal model, 621–622

E

Electronic cold-junction, 173
Elementary reduced model (ERM), 468–470
Emissivity–temperature separation (ETS)

methods, 190–191
degree 1 polynomial, 206
degree 6 polynomial function, 205–206
emissivity profiles, 205–207
linearized ETS problem

condition number, 199–200
covariance matrix, 201
error amplification factor, 201–203
Gaussian distribution, 197
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gray-band model, 203, 205
linear regression approach, 204
mean standard error, 201
orthogonal polynomials, 199
parameter vector, 198–199
polymer regression, 199
polynomial model, 203
reference temperature, 200
root-mean-square error, 204
sensitivity matrix, 198
staircase function, 200
variance amplification factor, 201
Wien’s approximation, 197, 204

nonlinearized ETS problem
degree 2 polynomial, 208
degree 6 polynomial emissivity profile,

207–208
Gaussian distribution, 208
Levenberg–Marquardt method, 207
Monte Carlo approach, 211–213
real emissivity values, 211
RMS error, 208–211
spectral emissivity, 211
systematic errors, 211

Planck’s law, 205, 207
remote sensing

atmospheric compensation,
215–217

atmospheric parameter evaluation,
217–218

atmospheric radiative transfer
models, 214

characteristics, airborne=satellite sensors,
213–214

gray surface, 214–215
MATISSE model, 214
MODTRAN model, 214–215
multi-temperature method (see Multi-

temperature method)
normalized emissivity method,

218–219
SpSm, 220–222
TES method, 219–220

Epidemic genetic algorithm (EGA), 300
ERM. See Elementary reduced model
Error models

contact modeling effects
convergence, 571–572
fin effect, 572–573
resistance, 572

opaque region measurement, 573
steady-state regime, 571
thermocouple, 570

ETS methods. see Emissivity–temperature
separation methods

Experimental apparatus
conductor material application

boundary condition, 628
heat flux lateral loss, 628
input=output normalized signals, 629
a and k values, 630
output comparison, 630–631
symmetric experiment apparatus, 628

heat flux estimation, 641–642
k values, 640, 642
microcomputer-based data acquisition

system, 639
nonconductor material application

experimental and estimated
temperature, 632

a and k values, 631
PVC sample, 630
sensitivity analysis, 630
temperature evolution, frequency

domain, 633
temperature evolution, time domain, 632
thermocouple uncertainty

measurement, 632
phase factor and frequency, 640–641
resistive element heater, power

generation, 639
sample-heater assembly, 638
temperature evolution, 640–641, 644
temperature residuals, 641, 644
vacuum chamber, 638–639
a values, 641, 643

Experimental data processing
definitions and properties, expectations, 241
ill-posed problems

condition number and stability, 266–267
discrete linear model, 259
linear profile interpolation=extrapolation,

263–264
parameter estimation problem, 258–259
passive structural parameters, 259
signal deconvolution, 261–262
signal derivation, 260–261
SVD, 264–266

linear transforms, 235
MVU estimator, 242
nonconstant variance errors

Gauss–Markov theorem, 255–257
maximum likelihood estimation, 257–258
minimum variance estimator, 254
objective function, 253
signal amplitude, 253
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square norm, 254
weighted least squares, 258

OLS estimation
Cholesky decomposition, 246
linear estimation, 243
Moore–Penrose matrix, 246
normal equations, 244–245, 252–253
QR factorization, 246
sensitivity coefficients, 243
sensitivity matrix, 244
statistical properties, 246–248
two parameters, m data points, 248–252

one parameter
least squares approach, 238
objective function, 238–239
one measurement, 236–237
probability distribution function, 239
random variables, 237–238
two data points, 238
velocity estimation, 239–240

output error method, 235
predictive model error minimization

Bayesian approach, 270
input heat flux, 268
nonlinear estimation, 267
OLS objective function, 269
output model error, 270
pseudo-inverse matrix, 270
sensitivity coefficients, 268
sensitivity matrix, 268–270
thermal diffusivity mapping (see Thermal

diffusivity mapping)
thermophysical properties, 267

random measurement error, 234
root mean square error, 242
statistical assumptions, 241–242
systematic measurement error, 234–235

Experimental design
implementation, 586–587
inverse problem results

Comsol Multiphysic software, 589
concentration factor sensitivity, 589–590
Levenberg–Marquardt algorithm, 589
measured and estimated melted zone

limits, 590–591
measurements results

drill accuracy, 589
thermocouples measurements, 587–588
thermo-mechanical simulation, 589

F

Fast Fourier transform (FFT), 310
Finite energy signal space, 159

Flash method, 351–353
estimation with bias, 341–343
estimation without bias, 341
heat transfer equation, 340
Laplace transform, 340
Monte Carlo simulations, 340
‘‘unknown parameters’’ vector, 341

Fluid reduced model (FRM), 490
Formal methods, 440
Fourier transform, 168

amplitudes, 163
generic signal, 159–160
polynomials, 160
stimulus temperature, square pulse, 162
transfer function, 162, 164

Fourier transform infrared (FTIR) spectroscopy
reflectance measurement, 716
solar absorptance measurement, 728

Fredholm’s theory, 287
French Welding Institute, 578, 586
Front face thermal characterization, materials

experimental data parameter estimation
confidence intervals of estimations, 663
estimation errors correlation, 664
estimations confidence, estimator variance

and bias, 662–663
inverse problem resolution (see Inverse

problem resolution)
objective function, 660
real system, measurements, and

measurement errors (see Real system,
measurements, and measurement
errors)

signal modelization and associated
parameters, 658–659

experiment parameters and design
identifiability

qualitative sensitivity coefficients analysis
(see Qualitative sensitivity coefficients
analysis)

quantitative criteria (see Quantitative
criteria)

rearflashmethod=rear face pulsedmethod, 655
simulated noisy measurements, 670–671

