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Preface

The design and operation of modern technological systems and the proper comprehension
of their interaction with nature (e.g., in pollution control and global warming issues)
require the permanent processing of a large amount of measured data. Nowadays, progress
in the mathematical modeling of complex industrial or environmental systems, associated
with the continuous increase in memory and calculation power of computers, has made
numerical simulations of almost any physical phenomena possible. These facts bring about
the need for an appropriate tool that rigorously bridges the gap between the information
stemming from measurements and that corresponding to theoretical predictions, aiming at
the better understanding of physical problems, including real-time applications. Inverse
analysis is such a tool.

Heat transfer permanently takes part in our daily life. Examples can be found in natural
phenomena, such as the solar heating of Earth, meteorology or thermoregulation of
biological activity, as well as in a wide range of man-made applications, such as the
conversion of energy in heat engines, thermal control of chemical reactors, air conditioning,
cooling of electronic equipment, development of micro- and nano-technologies with the
associated thermal challenges, etc. Recent advances in both thermal instrumentation and
heat transfer modeling permit the combination of efficient experimental procedures and of
indirect measurements within the research paradigm of inverse problems. In this para-
digm, the groups of theoretical, computational, and experimental researchers synergistic-
ally interact during the course of the work in order to better understand the physical
phenomena under study. Although initially associated with the estimation of boundary
heat fluxes by using temperature measurements taken inside a heated body, inverse
analyses are nowadays encountered in single- and multi-mode heat transfer problems
dealing with multiscale phenomena. Applications range from the estimation of constant
heat transfer parameters to the mapping of spatially and timely varying functions, such as
heat sources, fluxes, and thermophysical properties.

In heat transfer, the classical inverse problem of estimating a boundary heat flux with
temperature measurements taken inside a heat-conducting medium has many practical
applications. For example, the heat load of the surface of a space vehicle reentering the
atmosphere can be estimated through inverse analysis by using temperature measure-
ments taken within the thermal protection shield. If a technique that sequentially estimates
such boundary heat flux is used, inverse analysis may allow for online trajectory correc-
tions in order to reduce the heat load. Therefore, overheating of the structure of the
spacecraft can be avoided, reducing the risk of fatal accidents. Moreover, modern engin-
eering strongly relies on newly developed materials, such as composites, and inverse
analysis can be used for the characterization of the unknown properties of such nonho-
mogeneous materials. The use of nonintrusive measurement techniques with high spatial
resolutions and high measurement frequencies, such as temperature measurements taken
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viii Preface

with infrared cameras, allows the characterization of nonhomogeneous materials even at
small scales, including crack or defect detection. The latest research in heat transfer follows
a trend toward small scales, at micro- and nano-levels. This requires that physical phe-
nomena be taken into consideration, which may be negligible and, hence, not accounted for
at macroscales. By the same token, modern techniques now permit nonintrusive measure-
ments to be taken at small space and time scales, thus allowing the observation of such
complex physical phenomena.

All subjects required for the understanding and solution of the physical situations
described above are available in this book, including the modeling of heat transfer prob-
lems, even at micro- and nano-scales, modern measurement techniques, and the solution of
inverse problems by using classical and novel approaches. This book is aimed at engineers,
senior undergraduate students, graduate students, researchers both in academia and
industry, in the broad field of heat transfer. It is assumed, however, that the reader has
basic knowledge on heat transfer, such as that contained in an undergraduate heat transfer
course.

This book is intended to be a one-source reference for those involved with different
aspects of heat transfer, including the modeling of physical problems, the measurement of
primary heat transfer variables, and the estimation of quantities appearing in the formu-
lation (indirect measurements) through the solution of inverse problems. Keeping this
main objective in mind, the book was divided into three parts, namely: Part [ —Modeling
and Measurements in Heat Transfer, Part II—Inverse Heat Transfer Problems, and Part
III—Applications. Parts I and II provide a concise theoretical background along with
examples on modeling, measurements, and solutions of inverse problems in heat transfer.
Part III deals with applications of the knowledge built up in Parts I and II to several
practical test cases. Each chapter contains its own lists of variables and references. Hence,
depending on the reader’s background and interest, they can be read independently.

This book results from the Advanced Schools METTI (Thermal Measurements and
Inverse Techniques) held in 1995, 1999, 2005, and 2009. Started under the auspices of
SFT—French Heat Transfer Society, the last METTI School was co-organized with
ABCM—-Brazilian Society of Mechanical Engineering and Sciences, and held in Angra
dos Reis (state of Rio de Janeiro) as one of the activities of the Year of France in Brazil.
However, the book was intended to be self-consistent and didactic, not being at all the
single collection of lectures previously given during the METTI schools.

We would like to thank all the contributors for their diligent work that made this book
possible. We are indebted to Professor Afshin J. Ghajar, the Heat Transfer series editor for
CRC Press/Taylor & Francis, for his encouragement and support to pursue this book
project. We also appreciate the valuable recommendation by Professor Sadik Kakac, who
carefully reviewed our book proposal. The cooperation of the staff at CRC Press/Taylor &
Francis is greatly appreciated, especially that from Jonathan W. Plant, the senior editor for
mechanical, aerospace, nuclear, and energy engineering, and from our project coordinator,
Amber Donley. Finally, we would like to express our deepest gratitude for the financial
support provided for the publication of this book by CAPES, an agency of the Brazilian
government for the fostering of science and graduate studies.
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Modeling in Heat Transfer

Jean-Luc Battaglia and Denis Maillet
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1.1 Introduction

Modeling constitutes a very general activity in engineering. A system can be considered as
modeled if its behavior or its response to a given excitation can be predicted. So prediction
is one of the natural characteristics of modeling.

In the second section of this chapter, the basics on heat transfer physics are presented.
The existence of temperature and more specifically of temperature gradient must be
discussed carefully when time and length scales become very small. This is the case for
new applications in the field of inverse heat conduction problems. This point is known for
a long time at very low temperature. It becomes also particularly true at the nanoscale
when temperature is greater than the Debye temperature (above this temperature, the
quantum effects are generally neglected). Classical Fourier’s law, at the basis of standard
heat transfer models, is no longer valid, and either a new model or a definition of the
reliable time range for the pertinent use of Fourier’s law is thus required. In the third
section of this chapter, the concept of homogenization for heterogeneous materials through
macroscopic homogenized models is presented. This topic is also studied in Chapter 2.
An illustration of such a problem is represented in Figure 1.1.

FIGURE 1.1

Phase change material for energy storage (double porosity
carbon graphite/salt porous media with phase change
material [PCM]). Scanning electron microscopy (SEM)
imaging illustrates different heterogeneity levels accord-
ing to the observation scale and shows that a specific
model is required for each.
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Another important feature of a model, which is only a theoretical representation of the
physical reality in the case of a material system, is its structure (we do not deal here with
information systems). In heat transfer, the choice is quite large, and the model structure
should be selected according to the objective of the model. The model-builder can have in
mind an optimal design problem, a parameter estimation problem using measurements, a
control problem to define the best excitation shape for a given desired output, or a model
reduction problem, just to quote a few applications.

The choice of the structure of a model in heat transfer depends on many things:

e State variable and observed quantities

In a heat diffusion problem, temperature is the quantity that constitutes the state
variable, in the thermodynamics sense. In order to calculate temperature and heat
flux at any time f and at any point P, one has to know the initial temperature field
(at time t=0) at the local scale, as well as the history of the different thermal
disturbances between times 0 and t. So, one has to define what is a local point P and
a local scale. For instance, if heat transfer is intended to be studied at the very small
scale in a metal (smaller than the grain size), Fourier’s law, relating heat flux to
temperature gradient, may no longer be valid. In such a case, two temperatures
(respectively for the electron gas and the lattice) are required to describe heat
transfer at this scale (see Section 1.2.3). Such a detailed state model will be necessary
if observations or predictions are looked for at the nanoscale or at the picosecond
timescale. The upper thresholds of both scales depend on the considered material.
A similar effect appears in a heterogeneous medium composed of two homoge-
neous materials (grains made of one material embedded in a matrix made of the
other material, for example): instead of using temperature at the local scale (grain
or matrix), some averaging, that is a space filtering, will be used at the macroscopic
scale (see Sections 1.3 and 1.4 and Chapter 2).

e State definition
The continuous state equations have then to be defined for the modeling problem
at stake: it can be a partial differential equation, the heat equation (state = tempera-
ture), or an integro-differential equation, the radiative transfer equation (state =
radiative intensity), or both coupled equations. Their solution, that is constituted
by both temperature and intensity fields in the third case, should be calculated
everywhere and any time past the initial time (see Section 1.5.2).

e Quantities of the direct problem
We focus on the diffusion heat equation in a medium composed of one or several
homogeneous materials, with its associated initial, boundary, and interface equa-
tions. Its solution, the state variable, here the continuous temperature field T(P, t), has
first to be found, and the desired observed quantities, that is, the (theoretical) output
of the model at a given point P, y,,,(f) = T(P,t), have to be calculated next (see
Section 1.5.1). Here the quantities that are required for solving the direct problem are
the structural parameters of the system (conductivities, volumetric heat capacities,
heat exchange coefficients, emissivities of walls, .. .), the thermal excitation, and the
initial temperature field T(P,t = 0). Let us note here that it is possible to make a
physical reduction of a model based on the three-dimensional (3D) transient heat
equation to get simpler models of lower dimensionality. The thermal fin (1D) or the
bulk temperature (0D) types (see Section 1.6.2) constitute such reduced models. This
type of reduction may also reduce the number of parameters defining the excitations.
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e Numerical/analytical model

There are many ways for solving the heat equation and finding a state model for the
observations: analytical solutions provide the temperature field explicitly as a func-
tion of the structural parameters of the system, the excitation, and the initial state.
They can be constructed if the heat equation in each material and the associated
conditions are all linear and the corresponding geometry simple. The other class of
state models relies on the discrete formulation of the heat equation: one can quote the
nodal, boundary element, finite elements, and finite volume methods, for example.
State models rely on an internal representation of the system: the temperature field
has to be found first and the observations are calculated next. External represen-
tations that short circuit the state variable and link directly the observation to the
excitation(s), for example, through a time or space transfer function, in the linear
case, constitute another class of models (see Section 1.5.2.1).

e Parameterization for inverse problem solution

Parameterization of the data of the direct problem constitutes another characteris-
tic of the structure of a model: structural parameters, thermal excitations, and the
initial temperature field are, in the very general case, functions of different
explanatory variables: space, time, and temperature. The conversion of functions
into vectors of finite dimensions does not involve any problem in the direct problem
(calculation of the observations, the model output, as a function of the input). It is
no more the case when the inverse problem is considered. This point will be
discussed in Section 1.5.2.2. The interested reader can also consult Chapter 14,
where reduction of experimental data is studied. One of the objectives of math-
ematical reduction methods is to construct a reduced model that will have a reduced
number of structural parameters, starting from a detailed reference model (see Chap-
ter 13 for details on model reduction), while physical reduction also changes the
definitions of both output and excitations (see Section 1.6.2).