FTIR spectroscopy. See Fourier transform
infrared spectroscopy

Functionally graded materials (FGM), 675
Fundamental principle of dynamics (FPD), 11–12

G

GA. See Genetic algorithm
Galerkin projection, 478
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Gaussian distribution, 197, 208, 289–290
Gaussian noise, 475
Gaussian processes (GP), 448
Gauss–Legendre quadrature scheme, 558
Gauss linearization method, 718, 733
Gauss Markov estimator, 614
Gauss–Newton methods, 582
Generalized integral transform

technique (GITT)
nontransformable problems, 676
Sturm–Liouville problem, 679

Genetic algorithm (GA), 300, 375–376
Green’s function, 419, 423

H

Hansen’s geometrical criterion, 296
Heat flux, 410–411
Heat flux sensors

heat fluxmeters
calibration methods, 180–181
heat flux, 177
tangential gradient fluxmeter, 179–180
transient and stationary types, 177
transverse gradient fluxmeters, 178–179

low intensity signal, 171
thermocouples

electron diffusion, 172
electronic cold-junction, 173
intermediate metals, 172–173
junction open reference, 173
measurement error, short circuit, 174
plated thermocouple (see Plated

thermocouple)
reference junctions, 173–174
Seebeck voltage, 172
type T and type K thermocouples, 173

Henyey–Greenstein (HG) functions, 710
Hilbert–Schmidt theorem, 510
Hilbert space, 159
Hole-plated sensor, 179

I

Instrumentation goal
equivalent heat source

fluid-mechanic effects, 575
Gaussian distribution, 574
Goldak double ellipsoid, 575
Levenberg–Marquardt algorithm, 576

thermocouple locations, thermal gradient
measurements, 577

welding measurement methods, 576–577

Insulation hypothesis verification
heat loss estimation inside vacuum chamber

convection and radiation heat transfer
loss, 645

convection-radiation energy loss, 646
heat flux energy equivalent, 646
heat rate dissipation, 646
measured and estimated heat flux, 646–647

sensitivity, 645
thermal properties, 644

Integral transformation approach
algebraic problem, 680
Bayesian estimation procedure, 676
experimental temperature data, 682
inverse analysis, 698
thermographic sensors, 677

Inverse boundary problems
BEM, 459
forced heat convection

advection–diffusion problem, 487
CFD software, 488
fluent model, 488
fluid reduced model, 490
FRM, 492
Reynolds number, 487–488
spatial discretization, 489
TCRM (see Thermal coupled reduced

model)
low-order model

Beck’s function specification method,
473–474

sequential estimation method, 472
MIM (see Modal identification method)
parsimony principle, 458
state space representation

control theory, 459
Euler scheme, 461–462
feedforward matrix, 460
linear heat conduction problem, 460–461
Marshall method, 464–465
modal form, 462–463
model reduction principle, 462
truncation principle, 463–464

time discretization, 471–472
2D transient heat transfer problem

inversion results, 476–477
reduced model identification and

validation, 475
system and modeling, 474–475
temperature measurements and mean

quadratic errors, 475–476
transient nonlinear inverse problem (see

Transient nonlinear inverse problem)
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Inverse Fourier transform, 163
Inverse problem resolution

estimation stability, 661–662
Gauss–Newton method, 660
OLS estimator, 661
sensitivity coefficient, 661

Inverse problems
applications

atmospheric pollution (see Atmospheric
pollution)

normal hierarchical model, 442–444
Poisson count change point problem,

444–445
WinBugs software, 441

Bayesian approach, 437–438
Bayesian inference (see Bayesian inference)
inverse boundary problems (see Inverse

boundary problems)
MCMC methods (see Markov Chain Monte

Carlo methods)
posterior distribution, 437–438
statistical inference, 437

Inverse problems and regularization
Bayesian method, 284–285
constrained variance, 290
continuous regularization operator, 289
entropic regularization

discrete entropy function, 294
entropy minimization and

maximization, 294
first-order entropy, 294–295
image reconstruction, 293
MaxEnt principle, 292–293
Morosov’s discrepancy principle, 294
second-order entropy, 294–295
zeroth-order entropy, 294–295

FFT, 310
fluid dynamics, 284
Gaussian distribution, 289–290
generalized cross-validation function, 289–290
heat transfer estimation

Fourier method, 285
Fredholm alternative property, 287
Hadamard’s condition, 287
kernel, definition, 286
nondimensional expression, 285
triangular function, 286

intrinsic regularization, 300–301
Lagrange multiplier, 288
L-curve method, 290
maximum nonextensive regularization

Boltzmann–Gibbs–Shannon’s entropy, 296
Hansen’s and Morosov’s criteria, 298–299

Levy distribution, 297
maximum curvature scheme, 296
Morozov’s discrepancy principle, 296
nonextensive entropy function,

296–297
PDF, 297
Tsallis’ thermostatistics, 296
zeroth-order Tikhonov regularization, 298

Morosov’s criterion, 289
nonextensive thermostatics properties,

310–311
optimization problem, 288
Principia, 283
regularized neural networks, 310

activation test, 308
ANNs, 306
backpropagation training, 307
cognitive process, 306
delta rule, 307–308
‘‘inversion operator,’’ 306
NN reconstruction, 308–309
RBF network, 306–307
similar and no-similar functions, 308
supervised and unsupervised

NNs, 306
solution, 284
statistical method

Bayesian method, 303
expectation value, 302
Gaussian distribution, 305
logarithm function, 303
ML method, 302–303
PDF, 302
posterior density function, 305
posterior distribution, 304
probability theory, 304
regularization properties, 301

stochastic process, 284
Tikhonov regularization

first-order regularization, 291
initial condition estimation, 292–293
problem, 288
regularization operator, 290–291
regularized solutions, 291–292
triangular test function, 291

Inverse thermal radiation problems
DOM, 713–714
experimental device, 716–717
MCM (see Monte Carlo method)
packed spheres systems parameter

identification
correlated scattering theory, 732–733
discrete ordinates method, 733
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heat transfer mechanism, 732
measured vs. predicted spectral

reflectance, 734–735
microscopical analysis, 733
scaling factor definition, 734
two-flux model, 732

parameter identification (see Parameter
identification)

PN approximation, 710
radiative properties determination, 710
radiative transfer equation

boundary conditions, 711–712
phase function, 712–713

radiative transfer, media
bidirectional transmittance

and reflectance, 729, 732
condition number function, optical

thickness, 729, 731
Fresnel reflection, 728
FTIR spectroscopy, 728
hemispherical reflectance function,

729–730
linear transformation, 729
Mie theory, 728, 733
physical conditions analysis, 729
radiative index, 727
surface specular reflectivity, 729–730

STM, 709–710

J

Jaynes’ inference criterion, 297
Junction open reference, 173

K

Karhunen–Loève decomposition
data reduction

approximation errors, 513, 515
eigenfunctions, 514
finite volume method, 514
initial temperature field, 513
low-dimensional approximations, 512–513
thermal behavior, 513

finite-dimensional problems, 511
Hilbert space, 509
infinite-dimensional problems, 509–511
infrared thermography, 508–509
MIM, 478
noise filtering (see Noise filtering)
PCA=KLD=SVD, 508–509
thermal characterization (see Thermal

characterization)

Known exact locations
correlation coefficient, 602
covariance matrix, 602
least squares sum, 600
statistical covariance and variance, 601
straight line model, 601

L

Lagrange multiplier, 288, 297
Laplace transforms, 25
Levenberg–Marquardt method

direction of descent, 374
equivalent heat source, 576
Gauss method, 372, 375
inverse problem method and experimentation

plan, 582
inverse problem results, 589
nonlinearized ETS problem, 207
positive definite matrix, 373

Linearized ETS problem
condition number, 199–200
covariance matrix, 201
error amplification factor, 201–203
Gaussian distribution, 197
gray-band model, 203, 205
linear regression approach, 204
mean standard error, 201
orthogonal polynomials, 199
parameter vector, 198–199
polymer regression, 199
polynomial model, 203
reference temperature, 200
root-mean-square error, 204
sensitivity matrix, 198
staircase function, 200
variance amplification factor, 201
Wien’s approximation, 197, 204

Low-order emissivity model
emissivity spectrum, 196
gray-band model, 196–197
iterative process, 197
least-squares solution (see Emissivity–

temperature separation methods)
Wien’s approximation, 197

M

MAG process. See Metal active gas process
Markov chain Monte Carlo (MCMC) methods

convergence, 440–441
Gibbs sampling, 439–440
Metropolis–Hastings algorithm, 440
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Marshall method, 464–465
MATLAB software, 453
Maximum entropy (MaxEnt) principle, 292–293
MCM. See Monte Carlo method
MD. See Molecular dynamics
Measurements and inversion, error analysis

application
experimental design (see Experimental

design)
instrumentation goal (see Instrumentation

goal)
‘‘Multiphysic’’ simulation, 574
process energy, 573
simplified thermal simulation, 574
theoretical inverse problem (see Theoretical

inverse problem)
thermocouple disturbance quantification

(see Thermocouple disturbance
quantification)

welding case (see Welding case)
constant standard deviation, noise, 568
experiment=reverser objectives, errors, 567
global error definition, 566
instrumentation simulation, 596–597
inverse and direct approaches, 566
normal probability distribution, 568
phenomenon modeling, errors, 566–567
sensor signal measuring device,

errors, 567
3D temperature comparisons, 596
thermocouple temperature measurement

and measurement errors
error models (see Error models)
surface temperature measurement, error,

569–570
surface treatment, 568
temperature measure within volume,

error, 570
Metal active gas (MAG) process

equivalent heat source determination, 574
welding case, 578

Method of homogenization
anisotropy, 62
BVP-1 and BVP-2 problem, 57–58
definition, 55–57
effective bulk properties, 61
error, 62
fluxes, 62
Green’s theorem, 59
heat conduction, composites

asymptotic expansion, 65–67
multiscale problem, 63–64
variational formulation, 65

homogenized operator (AH), 61
l-periodic cell problem, 58
l-triply periodic solution, 60
neutron and radiative transport, 55
periodicity of f, 59
random elastic composites, 55
second-order elliptic operator, 58
solvability condition, 59–60
symmetry and ellipticity, 61
variational formulation, 62

Metropolis–Hastings algorithm
Bayesian inference, 452–453
mathematical platform, 683
MCMC method, 440, 684
parameter estimation, 691
sampling procedure, 676

Mie theory, 728, 733
Minimum variance unbiased (MVU)

estimator, 242
Modal identification method (MIM)

linear systems
detailed model or output vector, 466
ERM, 468–470
Heaviside signal, 466
nonlinear iterative method, 467
OLS, 467–468
quasi-Newton method, 467
reduced model, 465–466

nonlinear problems
3Dacademic nonlinear diffusive system, 480
experimental apparatus, 484–486
Gaussian white noise, 480
local governing equations, 481–482
low-order model equation structure,