1.2 Pertinent Definition of a Direct Model for Inversion of Measurements
1.2.1 Heat Conduction at the Macroscopic Level

Heat transfer by diffusion takes place in solids and motionless fluids and was mathemat-
ically described for the first time by Joseph Fourier (1828) in his “Mémoire sur la théorie
analytique de la chaleur” (Treatise on the analytical theory of heat). Fourier’s relation is
phenomenological, that is, derived experimentally. It relates the heat flux density (a vector)
to the temperature gradient inside the material under the form of the following linear
relationship:

§=—kVT 1.1)

where operator VT = (0T /0x,0T /0y, 0T /0z) denotes the temperature gradient. Conse-
quently, the heat flow rate d¢ traversing an elementary surface of area dS, centered at
this location with an orientation defined by a unit length outward pointing vector 7, is

db = ¢,dS with ¢, =@ -ii= —kVT-ii 1.2)
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where

the direction of 7 is arbitrary (two choices are possible)

¢, is the normal flux (a scalar, sometimes called normal flux density) expressed in W m~?
In order to recover the heat flux ¢ (W) going through a finite surface (not necessary planar)
of area S, Equation 1.2 has to be integrated over its whole area. In the particular case of a
one-dimensional heat transfer through a planar surface of area S, normal to the x-direction
(a cross section), the heat flux is

b= —kSZ—Z (1.3)

Finally, k is defined as the thermal conductivity of the material. It can be viewed as an
intrinsic thermal property of the material. However, it is expressed from more fundamental
quantities such as the mean free path of heat carriers (phonons, electrons, and fluid
particles), the velocity group as well as fundamental constants (the reduced Planck con-
stant /i and the Boltzmann constant kg).

In many cases encountered in nature or in man-made objects, thermal conductivity is no
longer isotropic but orthotropic, or more generally anisotropic. In the orthotropic case (for
composite materials, for example, and in the principal axes of the tensor), Fourier’s law
becomes

oT oT or
§=—k—%—ky —1 —k,—7Z 14
¢ xaxx yayy zayz (1.4)

The three components of the heat flux are expressed according to the three corresponding
values for the thermal conductivity in each direction. In case of an anisotropic medium, the
symmetrical thermal conductivity tensor can be introduced:

— kxx kxy kxz
k= kyy Ky (1.5)
sym ks

Thermal conductivity of materials can vary significantly with temperature. In a general
manner, materials act as superconductors at very low temperature (in the 1-10 K tempera-
ture range) whereas the thermal conductivity decreases as the temperature increases. The
thermal conductivity varies slightly when temperature is greater than the Debye tempera-
ture up to the phase change. In the molten state, the thermal conductivity does not change
significantly, but in such a configuration, heat transport by convection becomes as import-
ant as conduction.

Thermal diffusivity is defined as the ratio of the thermal conductivity and the specific
heat per unit volume:

a=— (1.6)

It is thus possible to estimate the diffusion time fzz = [?/a when heat diffuses in the
direction defined by its characteristic length L as reported in Table 1.1.
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TABLE 1.1

Characteristic Diffusion Times (Thermal Diffusivity
Isa=10"°m?s™ 1)

Sphere
L (Radius 6400 km) 03m 1cm 100 nm 1 nm
tar 102 years 10°s  100s  10°s  107?s=1ps

Fourier’s law becomes unappropriate to simulate heat transfer by conduction at very
short times of the order of the picosecond that are related to the nanoscale (according to
Table 1.1). If one considers the response to a localized heat pulse on the material, Fourier’s
law shows that the temperature field is modified instantaneously at every point of space
since the pulse start. However, at a later time ¢, temperature cannot have been modified
beyond a distance equal to the quantity: c ¢, otherwise the effect of the pulse would have
propagated faster than the speed of light c. The relationship relating heat flux and tem-
perature gradient must therefore be modified. It has been done by Caetano who intro-
duced a form involving a relaxation time T:

03 _
Ta—‘f+¢:—kvzr 1.7)

This relaxation time T depends on the nature of the heat carriers (phonons, electrons, or
fluid particles) and more generally on the collision processes between them.

Equivalently, we may compare a characteristic length scale for evolution of the system
with the other intrinsic property: the mean free path of the heat carriers. If the latter is
much greater than the characteristic length of the medium, the local Fourier law is no
longer valid.

1.2.2 An Experimental Observation

Before presenting theoretical developments, it would be interesting to start with an experi-
mental result obtained using the femtoseconds (1 fs=10""° s) time domain thermoreflec-
tance (TDTR) technique. This experiment consists in applying a very short pulse (some
tenths of femtoseconds) at the front face of a material and to measure the transient
temperature response on the heated area (see Figure 1.2). The pulse laser is called the
pump. A probe laser beam is focused on the heated area, and a photodiode allows
measuring the reflected beam intensity from the surface. Since the intensity of the reflected
beam is known to vary linearly with temperature (for small pump intensity), the measured
signal is proportional to the variation of the time-dependent surface temperature. An
ad hoc postprocessing of the output signal allows building a normalized impulse response
for the sample.

This experiment is known as the front face method (the thermal disturbance and the
temperature measurement are realized at the same location). In a sense, the TDTR can be
viewed as an extension of the classical “flash”” method for very short times. In the
experimental configuration described in Figure 1.2, the TDTR technique is used for char-
acterizing a very thin layer (100 nm thick) of a semiconducting alloy: Ge,Sb,Tes
(commonly denoted GST) whose thermal effusivity is bgst = /kgst(pcp)gsr- A thermal
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0.1 ps pulse

Laser

FIGURE 1.2

Radiation of pump is doubled by a B-BaB,O, (BBO) nonlinear optical crystal. The probe pulse is delayed according
to the pump pulse up to 7 ns with a temporal precision of a few tens of femtoseconds by means of a variable
optical path. The pump beam, whose optical path length remains constant during the experiment, is modulated at
a given frequency of 0.3 MHz by an acousto-optic modulator (AOM). In order to increase the signal over noise
ratio, a lock-in amplifier synchronized with the modulation frequency is used. Probe and pump beams have a
Gaussian profile. The experimental setup is described in Battaglia et al. (2007). An example of sample is
represented on the SEM image; the Al layer is used as a thermal transducer to absorb the incident radiation of
the pump.

transducer is an aluminum film (denoted Al), of thickness e4; and specific heat per unit
volume (pcy),;, deposited on the GST layer in order to increase the signal-noise ratio
during the TDTR experiment. For the duration of the experiment (a tenth of nanoseconds),
the GST layer is viewed as a semi-infinite medium. Using the classical heat diffusion
model, based on Fourier’s law, an analytical expression is obtained for the average (with
respect to the spatial distribution of temperature on the heated area) normalized impulse
response as follows:

2
TDTR = exp (é) erfc (\/E) with . = (%) (1.8)

Experimental measurements are reported in Figure 1.3, as well as the simulation obtained
from the analytical solution (1.8).

It clearly appears that the measured impulse response fits very well with the simulated
semi-infinite behavior when time becomes higher than f. = 0.3ns. This result comes from
the fact that thermal equilibrium, also called thermalization, between the electrons gas and
the lattice in the aluminum film must be taken into account in the model for short times just
after the pulse. This effect can be modeled through a specific model: the two-temperature
model (see Section 1.2.3.4). This time is defined as the thermalization time of the heat
carriers: electrons and phonons. It can be viewed as the relaxation time that has been
introduced in Equation 1.6. However, as it will be shown in Section 1.2.3.4, the relaxation
time 7 is lower than time ., estimated from Figure 1.3, since the thermal resistance at the
Al-GST interface was not taken into account in this equation.

This observation leads us to take care of the direct model formulation that will be used to
solve an inverse problem. It should be adapted to the timescale concerned within the
experiment. Indeed, in the example presented above, one can only estimate the thermal
effusivity of the layer for time ¢ such as t > f.. This last point has a significance since the
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FIGURE 1.3 [
Impulse response obtained using the TDTR experi-
ment on a GST layer capped with an Al transducer. 0.6 A
Plain line is the measurement from 1 ps up to 2 ns. |
The dotted line is the simulation using the Fourier law [

(Model 1T), and the plain circles are obtained from 0.5 -
the simulation of the two-temperature model (Model ~ 10714 10712 10710 1078
2T, described later in this text). Time (s)

concepts of thermal conductivity and even of temperature do not make sense anymore at
the very small scales. Finally, it is also clear that different thermal parameters, in terms of
their physical meaning, will be introduced according to the direct model formulation.

1.2.3 How Can Heat Transfer Be Modeled at the Nanoscale?
1.2.3.1 Discussion

We have highlighted above the intimate link between temperature gradient and mean free
path of the carriers in solids: phonons and electrons. In particular, if the characteristic
dimension of the material is smaller than the mean free path A of these carriers, only a
thermal conductance K can be used for relating heat flux to the temperature difference AT
at the material surface as ¢ = KAT. In other words, expressing the thermal conductance as
the classical ratio k/e when e < A does not make any sense (see Figure 1.4).

Nevertheless, current challenges for miniaturization force engineers to implement mater-
ials in structures whose dimensions lie between several nanometers and a few hundreds of
nanometers (see Figure 1.5). Study of the heat transfer in these structures requires using

Measure
of T

Thermal

FIGURE 1.4 disturbance

Thermal characterization using the front
face experiment. (a) If the sample thick-
ness e is less than the mean free path A
of the heat carriers (electrons/phonons)
the experiment allows identification of
the thermal resistance (or conductance)
of the layer only. (b) In the opposite case,
the method allows identification of the
thermal effusivity of the layer. (a) e<A (b) e>A
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FIGURE 1.5
50 nm Nanoelectronics: a nonvolatile memory cell based on phase
= change chalcogenide alloy (GST stands for germanium-antimony-
tellurium). The characteristic dimension of the cell is 50 nm.
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FIGURE 1.6

At dimensions comparable to the phonon wave-
length A and temperatures much smaller than the
Debye temperature 0p, heat transfer rests essen-
tially on quantum mechanics. For larger dimen-
Quantum sions and room temperatures, the BTE and the
T<«<bp | mechanics classical MD are well adapted for modeling heat
transfer inside the studied structure. For even
larger dimensions, Fourier’s law can be effi-
o \ A Vat  ciently implemented with a denoting thermal dif-

Length scale fusivity.

f

Boltzmann transport
equation
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2
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Temperature, 0

specific tools that will be developed now. According to the scale, four types of methods will
be used for constructing a heat transfer model, as described schematically in Figure 1.6.