483–484
low-order model identification, 486–487
objective function, 479–480
reduced model, 480
reduction methods, 478–479
state space representation, 482–483

Modeling, heat transfer
direct problem, 33–34
function parameterization

constant time step, 27
hat and door function basis, 27–28
orthogonal function, 28
structural parameter, 26
time function, 26
time–space gridding, 28

heat conduction, macroscopic level
heat flow rate, 6–7
heat flux, 7–8
heat flux density, 6
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temperature gradient, 6, 8
thermal conductivity, 7
thermal diffusivity, 7–8

heat diffusion model, heterogeneous
materials

local scale, 18–19
one-temperature model, 19–20
stratified medium, 21–22
two-temperature model, 20–21

inverse problem
control problems, 35
data vector, 34
inverse measurement problems, 35–37
measurement and noise, 38
system identification problems, 35

linear input–output systems and heat sources,
47–48

model terminology and structure, 31–33
mono input=mono output

column vector, 26
internal and external representation, 25
matrix=matrix function, 26
scalar=scalar function, 26
semi-infinite medium, 24
state equations, 24–25
transfer function, 25

nanoscale
BTE, 15–16
MD (see Molecular dynamics)
nanoelectronics, 10–11
temperature notion, 22–23
thermal characterization, front face

experiment, 10
two-temperature model, 16–17

numerical=analytical model, 6
objectives, structure, consistency, complexity,

and parsimony, 38–39
parameterization, inverse problem solution, 6
phase change material, energy storage, 4
physical model reduction

2D fin model, X- and Y-directions, 44
1D fin model, X-directions, 44–45
1D local model, 46–47
0D lumped model, 45–46
3D model, 40–42
2D model, X- and Z-directions, 42–43
1D model, Z-directions, 43–44

prediction, 4
quantities of direct problem, 5
real system, 23–24
in slab, 39
state definition, 5
state-space representation, heat equation

distributed parameter system, 29
linear system, 29–30
lumped parameter system, 29
one-temperature heat equation, 28
output vector and equation, 30
partial differential equation, 28–29
in pure fluid, 30–31
thermoset resin polymerization, 31

state variable and observed quantities, 5
surface thermal power, 23
TDTR technique, 8–10

Molecular dynamics (MD)
force, 12
FPD, 11–12
NEMD, 13–14
phonons, 14
temperature, kinetic theory, 13
thermal conductivity, 13–14
total energy of particle, 12
wavelength, 12

Monte Carlo method (MCM)
Beer’s law, 714
DOM, 715
nonlinearized ETS problem, 211–213
optical thickness function, 715
packed spheres systems, parameter

identification, 732
radiative heat transfer, 714
scattering media, 716

Moore–Penrose matrix, 246
Multiscale modeling approach

first-principle analytical–numerical
methodology, 67–68

macroscale problem, 69–70
mesoscale problem

cell configuration sample, 77–79
cell problem, 71–73
cell size, 79
configuration effective conductivity (see

Configuration effective conductivity)
intermediate length scale, 70
volume fraction, 79

microscale problem
bounds application, 84–85
lower bound, 81–82
nips geometries, 80–81
upper bound, 82–84

numerical results, 87–89
numerical solution

finite element discretization and iterative
solution, 86–87

geometry and mesh generation, 85–86
volume-averaged flux, 67
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Multisignal least squares, dispersion, bias,
and regularization

nonlinear estimator, bias and variance, 606
straight line linear model

known exact locations (see Known exact
locations)

uncertain exact locations (see Uncertain
exact locations)

unknown exact locations, 602
thermal characterization experiment,

599–600
thermal dispersion, granular medium

direct problem and experimental setup
(see Direct problem and experimental
setup)

Monte Carlo simulations, 615–616
multiphysical estimation problems, 616
parameter estimation technique (see

Parameter estimation technique)
sensitivity study, 611–612

uncertainty effect, statistical properties,
607–609

Multi-temperature method
covariance matrix, 224, 226
emissivity profile, 222
error on emissivity, 223–224
gray body, 223, 225
IR detection, 224
measurement noise, 222
Planck’s law, 223
radiance error, 225
reflected flux, 223, 225
sensitivity matrix, 223–224
spectral features, downwelling environment

radiation, 225–226
temperature standard error, 225
Wien’s approximation, 222–223, 225

N

NEMD. See Non-equilibrium molecular
dynamics

Newton–Raphson method, 156, 368–370
Noise filtering

noise amplitude, 518
numerical example, 518–519
optimal, 517–518
propagation, 515–517

Non-equilibrium molecular dynamics (NEMD),
13–14

Nonlinear estimation problems
insulating material, 316
Levenberg–Marquardt algorithm, 316

parsimony principle, 316
standard deviations, biased model

additive noise, 336
deterministic error, 337
estimator expectancy, 337–338
estimator vector, 337
fixed parameter error, 337
flash method (see Flash method)
mean squared error, 338–339
residuals curve expectancy, 339
sensitivity coefficients, 344
stochastic error, 337, 344
stochastic error reduction, 336
systematic bias, 344
systematic error, 336
unbiased model, 336
variable time interval, 348–351
variance–covariance matrix, 338
Xcebc (Superscript and subscript) (see

Xcebc (Superscript and subscript))
thermal transfer (see Thermal transfer)

Nonlinearized ETS problem
degree 2 polynomial, 208
degree 6 polynomial emissivity profile,