We will first present the transport of heat through molecular dynamics (MD). We will
then skip to Boltzmann transport equations (BTE) and present the two-temperature model
further on. These models allow taking local thermal nonequilibrium into account. This
nonequilibrium occurs between the thermal states of the electron gas and the crystal lattice,
for metals and for semiconductors and only of the lattice for insulators. We will come
finally to the model of heat diffusion designed by Fourier nearly 200 years ago. We will
pinpoint, for each type of approach, the possibilities of measurement inversion. In other
words, we will seek to define what are the physical parameters accessible to measurement
and what are the thermal properties inherent to each.

1.2.3.2 Molecular Dynamics

MD aims at calculating the position, speed, and acceleration of ions or molecules that make
up the material according to the classical Newtonians” mechanics equations, that is, the
fundamental principle of dynamics (FPD). For a detailed description of the method, see the



12 Thermal Measurements and Inverse Techniques

book of Volz (2007) as well as that of Frenkel and Berend (1996). MD also leads to reliable
results when quantum effects are predominant by using ab initio calculation starting from
the Schrédinger relation. These quantum effects appear at low temperature and more
precisely below Debye temperature. One will be able thus to use the FPD in MD only for
T > Op. Another criterion to validate the use of FPD consists in calculating the ratio \/ag
where \ is the average wavelength of the ion (or molecule) vibration and 4, is the interatomic
distance. The relationship between wavelength \, particle mass m, and temperature T is

h
N=— 1.9
vV ZTI'kaT ( )

In this relation, /i is Planck’s constant and kg is Boltzmann’s constant. We note 7;,
¥; = dr;/dt, and 4; = dd;/dt the position, speed, and acceleration of particle i, respectively.
The total energy of particle i is the sum of its kinetic and potential energy:

E;=E, +E, (1.10)

The potential energy is itself the sum of an external potential field (such as an electromag-
netic field) and of an internal field (caused by mutual interactions of the particles).
The force that is exerted on each particle thus derives from the potential energy:
F, = —VE,({) 1.11)

FPD applied to one particle is then

1!

Fi= mZi,- (1.12)

Solving this vector-relationship (three scalar equations in three dimensions) for each
particle (see Figure 1.7) leads to the position and then to the velocity of each particle.
Calculation of its kinetic energy derives from knowledge of its speed:

(1.13)

FIGURE 1.7

Classical configuration used for particle motion simulation
using the MD. Periodic boundary conditions on the cell
are generally assumed.



http://www.crcnetbase.com/action/showImage?doi=10.1201/b10918-3&iName=master.img-004.jpg&w=180&h=177

Modeling in Heat Transfer 13

The kinetic theory provides temperature as follows:

2
T=_—E,
kg ©

(1.14)
Temperature is not subscripted by i deliberately because the notion of temperature relies
on a large number of particles. Even if the mass of the particle is not present explicitly in the
expression of temperature above, that is not true any more when various elements make
up the material. In this case, one of the masses is taken as a reference and a mass correction
is made for the other elements.

The theoretical difficulty in MD stems from the calculation of the potential of interaction
between the particles.

MD can be implemented at the very low scale in order to calculate thermal conductivity
of solids using non-homogeneous non-equilibrium molecular dynamics (NEMD) (see
Figure 1.8). This is certainly the simplest technique (compared to the Green—-Kubo calcu-
lation at equilibrium) to understand and implement, for it is analogous to the well-known
guarded hot plate experiment. The idea is to simulate steady-state one-dimensional heat
transfer in a system by inserting a hot and a cold source and then calculating the flux
exchanged between the sources as well as the temperature gradient. The most widely used
approach consists in adapting the velocity field of the atoms belonging to the heat sources
in such a way as to impose the thermal power exchanged between the hot and cold
sources. This method requires a large computation time: the number of particles that
must be retained in this simulation is large since temperature is a statistical quantity.

Moreover, since thermal conductivity calculation requires defining a thermal gradient,
the number of required particles increases dramatically in order to get a precise enough
corresponding derivative. Moreover, this simulation always leads to the value of the
thermal resistance Ry, (the inverse of thermal conductance K defined in Section 1.2.3.1)
of the material inserted between the hot and cold plates. This quantity is certainly as

Az
NyﬂV

4 - Cold source
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I
I

N,a, - Hot source
I
I
|
y
~—] Cold source
v - FIGURE 1.8
—» Nonequilibrium MD simulation for thermal

N,a, conductivity simulation.
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interesting as thermal conductivity in practical configurations encountered in engineering.
As we said previously, if one wants to relate thermal resistance Ry, to thermal conductivity
k from the classical relationship Ry, =L/k, then the dimension of the simulation box must
be chosen as L >> A, where A is the mean free path of the phonons.

We introduce now some basic ideas concerning the statistical nature of temperature since
it is not always clear at very small scales. Using statistical mechanics arguments, tempera-
ture in a perfect gas can be defined for each particle of the gas. For liquids or solids, another
definition, based on the interactions between the particles, must be given. Thus, the true
question is the lowest size down to which the average energy of the phonons can be
calculated. The answer is related to the value of the mean free path introduced in the
preceding paragraph that is the distance separating two successive collisions of a phonon.
If two areas in space have different temperatures, then they have also a different distribu-
tion of phonons. We know that this distribution can be modified only through the process
of collisions. Anharmonic processes (processes where the assumption of small oscillations
of particles around their equilibrium state is no longer valid) are responsible on thermal
conductivity itself. The low frequency phonons have a large mean free path and corres-
pond to low temperatures. In the so-called Casimir limit, for low temperatures, the mean
free path size is about the same as the dimension of the material system. For high
temperatures, on the contrary, phonons have a high frequency and mean free paths
become much smaller. An illustration is given in Figure 1.9, where it is clearly demon-
strated that the thermal conductivity and thus the temperature gradient take sense only
when the number of particles involved in the MD simulation is high enough.

MD can be efficiently used as the direct model in an inverse procedure. Since inversion
calls upon the model several times, it seems that it will take huge computational times. In
order to answer the question about the parameters than can be estimated, it clearly appears
that the unknown parameters in the model relate to the potential functions between each
particle. Thus, one can imagine measuring the thermal conductance of a thin layer and then
using this result as the minimizing function. To our knowledge, no work has ever been
published on such a topic.

k(W m 1K)

FIGURE 1.9

Result of NEMD simulation for silicon.
Thermal conductivity is calculated
according to the number of unit cells
(crystal cell). As expected, thermal con-
ductivity tends asymptotically toward
the experimental value as the number of

0 20 40 60 80 100 120
unit cell becomes high enough. Number of unit cells
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1.2.3.3 Boltzmann Transport Equation

The phonon BTE describes the rate of change of a statistical distribution function for
phonons. The fundamental assumption in deriving the phonon BTE is that a distribution
function, Nq(?, t), exists. It describes the average occupation of phonon mode g (this mode is
associated with frequency w; and with wave vector k, that are related through the
dispersion curve for the studied material) in the neighborhood of a location 7 at time .
This equation relies on the assumption that phonon position and momentum can simul-
taneously be known with an arbitrary precision. However, in quantum mechanics, these
quantities correspond to noncommuting operators and hence obey the uncertainty prin-
ciple. The BTE is formally written as follows (see Volz [2007]):

AN, (7 ¢ AN, (7
——%}2+%-€Nﬂiﬂ:—{§;z (1.15)

c
where 7, is the group velocity associated to phonon of wave vector Eq. The term on the right-
hand side is the rate of change due to collisions. Solution of the phonon BTE requires
evaluation of the collision term, which constitutes the challenging problem here. The relax-
ation time approximation, associated with mode g, is widely used to model it. Under this
approximation, the BTE is rewritten using the average distribution function N as follows:

@ﬁﬂhﬁw€mmo:—%&ﬁ—ﬁ (1.16)
ot T

A key conceptual problem in using the relaxation time approximation is the requirement
for a thermodynamic temperature that governs the scattering rate. Since phonons are not in
an equilibrium distribution, there is no temperature to strictly speak of. The usual practice
in such nonequilibrium problems is to define an ad hoc equivalent temperature based on
the local energy.

The BTE can be efficiently used in order to compute the thermal conductivity of solids.
Indeed, it is demonstrated that thermal conductivity can be related to thermal capacity
¢ (J kgfl) as follows:

Jmax
k= J vécv(q)ﬂrq dg (1.17)
0

Specific heat can also be expressed analytically in terms of frequency mode w,; and of
temperature T as follows:

Omax

ehwq/kBT 5 2d 1 1
J (/T _ 1)2‘”qq g (1.18)

352
21T2kBTZUq

Cv(mq) =

The frequency mode is related to the wave vector through the dispersion curves of the
material. However, we must insist on the fact that this definition of thermal conductivity
rests on the fact that the use of Fourier’s law is allowed. In other words, time ¢ must verify
t > t., and characteristic dimension L of the medium must be such as L >> A, in order to
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define the temperature gradient inside the medium. These conditions are less restrictive for
the definition of the specific heat since it only involves temperature and not its gradient.

The question now is as follows: does the BTE can be considered as the direct model in an
inverse procedure and for identifying what? The answer is clearly yes since, as viewed
previously, there is an analytical model for both specific heat and thermal conductivity.
This model could be implemented in order to estimate the mean relaxation time of the
phonons inside the material, which is generally unknown. Again, to our knowledge, such a
work has not been made or published yet.

1.2.3.4 The Two-Temperature Model

We conclude this first part with the two-temperature model that constitutes a very good
transition to homogenization methods at the macroscopic scale that will be described
further on. The two-temperature model describes the time-dependent electron and lattice
temperatures, T, and T}, respectively, in a metal or in a semiconductor during the thermal-
ization process as follows:

oT, —= —
Ce(Te)a_te =V- (ke(Te/ TI)VTE) - G(Te - Tl) + ool (1-19)
oT
Cla—tl =G(T. - T) (1.20)

In these equations, c, and c; are the electronic and lattice specific heat per unit volume, , is
the electronic thermal conductivity that can be assimilated to bulk thermal conductivity for
metals, and g, is the volumetric heat source in the lattice. These two nonlinear equations
are coupled through the electron—phonon coupling constant G that can be explicitly
defined starting from the BTE for both electrons and phonons. A detailed explanation of
this model foundation can be found in the paper of Anisimov et al. (1974, 1975).

Regarding the TDTR reference experiment (see Section 1.2.2), Equation 1.19 means that,
after the pulse, hot electrons will move inside the medium while losing their energy to the
lattice. Let us insist on the fact that this model has a physical meaning only during the
thermalization process, since Equation 1.20 shows that the lattice temperature remains
constant as soon as T, = T; or, in other words, when the thermalization process between
electrons and lattice ends.

It must be also emphasized that this model involves a temperature gradient in the
electron gas whereas thermal conduction in the lattice is neglected with respect to heat
exchange between electrons and the lattice. It means that the characteristic length of the
medium is such as L > A,, where A, is the mean free path of the electrons. Indeed, we saw
previously that the mean free path for electrons is larger than for phonons. However, the
constraint on time is just related to the relaxation time for electrons, which is of the order of
some tenth of femtoseconds. In other words, the simulation time range for the two-
temperature model can be (and should be) shorter than the relaxation time for the
phonons.

When implementing the model in relation with the thermoreflectance experiment, the
heat source g, is a function of the heated area (laser beam radius) of the optical penetra-
tion depth of the beam inside the material (related to the extinction coefficient) and of the
intensity of the source.

We used the finite element method in order to simulate the two-temperature model
starting from parameters given in the literature for aluminum. This simulation remains
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FIGURE 1.10

Two-temperature model simulation for the aluminum sample using the finite element method. Line with circles
represents the lattice temperature; plain line is the electron gas temperature.

coherent with the definition of temperature for the electron gas and the lattice since the
sample thickness has been chosen larger than the mean free path of the electrons in
aluminum, which is approximately 10 nm (in other words, the minimum distance between
two nodes of the mesh should be larger than this critical length). The resulting time-
dependent temperatures of the lattice and of the electron gas are reported in Figure 1.10.
The electron gas temperature increases very quickly and reaches its maximum at 50 fs.
Temperature of the lattice begins to increase at 20 fs and reaches the electrons gas
temperature at . = 200 fs. The calculation shows the undercooling of the electrons relative
to the lattice at the surface. This undercooling comes from the high value of the coupling
factor for aluminum. It is also observed for gold or copper whose coupling factors are
smaller, but it is less pronounced than for aluminum. Figure 1.10 shows that complete
thermalization between electron gas and lattice is reached at times between 25 and 30 ps.
It demonstrates what was said in Section 1.2.2, that is, the relaxation time is lower than
time f. that has been estimated through the TDTR experiment.

The use of the two-temperature model as a model to invert has been made by Orlande
et al. (1995) in order to estimate the coupling factor G for several kinds of metals. In fact,
analytical expressions for this parameter are generally inaccurate: knowledge of the dis-
persion curve for the studied material is required. It is then interesting to estimate it
directly from measurements similar to those given by the TDTR.

Our reference experiment shows that at the thermalization end, the TDTR measured
response is only sensitive to the lattice cooling, which means that use of the classical one-
temperature model becomes appropriate in order to describe heat diffusion inside the
medium. Let us note that the two-temperature model degenerates naturally toward the
one-temperature model when t > ¢,.



18 Thermal Measurements and Inverse Techniques

1.3 Heat Diffusion Model for Heterogeneous Materials: The Volume
Averaging Approach

1.3.1 Model at Local Scale

Thermal properties of heterogeneous materials are often determined experimentally by
assuming the sample behaves macroscopically like a homogeneous medium. Therefore, the
reliability of measurements depends heavily on the validity of the homogeneous med-
ium” assumption (see also Chapter 2 on the same subject). This is particularly true for
measurements based on transient heat conduction. Let us consider now an elementary
volume (a sample of the medium) whose configuration is representative of the material.
Such a representative elementary volume (REV) is shown in Figure 1.11 for a medium
constituted of two phases ¢ and 8.

The shape of the REV is arbitrary but its size is not: if the REV is a sphere of diameter
D = 2ry, this diameter should be much smaller than the size of the whole system L: D/L < 1;
this sphere constitutes a sample of the material and its diameter must be larger than the
scale representative of the distribution of the two phases in space (an averaged distance Ig
separating the ““grains” of the discontinuous phase o embedded in the continuous phase 3 in
Figure 1.11, for example): D/Ig > 1.If the local structure of the material within this REV does
not change too much when this sphere is moved anywhere in the whole medium, this
medium can be homogenized.

One assumes here that Fourier’s law is applicable for both phases at any point whose
location is determined by its position vector 7 and for each time f. Thermal conductivities
are denoted k, and kg, and specific heat per unit volume is denoted (pc;), and (pcy)g, for
phases o and B, respectively.

The heat transfer model at the local scale is as follows:

T (7,t) = S o .
(0Cp)s a(: ) T (k, VT, 1) for ¥ in the o-phase 1.21)

FIGURE 1.11 Averaging
REV of a two-phase heterogeneous medium. volume V
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for the o-phase, and

aTB(r )

(pcp)s =V (kgﬁTB(?, t)) for 7in the B-phase (1.22)

for the B-phase. Heat transfer between the two phases appears at the boundary condition
at the o— interface.

Two homogenized models that transform this two-phase model into one single homo-
geneous (equivalent) phase can be now introduced. This homogenized medium may exist
or not.

1.3.2 The One-Temperature Model

A volume averaging operator, noted ( ), can be defined here for any space field f at a point 7
located at the center 7 of the REV as follows:

(HFH =

J fF, ) dV() (1.23)

V(7,D)

1
V(7 D)

where
V(7,D), =wD? /6 here, is the volume of an REV centered at point 7
dV(7') is a microscopic volume centered at any point 7/ located inside the REV

Thus, an averaged “enthalpic”” temperature T} can always be defined:

TH(7,t) pc(FT(F',t)dV(F') = % (H) (7, t) (1.24)

__ 1 J
~ {pcy) V(7 D)

V(P,D)

where H(7, t) is the local enthalpy by unit volume: H(7, t) = pc(¥)Tr(7, t), the total volumic
heat pc; being defined by

pcr(F) = (pcp)(F) = &a(pcp)y + £p(pCp)p (1.25)

Here ¢, and &g are the local volume fractions of the o and B phases (g; + €g = 1). These
volume fractions are derived from the characteristic functions x, of each phase a (fora =0
or B), where x,(7) = 1 if ¥ belongs to the fluid phase and x,(7) = 0 otherwise

es(?) = (Xpg); &(7) = (Xo) =1 — () (1.26)

One can notice that if the medium can be homogenized, its specific heat per unit volume pc;
defined above should not depend on location 7.

The one-temperature model requires the definition of a thermal conductivity tensor k
whose coefficients can be considered as conductivities depending on the nature, thermo-
physical properties and geometry of the distribution of phases ¢ and B. A diffusion energy
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equation for the space and time variations of the averaged temperature can be written in
the case of a homogenized medium (Moyne et al., 2000):

oT
pCt a—f =V - (kVTh) + oo (1.27)

where
Juol 1S @ volumetric source term
k is an effective (or equivalent) conductivity of the material that is supposed to be locally
isotropic here (otherwise k has to be replaced by k)

This model can be extended to take fluid flow into account (see Testu et al. [2007]).

1.3.3 The Two-Temperature Model

At this stage, we introduce now the notion of intrinsic phase average, noted () here, for
any time-space field f(7, t) defined in the a-phase:

—_

(fo)* @ 1) = D) f@#,HdV(F') fora=oorB (1.28)

Vu(#, D)

>

Va(

where V, (7, D) C V(7,D) designates the volume occupied by the a-phase (a = o or B) in
the REV shown in Figure 1.11. Subscript « of f, indicates that integration is made for 7’
belonging to the V,(7,D) volume, while superscript o, in ()®, is related to division by
volume V, (7, D) in the right-hand member of this equation: (.) = &q(.)".

One can therefore introduce two different average temperatures (T, )* at the same point 7.
These two temperatures are related to the previous averaged “‘enthalpic” temperature Ty
through the definition of the average enthalpy:

(H) = pci(F) T = (pcp)y (To)” + (pcp)a(Tp)" (1.29)

In the case of local thermal equilibrium the temperatures both (T,)" are equal, which
implies that they are also both equal to the average enthalpic temperature, because of the
previous equation and of the definition of pc;: (T,)” = (Tp)? = Ty. In the opposite case,
the enthalpic temperature still exists but its observation is somewhat involved because a
perfect temperature detector would provide a temperature that will be either close to (T, )*
or to (Tg)P, depending on the quality of its coupling with either of each phase. In any case,
the sensor temperature would be close to Ty, because, by definition, this temperature lies
in between these two temperatures.

The macroscopic description of heat transfer in heterogeneous media by a single energy
equation does not imply the assumption of local thermal equilibrium between the two
phases. However, in order to get such an equilibrium, as described by Carbonell and
Whitaker (1984), some criteria must be verified.

We use now the following notation: D denotes the characteristic dimension of the REV of
volume V, a, = A,_g/V is its specific area, that is the ratio of the area of the interface
As_p/V between the two phases by its volume, V is the volume of the g-phase, ¢ = V;/V
is its volume fraction, and L denotes the characteristic dimension of the heterogeneous
medium.
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Then time t must verify (see Carbonell and Whitaker [1984])

e(pCp)sD* (1 1 (1- s)(pC,g)BD2 1 1
; k., + ks <« 1 and . k. + ks «1 (1.30)

And the characteristic dimension L of the REV must verify

ek,D /1 1 (1-ekD (1 1
2,12 (E—FE) <1 and %T E'ﬁ‘g «1 (1.31)

Obviously, another factor that can affect the assumption of local thermal equilibrium is the
location of the considered point with respect to the heat source: equilibrium cannot occur in
the vicinity of this source. Such a situation is met, for example, for front face heat pulse
excitation of a multilayer slab made of layers of different thermophysical properties.

For situations in which local thermal equilibrium is not valid, models have been pro-
posed based on the concept of two macroscopic continua. Intrinsic average temperatures
for the o-phase and the B-phase are denoted by (T,(7, t))” and (Tg(7, t)>B, respectively (see
Equation 1.28).