207–208
Gaussian distribution, 208
Levenberg–Marquardt method, 207
Monte Carlo approach, 211–213
real emissivity values, 211
RMS error, 208–211
spectral emissivity, 211
systematic errors, 211

Null sensitivity, Ci

front face temperature signals, 324–326
PEP, 325
perfect ‘‘unsigned’’ residuals, 327–328
rear face temperature signals, 324–326
statistical analysis, 327
stochastic data, 324, 327
uncorrelated and zero-mean experimental

residuals, 327

O

Ohm’s law, 174–175
Ordinary least squares (OLS) estimation

Cholesky decomposition, 246
linear estimation, 243
MIM, 467–468
Moore–Penrose matrix, 246
normal equations

column space and subspace, 252
definition, 245
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difference vector, 252–253
linear model, 244
objective function, 245
regression model, 253
sensitivity vector, 252

QR factorization, 246
sensitivity coefficients, 243, 248
sensitivity matrix, 244, 249
statistical properties, 246–248
two parameters, m data points

correlation coefficient, 250
covariance matrix, 249
MATLAB program, 252, 276–277
quality of estimation, 249
residual, 250–252
simulated error, 250
straight-line regression, 248

P

Parameter estimation technique
Gauss Markov estimator, 614
Gauss–Newton algorithm, 613
maximum a posteriori estimator, 613
maximum likelihood estimator, 613
minimum variance estimator, 613
ordinary least squares sum, 612
sensitivity matrices, definition, 614
Tikhonov zeroth-order regularization, 615
total least square problem, 613

Parameter identification
Beer’s law, 726
bidirectional transmittance and reflectance,

719, 725–726
condition number, 719, 721, 723–724, 726
directional emittance, 724, 726
experimental directional emittance

definition, 717
Gauss linearization method, 718
hemispherical transmittance and reflectance,

721, 723
numerical identification analysis, 722, 725–726
optical thickness ratio, 726–727
sensitivity analysis, 718
transmittance and reflectance functions,

719–720
Particle swarm method, 377–378
Photothermal pulse technique. see Front face

thermal characterization, materials
Plated thermocouple

bimetallic circuit, 174
metal homogeneous region, 174–175
metallic deposit, 175–176

Seebeck effect, 176–177
thermoelectric power, 174

Plated thermopile sensor, 178–179
Platinum RTD (PRT) standards, 145
Predictive model error minimization

Bayesian approach, 270
input heat flux, 268
nonlinear estimation, 267
OLS objective function, 269
output model error, 270
pseudo-inverse matrix, 270
sensitivity coefficients, 268
sensitivity matrix, 268–270
thermal diffusivity mapping

heat pulse response analysis, 271
heterogeneous plate, 272–273
IR camera, 270, 271
mathematical formulation, 271
objective function, 272
OLS, 272–273
profile of line 60, 274–275
residual, 274–275
rms error, 274
sensitivity matrix, 272, 274
thermal conductivity gradient maps,

272, 274
thermophysical properties, 267

Probability density function (PDF), 297
Proper orthogonal decomposition (POD), 478
Pulse laser, 8

Q

Qualitative sensitivity coefficients analysis
PVC=steel case, 665–666
reduced sensitivity matrices, 664
steel=PVC case, 665–666

Quantitative criteria
Biot number estimation, 668
correlation matrix elements, 666
Hessian matrix, 666
measurement errors, 667–668
measurement errors matrix, 666
noise-to-signal ratio, 667
PVC=steel case, 667–669
steel=PVC case, 668–670

Quasi-Newton methods
BFGS method, 371
convergence history, 370–371
first-order derivatives, 370
iterative procedure, 370, 372
Rosenbrock ‘‘banana-shape’’ function,

372–374
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R

Radial basis functions (RBFs), 382
interpolated function, 384
network, 306–307
polynomials, 383
RMS error, 385
shape parameter, 384

Radiative temperature measurements
ETS methods (see Emissivity–temperature

separation methods)
multiwavelength pyrometry

interpolation-based methods,
195–196

monochromatic emissivity, 194
regularization, low-order emissivity

model (see Low-order emissivity
model)

sensed radiance
absolute sensitivity, 187
airborne=satellite remote sensing,

189–190
blackbody radiance vs. wavelength, 186
electromagnetic radiation, 185
emissivity, 188
energy conservation law, 188
equivalent isotropic environment

radiance, 189
Lambertian surfaces, 188–189
maximum emitted radiance, 186
Planck’s law, 186–187
pyrometry, high-temperature surfaces, 189
relative sensitivity, 187
second Kirchhoff’s law, 188
surface irradiance, 189
Wien’s law, 186

single-color pyrometry, 192
spectral emissivity, 190–191
two-color pyrometry, 193–194

Radiative transfer problems, explicit
formulations

ADO method, thermal radiation problems,
542–543

computational aspects
ADO method, 558–559
computational procedural steps, 559
Gauss–Legendre quadrature scheme, 558
radiation density, 559–560

discrete ordinates solution
arbitrary constants determination, 552–553
derivation, 548–549
first-order ordinary differential

system, 549

full-range quadrature schemes, 551
half-range quadrature scheme, 553
matrix notation, 549
separation constants, 551
two eigenvalue problems, 550–551

formulation, 543–544
half-range arbitrary quadrature

scheme, 560
isotropic case

arbitrary anisotropic scattering, 554
discrete ordinates approximation,

quadrature scheme, 554–555
discrete ordinates expression, intensity,

557–558
divide and conquer method, 556
linear algebraic system definition, 557
radiative transfer equation, 554

plane-parallel medium
Henyey–Greenstein model, 545–546
Legendre polynomials, 545–546
partial radiative heat fluxes, 547
Planck’s function, 545
radiation density evaluation, 547
slab geometry, 546–547

radiative transport analysis, 541
spherical harmonics method, 542

RBFs. See Radial basis functions
RCL band-pass filter, 163–164, 166
Real system, measurements, and measurement

errors
front face pulsed photothermal

experiment, 656
Gaussian distribution, 657
noise-to-signal ratio, 658
simulated signals, 656–657
thermophysical properties, 656