The pore-scale temperature deviation in the o-phase is defined by

To(7, t) = (To(#, 1)) + Ty (7, 1) (1.32)

One can introduce this decomposition into the pore-scale equation for the o-phase and then
form the volume average in order to obtain the macroscopic equation. After extensive use
of the averaging theorem, the following energy equation emerges for the o-phase:

o(Ty)°
ot

&(pcy)s -V- (K(,B V(T + Koo v<TU>") - avh(<Tq>" - (TB>B) (1.33)

Equivalently, the same procedure for the B-phase leads to

B
(1 - 0oy T

=V (KBB - V(Tp)P + Ko V<TU>U) - a”h<<TB>B - <T(,>0) (134)
The macroscopic conductivity tensors Kgg, Kgs, Kop, Koe and the volumetric exchange
coefficient a,h are given by the solution of three closure problems that have to be solved
over unit cells representative of the medium characteristics (see the paper of Quintard
et al. [1997]).

Let us note that the previous one- or two-temperature models have been derived using
the volume-averaging technique. The same kind of results can be set using the homogen-
ization technique, where two different independent coordinate systems can be defined, one
at the local scale and the other one at the mesoscopic scale. The interested reader can refer
to Auriault and Ene (1994) for an example of practical application of this type of technique.

1.3.4 Application to a Stratified Medium

Here, we are interested by the macroscopic thermal behavior of a stratified medium sub-
jected to a Dirichlet boundary condition, the flux being parallel to the strata (see Figure 1.12).
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Stratified medium unit cell. Symmetrical unit cell

This choice is due to the fact that in this particular geometry, reference analytical exact
solutions exist for the macroscopic effective properties, and only four effective parameters
are independent and have to be identified.

Since the stratified medium is orthotropic and the main tensor axis coincides with the
direction normal to the layers, the two-equation model is reduced to

NTo)' Koo & o aoh . ;

RN T WAL e (o) — (1)) (135)
and

AT Ky R s ad (s o

o oalpe)pl® a2 P —m(w ~(T,)°) (1.36)

where x* is the dimensionless space variable x/L. Then, in this configuration, the four
independent parameters to be identified are defined by

Kgg . ayh Koo ah

=72 =——~ 75 Ap=—"—~ Ho=
P eplpen)sl2” TP elpe)L?” TP ea(pey)y £ (PCp)q

(1.37)

This study has been the subject of a paper of Gobbé et al. (1998).

1.4 Summary on the Notion of Temperature at Nanoscales and
on Homogenization Techniques for Heat Transfer Description

We have seen above that in a solid material, temperature can be considered as a potential
that “explains’ transfer of energy and, at scales large enough, transfer of heat. At the
nanoscale, its definition requires the presence of a high enough number of particles of
each phase (ions in a lattice, electrons) because of its statistical nature. Once this condition
is fulfilled, the studied medium can be considered as continuous, which means that any
potential field or physical quantity can be assigned to any space point in the geometrical 3D
Euclidian domain. Two different temperatures can be defined then, one for each phase, at
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the same location. These can degenerate to one single temperature, if the two phases locally
present at the same point reach equilibrium, depending on the time—space scales considered.

The same type of approach can be adopted at larger space scales, when solid materials
composed of two phases are considered. At these larger scales, let us say above 10 nm,
(1) the material is considered as continuous and (2) Fourier’s law becomes valid at any
point in space. Both previous conditions are not equivalent, since the second condition
requires validity of the first one.

The use of an REV allows “filtering’” the locally heterogeneous material, which leads to
the definition of either one single “average enthalpic temperature” or two “intrinsic
average temperatures,” verifying one or two coupled heat equations.

If the structure of the REV is not modified by its translation in space, the material can be
considered as homogenous. Modification by rotation leads to anisotropic properties, but
this notion does not derive from the spatial distribution of the two phases only. Under this
condition of invariance by translation, the REV averaged thermophysical properties of the
material become constant that is uniform in space. These properties are

e Its volume fractions &, and eg defining its total volumetric heat pc;, and its effective
thermal conductivity k (or a thermal conductivity tensor k in the more general
anisotropic case), for the one-temperature model (see Equation 1.29).

o The macroscopic thermal conductivity tensors Kgg, Kgs, Kog, Koo and volumetric
exchange coefficient, a,h, for the two-temperature model (see Equations 1.35
and 1.36).

Homogenization techniques are presented in Chapter 2.

1.5 Physical System, Model, Direct and Inverse Problems

We will consider now on, in the presentation of inverse problems in heat transfer and in the
remaining part of this chapter, the generic case of heat diffusion in an isotropic or
anisotropic material that verifies the one-temperature model heat equation (based on
Fourier’s law), but its (continuous) material thermophysical properties (conductivity tensor
k and total volumic heat denoted pc now) may vary in space (nonhomogeneous case) and
possibly with temperature (thermodependent properties of the material).

1.5.1 Objective of a Model

The model-builder has a given objective: he tries to represent the real physical system by a
model M that will be used to simulate its behavior. This model requires the knowledge of a
given number of structural parameters that are put inside a parameter vector . Its
objective is to get identical responses of both system y(t) and model vy, (¢, B, 4), under the
excitation by an identical time-varying stimulus u(t) (see Figure 1.13).

If the control science terminology is used, this stimulus is called « input » and the
response « output ». These two terms have no geometrical meaning here.

In heat transfer, the stimulus is produced either by a source, that is, for example, a
surface thermal power (absorption of a radiative incident flux by a solid wall, for example)
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— Real system —y(t)

Mono-output

u(t)

Mono-input

o Model M(B) — Vot B 1)

FIGURE 1.13
Real system and its representation by a model. Parameters: B=(a, b, x,)

or by an internal power (Joule effect produced by an electrical current, heat of reaction of a
chemical reaction,...). It can also be an imposed temperature difference (temperature
difference between the inside and outside air environments on both sides of a solid wall,
for example).

Let us note that if steady-state regime is considered, both stimulation # and responses y
and y,,, do not vary with time.

1.5.2 State Model, Direct Problem, Internal and External Representations, Parameterizing
1.5.2.1 Example 1: Mono Input/Mono Output Case

Figure 1.14 shows a semi-infinite medium in the x-direction, whose front face (x =0) is
stimulated by a heat flux u (W m?) at initial time t = 0. The initial temperature distribution
To(x) may be nonuniform. A temperature sensor is embedded at a depth x, inside the
medium and delivers a signal y. So, starting at initial time, a transient 1D temperature field
T(x, t) develops inside the medium.

This temperature field, also called “state” of the system, is the solution of the heat
equation, a partial derivative equation here, as well as of its associated boundary and
initial conditions.

These equations are called state equations of this thermal system.

Different structural parameters appear in these equations: the medium heat conductivity
k (W m ' K™) and its thermal diffusivity a=k/pc (m* s~*), where p and c are its density
(kg m ) and its specific heat (J kg ' K™'), respectively. The theoretical signal of the sensor
Ymo (response of the model), caused by the medium stimulation u, is given by the output
equation.

ymo(t) = T(xs, 1) (1.38)

T 19T

—_— Temperature y? e = 2ot

— /

ut) —»p —k g_T (x,t=0)=u(t) | State
» X equations
Heat flux q
i } T finite as x — oo
— Sensor

T(x, t=0) = Ty(x)

FIGURE 1.14
Model for the response of a temperature sensor embedded in a semi-infinite medium. The interrogation mark (?)
designates what is looked for.
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The state equations give an internal representation of the direct problem that allows the
calculation of the system response everywhere, for a known excitation, while the sensor
response is given by the output equation.

The state equations can be solved analytically here, and calculation of the output
can be directly implemented, because the system is causal, linear, and invariant in time
(see Ozisik [1980]):

YunolF) = TG(xs,x, HTo(x) dx + jZ(t — 7147 AT = Yoo relax(®) + Yoo frcea () (1.39)
0 0
with
SO - [p(u) p<u) (L40)
2/mat dat dat
Z() = b%/;t exp (;;:) (1.41)
where

G(xs, x,t) is Green’s function associated to relaxation, at location x;, of the initial
temperature field T

Z(t) is the transfer function of the system, while b= (kpc)'/? is the thermal effusivity of the
medium

Equation 1.39 indicates that two effects overlap: the first term corresponds to relaxation of
the initial temperature field (free solution that vanishes for long times) while its second
term, a convolution product, corresponds to the response (“forced” solution) to the heat
flux excitation. Transfer function Z that links a temperature response to an excitation
power is called a time impedance, the same way as in AC electrical circuits. This function,
once convoluted with the flux excitation u, yields the forced component of the temperature
signal of the model. This can be expressed by a simple product of the corresponding
Laplace transforms:

Tono jrced(P) = Z(p)A(p)  with f(p) = Jf(t) exp (—ph) dt (1.42)
0

If initial temperature Ty is uniform in the medium, the first term in y,,,(t) in Equation 1.39
becomes equal to Tj,.

This last equation constitutes an external representation of the direct problem. It makes
calculation of the state T(x, t) of the modeled system needless.

The (theoretical) output of the model depends on three parameters: the two thermo-
physical properties of the medium’s material, 2 and b, and a parameter that relates to the
sensor, that is, its location x;. These three parameters can be gathered in a specific
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parameter vector B = [a b x,]". This parameter vector B contains the structural parameters is
of the problem: it does not change when input u(t) and/or initial state Ty(x) changes.

1.5.2.1.1 Important Point on Notation
Let us precise the notation that will be adopted now on

e A scalar or a scalar function depending continuously on an other scalar or vector
variable (time t or temperature T, for example) will be noted in lower or upper case
italic characters (k, or T(t, x), for example).

e A column vector (8, or u, or U [see Equation 1.46] further down) or a column
vector function will be noted in bold lower or upper case italic characters.

e A matrix or a matrix function will be noted in bold upper case characters (matrix A
or matrix function E [see Equation 1.47] further down, except if this matrix
function is a standard explicit function, such as the exponential of a matrix,
noted exp(.) here).

The previous structural parameters B, input u, and initial state T, can be assembled in a

unique list (not a column vector made of scalar quantities here) of explanatory quantities

x=1{B, u(t), To(x)}, gathering all the data necessary for the calculation of output .
Result of this modeling is sketched in Figure 1.15.

1.5.2.2 Parameterizing a Function

In the previous list x of explanatory quantities, one can find scalar parameters (diffusivity,
lengths, ...) corresponding to structural parameters, as well as a time function u(f), here a
heat flux. Other functions can appear such as a nonuniform initial state To(P) or a nonuni-
form structural parameter B(P) or a parameter depending on temperature B(T).

We suppose here that such a function is a time-depending input x = u(t). In order to be
able to deal with this kind of function, in the simulation (direct) problem and also in the
inverse problem (finding u from measured y’s, where this aspect becomes of prime
importance), this function has to be parameterized by its projection on a selected basis of
n chosen functions fj(t):

n

Uparam () = > U fi(#) (1.43)
=1
The new function Uparam, replaced now by avectoru = [u; 1y - uy, ]T of finite size n, is

an approximation of the original # function that can consequently be considered as a vector
with an infinite number of components. This approximation, that we will call parameter-
ization now on, generates an a priori error that depends both on the chosen basis as well as
on its size.

Initial state

Model M (B)
To®) Structural —_— Vot B ), To(%))
FIGURE 1.15 u(t) =—> parameters: f3 Output

Input-output model for a thermal system. Input
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FIGURE 1.16

Two examples of function parameterization in a local basis: (a) parameterizing with a hat function basis and

(b) parameterizing with a door function basis.

Figure 1.16 shows two possible choices, using a constant time step At =t; — t; 1:

e In case (a) the u; components are the discrete values of the original function on the
time grid and « hat » functions are selected as basis functions (see Figure 1.16a).

e In case (b) these components are averaged values of this function over one time
step and « door » functions are selected for this basis (see Figure 1.16b).

The choice for the basis is not unique and strongly depends on the problem at stake.
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So hat function parameterization of case (a) corresponds to linear interpolation using a
table of discrete values; this parameterization choice is appropriate if a temperature
dependency has to be modeled, for thermal conductivity A\(T), for example. In that case,
time ¢ has to be replaced by temperature T in the basis functions that become f;(T).

In case (b), a piecewise constant function basis has been chosen. It suits deconvolution
inverse problems, such as a time-varying source estimation using an experimental tem-
perature response.

In both cases, each 1; component requires, for its calculation, knowledge of function u(t)
within the neighborhood of time ¢; only. The use of such local bases is convenient because
they directly derive from the time-space gridding. It is also possible to use projections on
nonlocal bases such as polynomials, exponentials, trigonometric functions, etc.

The choice for a type of parameterization is very large. Constraints can be a priori set for
the functions of the basis: they can present various properties such as monotony, regularity
(continuous function with continuous first and second derivatives), and positivity, or they
can be assigned fixed values on part of their time domain [t ts,y]. One can also think of
B-splines bases, wavelets bases. ...

Remark

The use of orthogonal function bases is possible: they correspond to functions f;(t) such as

tsup

| s at = o (L.44)
Einf

where
9 is Kronecker symbol (8 = 0 if k # j and 8y = 1 otherwise)
Nj is the square of the norm of function f]

This kind of orthogonal projection, as well as its implementation, is deeply discussed in
Chapter 14.

Door functions shown in Figure 1.16b are orthogonal, but it is not the case for hat
functions shown in Figure 1.16a.

It is very interesting to choose the eigenfunctions of the heat equation (found using the
method of separation of variables, see Ozisik [1980] for these f; functions). In that case, the
components of the corresponding u vector become integral transforms, that is, the different
harmonics, of the original function (see the book Thermal Quadrupoles, by Maillet et al.
[2000]). This method is related to singular value decomposition (see Press et al. [1992]).

1.5.2.3 State-Space Representation for the Heat Equation

The one-temperature heat equation can be written for a thermal diffusion problem in an
anisotropic medium as the following partial differential equation:

= oT
div (k grad T) + ool = pca + Boundary, interface and initial conditions (1.45)

Here, g, designates the volumic heat sources (W m ) but other surface sources may be
present in the boundary or interface conditions. k designates the conductivity tensor here.
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This partial differential equation system is of the evolution type and can be considered as a
dynamical system. So, its solution, the temperature field T(P, t), that is, continuous in time,
constitutes the state of the system, which can be noted here Tp(t), that is, for a given time ¢,
a vector in an infinite dimension space.

This system that corresponds to a distributed parameter system can be discretized in space,
using N nodes, the discretized state becoming a vector T(t) in a N dimension space. The
resulting state equation of this system takes the form of a lumped parameter system that
corresponds to a system of first ordinary differential equations:

‘jl_itr = E(t, T,U) with T(t = t) = T (1.46)

where vector U(t) = [uy(t), ux(f),. .., u,,(t)]T corresponds to a local parameterization in
space, but not in time, of the volumetric distributed source g,,(P, ) and of the other
sources possibly present in the boundary or interface conditions. The number of different
parameterized sources is called p here.

Let us note that this equation is written here in the very general case of a fully nonlinear
system where temperature is the only state variable: conductivity or volumetric heat may
depend on temperature, or the associated interface/boundary conditions may not be linear
(radiative surface heat losses, for example). In that case, matrix E depends on temperature
T(t) in a nonlinear way. In a similar way, stimulation vector U may also be temperature
dependent. In that case, each of the p components u; of U is an implicit function of time,
since it depends on the present and past states of the system, that is, on T on the [0 t,]
interval.

We assume to be in the linear case (linear heat equation system and linear source)
now on

E(t, T,U) = AT + BU with A and B: constant matrices (1.47)

The different vectors and matrices present in the linear form of the state equation (1.47) are
thus defined in Figure 1.17.

State equation

dT
mn =AT+BU ~, Input or control T(t=t)) =Ty

/ X \ vector (px 1) \

State or evolution State Input Initial state
matrix vector matrix (Nx1)
(NxN)  (Nx1) (Nxp)
Output equation
Ymo=CT
> State vector
(Nx1) FIGURE 1.17
Output vector Output matrix State and output equations for a linear

(gx1) (gxN) dynamical thermal system.
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An analytical solution for the state vector T(t) of this state-space representation of a linear
system can be found formally using the exponential function of a matrix:

t
T(t) = exp(A(t — to))To + Jexp(A(t — 7)BU(r)dr (1.48)

to

In practice, and in the case of implementation of an inverse technique, all the N components
of the state vector (temperatures at the different nodes of the model here) do not present the
same interest: only a subset of it, composed of a selected number g(g < N) of its components,
constitutes the model output. They can correspond to observations provided by g sensors,
for example. These outputs are numbered and called y,,,;, and they are put in an output
vector y,,:

Yoo = [Ymo1 — Ymoi o Ymog] (1.49)

Output vector y,,, is linked to state vector T through an output matrix (or observation
matrix) C, of 4 x N dimensions: the coefficients of this observation matrix are either 0 or 1’s,
according to the observed nodes:

Y, = CT (1.50)

This equation is also called the output equation.
The response of the system, which is the observed output, can be calculated thanks to
Equations 1.48 and 1.50 as

¢
Y,.,(t) = Cexp(A(t —t))To + C J exp(A(t — 7))BU(t)d~ (1.51)
to

One notices, in a very similar way as in the previous example (1.39), that this response is the
sum of a term corresponding to relaxation of initial state Ty, which is the free regime, and a
convolution product term corresponding to response to stimulation U(t), the forced regime.

The meaning of the notion of state appears clearly here: knowledge of the state of the
system at a given time T(f) as well as the history of the different sources for the [f, t] time
interval allows calculating the current state T(f) of the material system. So, at a given time,
the thermal state contains the whole past of the system.

Remark 1.1

Equation 1.45 can easily be generalized to the case of heat transport in a pure fluid:

div(k grad T) — pcsv - grad T + gyo = PCSy

+ boundary, interface, and initial conditions (1.52)

where the advection term based on the volumetric heat of the fluid pc; = pc and on the
fluid velocity v (solution of the Navier-Stokes and continuity equations) has been added
and where, in this case, k reduces simply to the thermal conductivity k of the fluid.
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In the case of heat dispersion in a porous medium, this velocity has to be replaced by a
local Darcy velocity, temperature T becomes an average “enthalpic’”” temperature at the
local scale (for the one-temperature model), while k becomes the thermal dispersion tensor,
whose coefficients depend on this local Darcy velocity. In this case, pc, the volumetric heat
in the transient storage term, differs now from pcy. This total volumetric heat pc results
from a mixing law and represents the total volumetric heat of both fluid and solid phases,
using the local volume fractions as weights (see Testu et al. [2007]).

Remark 1.2

State of a thermal system is not always composed of the sole temperature T. Two different
examples of a composite state are given next.

If a physical or chemical transformation occurs inside the modeled material, a polymer-
ization of a thermoset resin, for example, heat source is produced by the heat of reaction
and usually depends on the degree of advancement of the reaction, through a kinetic law.
This degree of advancement constitutes the second state variable. In that case, the state
equations are composed of the heat diffusion Equation 1.45 completed with a coupled mass
balance equation for each of the species present in the reacting system.

Another example can be given for coupled conduction and radiation heat transfer in
semitransparent media. The radiative intensity is the second state variable, and the radia-
tive transfer equation (an integro-differential of equation) will be associated with the heat
diffusion equation in order to constitute the new state equations.

Remark 1.3

When a steady-state T, corresponding to an input vector U, exists, Equation 1.46 allows
its calculation: it is written with dT/df =0, which yields in the fully linear case (see
Equations 1.46 and 1.47):

T = —A"'BUg =y, ., = —CA™'BU,, (1.53)

1.5.2.4 Model Terminology and Structure

All the equations and necessary conditions for calculating the output of the model consti-
tute the structure of the model, which can be written as a functional relationship, for a
single output variable:

Yoo = (£, X) (1.54a)
or

Ymo = m(t, x) (1.54b)
where x is either a list (1.54a) of explanatory quantities, including functions,

x = {B, u(P, ), To(P)} or its vector version x = [B U To]" (1.54b), built with functions para-
meterized in space and time (or in temperature, for nonlinear problem with thermal
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dependency of either input u or structural parameters f; s). For output variables, one deals
with an output vector (not a scalar y,,, anymore), which requires the use of a vector
function n(.) whose arguments are time ¢ and either the x list or its vector version x:

Yo = Mt X) (1.55a)

or

Yo = M%) (1.55b)

A wider meaning can be given for vector U in this last definition of parameter vector x: this
vector can represent, in a nonlinear case, a temperature-dependent stimulus u(T) that has
been parameterized. Let us note that a temperature-dependent thermophysical property
B;(T), once parameterized, gives rise to constant coefficients of parameter vector B. Coef-
ficients of vector B can also stem from a space-dependent property B,(P) that has been
parameterized in the case of a heterogeneous medium.