Reference junctions, 173–174
Relative average absolute error (RAAE), 386
Relative maximum absolute error (RMAE), 386
Remote sensing

atmospheric compensation, 215–217
atmospheric parameter evaluation, 217–218
atmospheric radiative transfer models, 214
characteristics, airborne=satellite sensors,

213–214
gray surface, 214–215
MATISSE model, 214
MODTRAN model, 214–215
multi-temperature method (see Multi-

temperature method)
normalized emissivity method, 218–219
SpSm, 220–222
TES method, 219–220
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Resistive sensors
dynamic behavior, temperature probe

amplitude and phase, 161–162
capacitive=inductive components, 159
central frequency, 165
differential equations, 161
Dirac distribution, 163
filter’s quality factor, 165
finite energy signal space, 159
Gaussian window function, 160
Kirchhoff’s mesh law, 164
measurement system response, 165, 167
polar representation, 165
RCL band-pass filter, 163–164, 166
stimulus temperature and response

voltage, 161
time and frequency representation,

162–163
transfer function, 162–163
turbulent flow, 163

error analysis
accuracy error, 152
arithmetic mean, 151
electromagnetic noise, 150
intrinsic parameters, 150
precision error, 152
skewness and kurtosis, 152–153
standard deviation, 152
stimulus temperature, 151–152

interchangeability, 144
PRT standards, 144
RTD, 143–144
three- and four-wire circuits, 144–145
time varying conditions

direct and inverse problems, 156
flame temperature, Bunsen burner, 158–159
fluidized bed reactor, 155
Gram’s matrix, 158
internal instantaneous temperature, 154
least squares problem, 158
low-order polynomial, 157
process, indicated, and reconstructed

process temperature, 156–157
Savitzki–Golay filtering method, 156
stimulus and response, 153–154
thermal accumulation, 155
transduction operator, 154

transduction equation and conditioning
electronics

characterization parameters, 147
linearization operator, 148
linearization procedure, 149
nonlinear transformations, 147

PRT, coefficients, 146
thermal stimulus, 145
transduction operator, 145–146
Wheatstone bridge circuit, 145–146

Resistive thermal device (RTD), 144–145
Reynolds number, 487–488
Root-mean-square (RMS) error

linearized ETS problem, 204
nonlinearized ETS problem

Gaussian noise, 210
radiance noise level, 208, 210
statistic error, 209–210
systematic error, 209, 211
temperature quadratic mean error, 209

thermal diffusivity mapping, 274

S

Savitzki–Golay filtering method, 156
Scanning electron microscope (SEM), 593
Seebeck effect

definition, 100
EMF, 101
plated thermocouple, 176–177
thermocouple types, 101, 103
thermoelectric power, 101–102

Seebeck voltage, 172
Semitransparent media (STM), 709–710
Sensitivity analysis

estimation without measurement noise, 583
estimation with simulated measurement

noise, 585
Signal=noise ratio, 517–518
Simulated annealing method, 379–381
Single-objective optimization and response

surface generation
deterministic methods

acceptable gradient method, 360
conjugate gradient method (see Conjugate

gradient method)
Levenberg–Marquardt method (see

Levenberg–Marquardt method)
Newton–Raphson method, 368–370
nonlinear minimization problems, 360
quasi-Newton methods (see Quasi-Newton

methods)
steepest descent method (see Steepest

descent method)
engineering applications, 359
equality and inequality constraints, 358–359
evolutionary and stochastic methods

differential evolution method, 376–377
genetic algorithms, 375–376
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particle swarm method, 377–378
simulated annealing method, 379–381

global procedure, 392
gradient-based and non-gradient

techniques, 356
Griewank function, 394–397, 399
high-dimensional hypersurface, 357
H3 optimizer, 393
hybrid optimization methods, 381–382
hybrid optimizer, H2, 391
ill- and well-posed inverse

problems, 359
infinite dimensional space function, 360
iterative process, 356
Kansa’s method, 382
kernel interpolation=approximation

techniques, 382
Levy #9 function, 392–394
meta-modeling technique, 385
Mielle–Cantrel function, 396–397
objective function, 357
RAAE, 386
RBFs, 382

interpolated function, 384, 392
polynomials, 383
RMS error, 385
shape parameter, 384

response surface test
CPU time, 387–390
linear algebraic system, 386
number of variables, 386–387
R2 metric, 387–390
testing point percentage, 388–391
training and testing points, 386–387

RMAE, 386
Rosenbrook function, 395, 397–398
R square, 385
second-order polynomials, 383
single- and multi-objective functions, 358
unimodal vs. multimodal objective functions,

357–358
Single-wire thermocouple technique

convective calibration
convective time constant and bandwidth,

118–119
cooling period, 118
experimental device, 117
first-order response, 118
heating period, 118
temperature types, 117–118

radiative calibration, 119–120
shock tube calibration, 121–122
time constant, 116

Singular value decomposition (SVD)
covariance matrix, 265
Karhunen–Loève decomposition, 510
linear transform, 265
OLS estimator, 266
rectangular matrix, 264
square matrix, 264–265