The “direct problem” consists in finding model output y,,(t; x) at a given time ¢ in the
[to, tfinar] interval, for known data x = {B, u(P, t), To(P)}. Solution of this problem can allow
further numerical simulations of the output behavior.

A model relies on a given structure, that is, a functional relationship, noted m above,
between the output variable (or explained or dependent variable) y,,, (an observed tem-
perature here) and the independent variable (time ¢ for transient problems) and a param-
eter vector x, whose components are the parameterized explanatory quantities. It is
important to remind that aside the previous structure, parameters x of the model should
be defined accordingly (see Figure 1.18). They can either have a physical meaning if a state
modeling is performed or simply a mathematical meaning without clear physical inter-
pretation if an identified modelization is implemented.

One can notice that a model, in case of a single output, can provide not only a scalar
output v, depending continuously on time ¢ but also a vector output y,,. This output
column vector y,,, is associated with the same output variable, a local temperature, for
example, sampled at different times ti,1,,...,t,, or can result from a sampling of the
explanatory variable that can be a space coordinate for a steady-state problem. It can

x=B,UT,)
/ \ Initial state
Parameter vector Parameterized
Structural input (vector)
parameters
Ymo =1 (& %) \
/ \\ Parameter vector
Model output Function Independent variable
or or or
dependent variable model structure explanatory variable

FIGURE 1.18 or
Parameter vector and structure of a model.  explained variable



Modeling in Heat Transfer 33

also gather in a single column vector, of length gm, several output temperatures observed
at different points P; (i=1 to ¢), sampled for m different times f;.

Let us note here that a general introduction to inverse problems is proposed in Chapter 7,
and general methods and skills for their solution are discussed in Part II.

1.5.3 Direct and Inverse Problems
1.5.3.1 Direct Problem

We have seen above that when the studied problem allows it, the usual approach of the
thermal science scientist consists in constructing a knowledge-based model, such as
Equation 1.45, in order to be able to simulate the behavior of the physical system.

This leads to a numerical or analytical solution of a partial differential equation in the
case of a heat diffusion problem (or an integro-differential system of equations for radi-
ation heat transfer in semitransparent media, temperature, and radiative intensity being
the state variables) that represents the corresponding transfer of heat. The solution of these
equations also requires the knowledge of the conditions at the boundaries (Dirichlet,
Neumann, Fourier, etc.) or at the internal interfaces (for a medium composed of different
materials) as well as the initial condition in the system.

If an internal representation is adopted, several quantities of different nature have to be
introduced in the state (1.45) and output equations y,, (t) = T(P;, t) of the model, written for
a single temperature sensor located at point P;. If the output is observed at g such points for
m times that constitute a time vector t = [t1 £, - - tm]T, it becomes an output vector y,, (; x)
that depends also on parameter vector x, where this vector is composed of

e The raw u(P, ) or parameterized U(t) excitation

e Vector B, of structural parameters, 2 and b in Example 1 or coefficients of
matrices A and B in the linear state equations (1.46) and (1.47)

e Vector B, describing the position of the observation, x; in Example 1 and coeffi-
cients of matrix C in output equation (1.50)

o The initial temperature field Ty(P) or its parameterized version T

Input variables u(P, t) are controlled by the user: they are either power sources or imposed
temperature differences, inside or outside the system, that make temperature and output
depart from a zero value in case of zero initial temperature T(P).

Structural parameters B, characterize the system. They can be

o Geometrical quantities (shape and dimensions of the system)

e Thermophysical properties: conductivities, volumetric heat capacities, heat trans-
fer coefficients, emissivities, contact or interface resistances, etc.

The relationship between output variables, generally a subset of the state, and state
variables, the temperature field, makes the previous position parameter vector B,,, appear
in this output equation.

A functional scheme corresponding to linear state and output heat equations is shown in
the lower line of Figure 1.19.

This corresponds to the usual process of a model user: for a known initial state T'(tp), a
known excitation U(t), and known structural parameters, the heat equation and the output
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FIGURE 1.19
Linear model and material system with temperature measurement.

equations are solved sequentially to calculate the theoretical response y,,, of the sensors.
This output corresponds to a possible real temperature measurement at the same locations
(upper line in Figure 1.19). The direct problem can thus be solved.

1.5.3.2 Inverse Problem Approach

The preceding analysis shows that any variation in the data represented inside the x vector
(including structural and position parameters B, and B,,) will produce a variation of
the y,  output.

Conversely, any variation of this output y,, is necessarily caused by variation of some
data inside x.

The inverse approach is based on this principle. When knowledge of part of the variables
that are necessary to solve the direct problem is lacking, data vector x of this problem can
be split into two vectors the following way:

x= {x} (1.56)

where
X, Nnow represents the (column) vector gathering the unknown part of the data that are
sought (researched)
x. is its complementary part that contains known data

In that case, solving the direct problem constitutes an impossible task. Any process aimed
at finding x, requires some additional information.
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Direct problem: knownx —» Model [— y,,,?
FIGURE 1.20
Direct problem/inverse problem. The interroga-
Inverse problem: part of x? <+— Model +«—Knowny tion mark (?) designates what is looked for in
each problem.

Problems whose objective is to find a value for x, starting from additional information,
are called inverse problems.

Any inverse problem consists in making the model work in the « backwards » way: if
outputs y as well as model structure m are known, part x, of x will be sought, its
complementary part being known (see Figure 1.20).

A general introduction to inverse problems is proposed in Chapter 7, and general
methods and skills are discussed further in Sections 7.2 and 7.3 of the same chapter.

1.5.3.3 Inverse Problems in Heat Transfer

1.5.3.3.1 Different Types of Inverse Problems in Heat Transfer
The nature of additional information necessary for solving the inverse problem allows
bringing out three main types of problems:

1. Inverse measurement problems, where this information stems from output signal y of
Sensors.

2. Control problems, where the previous measurements are replaced by desired
values of either the state T(P, t) or output variables y: data or y are the targets. In
this class of problem, the sought quantity is generally the stimulus u(P,t) or the
initial state Ty(P), but it can also be a structural parameter (a velocity or a flow rate
in a forced convection cooling problem, for example). In this class of problems, it is
not always possible to reach the targets, for physical or mathematical reasons, and
it may be necessary to specify a certain number of constraints on the sought
solution.

3. System identification problems, that is, model construction for simulating the behav-
ior of a system (see Chapters 13 and 14). These can be classified into two categories:

a. Model reduction: y is the output of a detailed model m,,(f; x4:) completely
known, and the structural parameters (part of x,;) of a reduced model
Nyed(f; Xreq) Of given structure m,,,; are sought, both models sharing either identi-
cal or close stimulations u(P, t) and initial state To(P) that are parts of x4,; and
X,eq- This can be written as follows:

'ndet(t; xdEt) ~ nred(t; xred) where Xdet = [Bdet udet TOdet]T
and  Xq = [Brey Urea TOred]T (1.57)

with, for mathematical reduction:

Ured(P, t) = Uger(P, ) = Upeqg = Uy

(1.58)
TO red(P/ t) = TO det(P/ t) = Toget = Torea
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or, for physical reduction:

Uped (P, ) = Uget (P, £) = Upeq :fu(udet)

(1.59)
TO red(Pr t) ~ TO det(P/ t) = TO red :fTO(TO det)

In both cases, mathematical or physical model reduction, the structural parameters of

the reduced model depend on the corresponding parameters of the detailed model:

Bred = fa(Baer) for a =u or Ty (1.60)

but this relationship, function f,, is explicit for physical reduction (see Section
1.6), while it is not generally the case for mathematical reduction.

b. Experimental model identification: y, U, and T are measured, or supposed to be
known, and the structural parameters (part of x) of a model nm(t;x) of given
structure m are known, U and T, being their complementary part in x.

Let us note that system identification leads to models that can be of the white box type,
which means models based on first principles, for example, a model for a physical process
from the Newton’s equations. The previous state-space model (1.46), based on a heat
balance and on Fourier’s law defining heat flux, belongs to this category. The nature of
the parameters in this class of models is perfectly known, which explains why they are
used for thermophysical property estimation. Conversely, an identified model on an
experimental basis, without a priori information on its structure, is also called a black box
model: parameters of such a model have only a mathematical, but not physical, meaning.
Such black box models may, for example, derive from neural network modeling. In between,
one can find gray box or semi-physical models: the model, that is, the structure/parameter
couple, is chosen according to a certain physical insight on what is happening inside the
system, and these parameters are estimated on an experimental basis.

1.5.3.3.2 Inverse Measurement Problems in Heat Transfer

We will now focus on inverse measurement problems where model structure (the equations)

m is known and where measurements y(t) are available on the time interval [to, tga]-
According to the nature of the explanatory variables x, that are sought, solution finding

for inverse problems may differ. One can distinguish in particular

1. Inverse problems of structural parameters estimation: x, = 3,
System identification problems, of the black or gray box type, belong to this cat-
egory: structural parameters (part of x) of an ad hoc m(t;x) model are sought
through experimental characterization. Thermophysical property estimation belongs
to the white box category: intrinsic parameters, that is, parameters that can be used
for completely different simulation/experimental configurations are sought
through experimental characterization. In both types of problems, several experi-
ments on the same setup, for the same sample, can be repeated in order to estimate
the same unknown parameter(s).

2. Inverse input problems: x, = u(P, t)
In heat transfer, this type of problem consists in finding the locations and values of
the sources. Such a source, or excitation, is either a volumetric, surface, line, or
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point heat source or simply a temperature difference imposed inside or at the
boundaries of the system. It differs from the previous problem because the solu-
tions sought are specific to each experiment made.

3. Inverse initial state problem: x, = Ty(P)
This problem is very close to the inverse input problem, since each sought solution
is relative to a single given experiment.

4. Inverse shape reconstruction problems

In the previous types of inverse problems, boundaries of the domain are usually
fixed and known. In certain cases (problems with change of phase, in welding or in
solidification applications, for example) shape of the domain (its boundary) or
location of an interface between sub-domains (a change of phase moving front, for
example) has to be taken into account in the variables defining the direct problem.
In the corresponding inverse problem, the shape of this boundary has to be first
parameterized in order to reconstruct it through inversion.

5. Inverse problems of optimal design/control

A usual process aimed at reducing estimation errors, in a characterization process
of type (1), consists in coupling it to an optimal conception/control problem for
the characterization experiment. This optimization allows the design and the
sizing of the experimental setup as well as the procedure for the trials that will
bring additional information necessary for this characterization. This approach
can provide a methodology for a pertinent choice of inputs, locations of meas-
urement points, time observation windows, etc. The choice of these design
quantities can be made in order to maximize a criterion based on the sensitivity
of the output observations to the parameters that are sought. In heat transfer,
characterization problems (that are structural parameter estimation or system
identification problems) are usually nonlinear, which means that optimization
of any design has to be implemented on the prior assumption that the sought
parameters are known, with an iterative approach, once a first estimation has
been found. This means that nominal values of these parameters are necessary for
such a design.