Snell equation, 728
Space variable thermophysical property

estimation
Bayesian estimator, 676
direct problem, integral transforms

algebraic system coefficients, 680
coefficient matrices, 679, 681
eigenfunction expansion, 678
filtered temperature problem

formulation, 678
heat conduction equation, 677
integral transform pair, 682
Sturm–Liouville problem, 679
thermophysical properties

determination, 677
D-optimum experimental design, 689
effective heat transfer coefficient

behavior, 697
estimated functions

properties, 694–695
standard deviation reduction,

695–696
estimated parameter values, Markov

chains, 693
experimental points, 698–699
experimental vs. estimated temperatures,

702–703
FGM, 675
GITT, 676
heat transfer applications, 675
information matrix determinant analysis,

698–699
input data

definition, 692
estimation, 701

inverse problem, Bayesian inference
maximum likelihood estimates, 682
posterior probability density, 682–684
proposal=density distribution, 685

Markov chain, exact and initial states, 692
Mathematica platform, 676
Metropolis–Hastings algorithm, 691
polymeric matrix, 696
sensitivity matrix

definition, 688
determinant, 690
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simulated experimental data generation, 698
simulated measurement data, 685–686
simulated temperature data, 700
test cases, 701
thermal conductivity

and capacity, 697
and heat capacity expansion, 688–689
parameterized form, 690–691

thermophysical properties, spatial
behavior, 697

time lag function, 697
two-phase dispersed system, 685, 687
UNIT code, 676

Spatial discretization method, 460, 482
Spectral smoothness method (SpSm)

atmospheric radiance and transmittance, 220
atmospheric spectral features, 222
128-channel SEBASS sensor, 222
ill-posed ETS problem, 220
ISAC method, 221
retrieved emissivity spectrum, 220–221

Spectral theorem, 510
SpSm. See Spectral smoothness method
Stainless steel AISI 304L, 593
Steepest descent method

chain rule, 362
convergence history, 360–361
convergence rate, 361
direction of gradient, 361
exhaustive interpolation search, 364–365
exhaustive search

Fibonacci method, 364
objective function, 364
sequential computation, 362, 364

iterative procedure, 362–363
iterative process, 361
objective function, 361–362
step size value, 362
unimodal function, 362

STM. See Semitransparent media
Sturm–Liouville problem, 679
SVD. See Singular value decomposition

T

Tangential gradient fluxmeter, 179–180
TCRM. See Thermal coupled reduced model
TDTR technique. See Time domain

thermoreflectance technique
Temperature-emissivity-separation (TES)

method, 219–220
Temperature measurements

history, 96–97

International Temperature Scale, 97
invasive, semi-invasive and noninvasive

methods, 97
resistive sensors (see Resistive sensors)
temperature sensor, 98
thermocouple voltage measurement (see

Thermocouple voltage measurement)
wire microthermocouple measurements (see

Wire microthermocouple
measurements)

Theoretical inverse problem
estimation without measurement noise

sensitivity amplitudes and linear
dependences, 584

sensitivity analysis, 583
estimation with simulated measurement

noise, 585–586
parameters evolution, 585

Thermal characterization
heterogeneous materials

black and white plate, 527–528
experiments, 528
finite volume method, 528, 533
highly noisy experiment, 533–534
phase recognition and interface, 527
problem statement, 526–527
second eigenfunctions, 529–530
thermal behaviors, 528–529
thermal parameters, 533
thermal properties estimation, 529–530

homogeneous materials
2D heat transfer, 519
numerical example, 525–526
problem statement, 520–522
thermal parameters estimation, 523–525

thermography experiments, 526
Thermal conductivity and diffusivity

with heat flux transducer
conductor material application (see

Experimental apparatus)
nonconductor material application (see

Experimental apparatus)
without heat flux transducer

direct thermal model, 634–635
experimental apparatus (see Experimental

apparatus)
heat flux and the thermal conductivity

determination, 637–638
insulation hypothesis verification (see

Insulation hypothesis verification)
inverse problem, 635–636
procedure, 633
thermal diffusivity determination, 637
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Thermal coupled reduced model (TCRM)
backward-facing step, 488
forced convection, 491
FRM, 491, 494
heat flux density, 493, 496
objective functional, 493, 495
Reynolds number, 492
temperature and velocity, 491
temperature profile, 493, 496

Thermal diffusivity mapping
heat pulse response analysis, 271
heterogeneous plate, 272–273
IR camera, 270–271
mathematical formulation, 271
objective function, 272
OLS, 272–273
profile of line 60, 274–275
residual, 274–275
rms error, 274
sensitivity matrix, 272, 274
thermal conductivity gradient maps, 272, 274

Thermalization, 9
Thermal model exact solution

analytical solution precision, 650
convergence, 649
optimization problems, 648

Thermal transfer
direct simulations, 319–321
flash experiment principle, 316–317
front and rear surface, 316
heat density and exchange coefficient, 316
insulating material, 316
inverse analysis

bias influence, RDM1, 330–332
covariance matrix, 322
estimator expectancy, 322
iterative process, 321
null sensitivity to Ci (see Null

sensitivity, Ci)
OLS criterion, 321
parameter estimation, 333
parameterization change, 330
RDM1, 328–330
residuals curve, 323–324
sensitivity coefficients, 321
standard deviation, 322–324
statistical analysis, 330
stochastical approach, 321
stochastic and statistical data, 333
thermal diffusivity and conductivity, 333

physical direct model
Laplace temperature, 319
matrix multiplication, 319

‘‘optimal’’ estimation, 317
parameter estimation problem, 319
RDM1, electrical analogy framework, 318
RDM1, Laplace space, 318
thermal conductivity andheat capacity, 317

physical properties, 317
three-layer characterization problem, 334–335

Thermocouple disturbance quantification
new mathematical model, 591–592
numerical tests and results

sheath material diameter, heat
evacuation, 595

thermal discrepancies, 595
thermal measurements, 594
time delay, 595–596

objectives, 590–591
thermocouple simulations

industrial and laboratory thermocouple, 593
material thermal properties, 593
nickel chromium–nickel alloy, 592
numerical implementation,

thermocouples, 593
thermal disturbance, thermal gradient,

593–594
thermocoax, 593

Thermocouple voltage measurement
connection with copper wires, 106
differential thermocouple, 108
external reference junction, 104–105
intermediate metal, 102, 104
junction voltage, 101, 104
parallel thermocouple arrangement, 107–108
temperature gradient, metal element, 102, 104
thermocouple extension=compensation

wire, 105
thermoelectric effects

definition, thermocouple, 98
Peltier effect, 99
Seebeck effect, 100–103
Thomson effect, 99–100
Volta’s law, 99–100

thermopile connection, 106–107
Thermophysical properties identification,

frequency domain
dynamic and thermal equivalent system (see

Dynamic and thermal equivalent
system)

sensitivity analysis
1D and 3D model, 624
H value, 628
phase factor, 627–628
sensitivity coefficients, 625–626
spatial temperature, 627
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temperature evolution and difference,
624–625

thermal contact resistance, 624
thermal conductivity and diffusivity

determinations (see Thermal
conductivity and diffusivity)

thermal conductivity estimation
frequency domain, 623
time domain, 624

thermal diffusivity estimation, frequency
domain, 623

3D-transient analytical solution, Green’s
function

DPT code using analytical solution,
650–651

thermal model exact solution (see Thermal
model exact solution)

Tikhonov’s regularization, 604, 615
Time constants analysis, 334
Time domain thermoreflectance (TDTR)

technique
direct model formulation, 9–10
front face method, 8
normalized impulse response, 9–10
pulse laser, 8
thermal effusivity, 8–9
thermalization, 9

Time impedance, 25
Toeplitz matrix, 410
Transient nonlinear inverse problem

future time steps, 500
mean quadratic errors, 500
resolution, 497–498
RM and internal temperature

computation
heat source strengths, 502–503
infrared camera, 500
inversion results, 501
low-order model, 501

sensors choice, 498–500
Transverse gradient fluxmeters,

178–179
Two-thermocouple probe

fluid velocity measurement
fine-wire thermocouples, 125
7.6=12.7 mm probe, 125–126
12.7=125.4 mm probe, 125, 127
25.4=50 mm probe, 125, 127
periodic flow velocity, 124–125, 128
sinusoidal flow, 125

frequency domain reconstruction, 123
gas temperatures, 123, 126, 128
heat balance, 126

radiative and conductive environment, 122
time constants, 123, 128–129
time domain reconstruction, 124

U

Uncertain exact locations
minimization process, residuals, 603
nonlinear and linear estimator, 606
ordinary least squares estimator

generalization, 604
sensors locations, error, 603
sensors nominal locations, 602
stochastic number generator, 605
Tikhonov’s regularization coefficient, 604
total least squares problem, 603

V

Variable time interval
cumulative sum approximation, 350–351
OLS minimization, 349
residuals, 349
unknown and known parameter

sensitivities, 348
Variance–covariance matrix, 322–323
Vcor Matrix, 335

W

Welded thermopile sensor, 178
Welding case

heat source definition, 581–582
inverse problem method and experimentation

plan, 582–583
mathematical model

Bézier surface, 580–581
Comsol Multiphysic software, 579
experimental sample, 578–579
heat diffusion equation, 579
mesh and boundary conditions,

579–580
simulated sample, 578–579

‘‘T’’ welding, 578
Welding processes, 578
Wheatstone bridge circuit, 145–146
WinBugs software, 441
Wire microthermocouple measurements

anemometer, 129
designs

K type thermocouples, 109–110
positive and negative material, 109–110
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Seebeck coefficient, 110–111
sparking method, 109
S type thermocouples, 110
thermoelectric polarity, 109

dynamic temperature measurements, fluids
anemometry and thermometry, 114
dimensionless numbers, heat transfer, 113
external heat contribution, 115
gas temperature, 115–116
heat balance, 112
multi-ordered temperature response, 116
Newton’s law of cooling, 113
Nusselt correlations, 114
radiative heat transfer, 115
single-wire thermocouple technique (see

Single-wire thermocouple technique)
spatial and temporal resolutions, 111
time constant, 112, 115
transient thermometry techniques, 111
unit time, 113

multi-wire thermocouple technique (see Two-
thermocouple probe)

pressure and temperature measurements
applications, 136–137
conductivity, 135
heat dissipation, 135
heating phase, 135–136

oscillation frequency, 136
relaxation phase, 136

response to transient phenomena, 109
small size, 108–109
transient thermocouple sensor, 129
velocity and temperature measurements

applications, 134–135
convective and radiative time

constant, 131
global time constant, 132
heating phase, 132–133
Joule effect, 132
one-dimensional thermal balance, 131
oscillation frequency, 134
relaxation phase, 133
thermo-physics characteristics, 130–131
wire material resistivity, 131

X

Xcebc (Superscript and subscript)
diagonal matrix, 345
eigenvector and eigenvalue, 346–347
Kernel solution, 347–348
linear problem, 344–345
‘‘pseudo-inverse’’ solution, 345
SVD, 345–346
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