Remark

The use of any sensor that very often delivers an electrical output quantity (a tension V, for
example) requires the construction of a relationship between the quantity one wants to
measure, temperature T here, and this instrument output.

It is therefore necessary to find, on the basis of the physical principle the sensor and the
whole instrumental chain rely on, a model structure V,,,, (T; Bcain) Where temperature is
now the explanatory variable and where vector f,; gathers all the parameters required
for calculating the theoretical output temperature signal (thermoelectric power and cold
junction temperature, in the case of a thermocouple sensor). Construction of the V,,, model
and estimation of parameters present in f8,; starting from simultaneous measurements of
both V and T (using a reference temperature sensor) constitute a calibration problem, that is,
by nature, a parameter estimation problem, that is a type (1) inverse problem (see section
above) that has to be dealt with this way.
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1.5.3.4 Measurement and Noise

In inverse measurements problems, the additional information is brought by the measured
output that differs from the model output y,,,.

The difference &(t) between a sensor measurement y and the output of an ideal sensor y*
giving the true temperature at the sensor location can be introduced:

y(t) = y*(t) + &(t) (1.61)

The sensor giving y* is ideal for two reasons: (1) its presence does not affect the local
temperature of the medium (non-intrusive detector) and (2) it provides the true value of its
own temperature.

Equation 1.61 defines the measurement noise &(t) that can be considered as a random
variable caused by the imperfect character of both instrumentation and of digitization of
the signal. This noise is present, but its deterministic value can not be reached in practice.

This equation also shows that the measured signal is a random variable whose variance
is the same as noise &.

The assumption of a pertinent, that is, non-biased, model is made in practice:

Y () = Ymo(t, x¥) (1.62)

where x* is the true value of the explanatory variables.
Verifying this assumption of consistency between model and measurements is crucial.
Corresponding tools exist (study of the residuals).

Remark

Form (1.61) should be defined for discrete values y; = y(t;), & = &(t;), and y;* = y*(f)
corresponding to the sampling times t; of the measured signal, of the exact temperature,
and of the noise, respectively.

1.6 Choice of a Model
1.6.1 Objectives, Structure, Consistency, Complexity, and Parsimony

Before constructing a model, the model-builder has to be clear about the way his model will be
used, that is, about the objective of such a modeling. The objectives depend on the application
and can belong to one of the following categories that can be listed in a non-limitative way:

o Estimation of thermophysical properties

e Heat source/flux estimation

e Initial temperature field estimation

o Defect detection and nondestructive testing

e Simulation of the system behavior for better design or future state forecasting
o Model reduction for faster computation or use for heat source/flux estimation

o Conception of a model for closed-loop (feedback) control
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So the type of model will not be the same for each application, because the required model
precision will differ: defect detection in a composite slab using infrared thermography
(Maillet et al., 1993) does not require a model with the same temperature resolution as in
thermophysical property estimation, such as the flash method for liquid diffusivity esti-
mation (Rémy and Degiovanni, 2005).

The accuracy of a model is determined by its consistency with the physical situation
modelized, that is, its ability to simulate closely the behavior of the studied system.
Internal representation, with the use of state-space models, should be generally favored,
because it provides a mathematical structure linked to the physics of the modeled problem
« for free ». In addition, this type of representation allows highlighting the intrinsic
parameters of the system, that is, its thermophysical properties or thermal resistances
and impedances.

The purpose of the model that is used for inverting measurements is not to reproduce
or to mimic the whole temperature field: it should only provide an output that can be
compared to the sensor output signal at the location where this one is embedded.
Structure, that is, scalar or vector function m used above, is what defines a model. Its
complexity should be adapted to the uncertainties associated with any description of a
physical system: the use of a model that is too much simplified (simple structure with a
low number of structural parameters, such as a lumped parameter model see Section 1.6.2)
can introduce a systematic error, a bias, in its output variables, that could depart too
much from model predictions and from the experimental observations to be used the
inverse way. Conversely, the choice of a too-defailed model, with a high number of
parameters

e Tends to make implementation of the inversion algorithm involved or to make it
numerically impossible or very difficult.

e May lead to unstable solutions for the inverse problem, because of noise amplifi-
cation (in case of inversion of measurements): the inverse problem becomes
ill-posed.

This dilemma pleads in favor of the purpose of parsimonious models for inverse use, that is,
models that provide a good balance between antagonist criteria of the use of a minimum
number of parameters on the one hand and maximum agreement with reality (fidelity to
measurements) on the other hand.

Up-to-date capacities of numerical simulation tools as well as structure of the optimization
and regularization algorithms allow solving inverse problems with more and more complex
models, using mathematical model reduction techniques. These allow a very significant
reduction of the size of the state vector (temperature at different nodes of the numerical
grid here). So reduction of a model, followed by its implementation in an inverse proced-
ure, can bring an efficient approach for the most difficult cases, such as 3D heat transfer
with change of phase or advecto-diffusive transfers within flowing fluids, for example
(Girault et al., 2008). We will now focus on a different type of reduction technique, physical
model reduction.

1.6.2 Example 2: Physical Model Reduction

In order to show that a thermal model can be reduced on a physical basis and that many
models of different complexity and resolution are available to simulate the same heat
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FIGURE 1.21 \ \
Model for temperature response of a slab heated on
one of its faces.

transfer situation (nonuniqueness of a model), we will consider heat transfer in a slab,
whose characteristics are defined as follows:

e Homogeneous rectangular slab, thickness e, lengths /, and /, in its plane

e Thermal diffusivity and conductivity a and k, respectively, volumetric heat
pc=k/a

This slab is stimulated by a surface power (absorption of solar radiation, for example) on its
front face, and temperature is measured at g4 points by sensors either embedded in the
material or located on the front or rear face of the slab (see Figure 1.21). The slab is
supposed to be insulated on its four (lateral) sides and exchanges heat with the surround-
ing environment T, only on its rear face through a uniform heat transfer coefficient  that
represents its losses (convection and linearized radiative losses). Its initial temperature T,
at time t =0, when heating starts, is supposed to be uniform.

A model allowing to find the temperature response I,,,,i(t) of sensor number i (i=1 to g)
at time £ is sought.

1.6.2.1 3D Model

Heat source u(x, y, t) (W m?) is supposed to be nonuniform at the front face. Evolution

with time of the temperature field can be described by a three-dimension transient model
(see Figure 1.22a):

G @ @1 _1er

v 1.
ax2+6y2 T T (1.63)
T=Ty fort=0 (1.64)
oT oT
5.=0 atx=06; @_0 aty=0,4, (1.65)

oT oT
—kgzu(x,y,t) atz=0; —k§:h(T—Too) atz=e (1.66)
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lumped model: « small » body.

This system of eight equations constitutes model M, that will be called ““detailed model”,
whose solution, noted T = T, here, determines the response of each sensor:

ymﬂ,i = Tli(t/ x) = Tfl(xi/ yi/ Zi/ t/ Z’l(x/ ]// t)/ TO/ TOQ/ h/ ZX/ gy/ e/ )\l a) (167)

In this equation, u, Ty, and T, are input quantities of the model, independent from the
structure of the material system (if they are all equal to zero, temperature stays to a zero
level everywhere in the slab), while the other quantities are the structural parameters (3,
either linked to geometry (/, ¢, e), or to the thermophysical properties (k, a) of the slab
material and to its coupling with the outside environment (k), or linked to the location of
the sensors (x;, yi, zi, for i =1 to g).

List x={B, u, To, T} can be introduced now. It gathers structural parameters B, inputs u
and T, and initial state T, of this dynamical system composed of (37 +9) quantities.

1.6.2.1.1 Dimensionless 3D Model
The number of quantities present in Equations 1.63 to 1.66 can be reduced if they are
written in a dimensionless form: dimensionless temperature T* = (T — T,)/AT appears,
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with AT = Ty — T, and it is the same for dimensionless time, Fourier number t* = t /74,
and dimensionless heat transfer coefficient, Biot number H = he/k. In a similar way,
dimensionless observation locations x; =x;/e, yi =vyi/e, zi =z;/e and dimensions
{7 = {y/e and ¢y = {, /e are introduced.

Here, 145 = e?/a is the characteristic time, related to the duration of thermal diffusion in
the thickness of the slab. The resistance of the slab in the thickness direction, related to a
unit area, R = e/k, can be introduced.

This new model Mj that corresponds to the same response of the sensors becomes

Ymo,i = T]*(t/ x*) =AT-T* (xl?(-/yl*l Zl?(-/ t/Tdi /R/ u(x/ v, t)/AT/ H/ Z;/ gy*) + TOO (168)

where the new list x*, gathering the variables necessary for calculating the temperature
response at a given time t, comprises one less parameters than the original x list (1.67):

x*={B*u,AT, T} with B* = ((x{,yi,zf) fori=1toq), tuy R H L)) (1.69)

1.6.2.2 2D Model in X- and Z-Directions

Model M, can be simplified: if one knows that stimulus # does not vary much in direction
y, or if the sensor whose response has to be simulated is not a point sensor but integrates
the temperature signal in this direction, a y-direction average temperature field T; can be
rebuilt, with the definition of a new model M, (see Figure 1.22b):

ZJ/
J Ta(x,y,z,t)dy (1.70)
0

Tb (x/ z, t) =

S| =

This 2D temperature field is produced by a source that varies in one single space direction,
instead of two previously. This new source u,,(x, f) does not depend on y and, as tempera-
ture, is the mean, in this direction, of the previous stimulus:

4

[t .0y (1.71)
0

Uy (x, t) =

e

This mean temperature field verifies the following equations:

O°T T 10T

TRy (1.72)
T=T, att=0, T_, inx=0,0 (1.73)
Ox
oT oT
—kazum(x,t) atz=0; —kgzh(T—Too) atz=e (1.74)

Once put in a dimensionless form, this M, model comprises (29 + 7) independent variables:

X = (B, AT, T} with B = ((xi*,z,-* for i = 1 to q), 7ag, R, H, e:) (1.75)
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Let us note now that in order for this model to show really no bias for sensor i, this detector
should not be a point sensor, but a line sensor.

This is possible if the rear face (zf =1) temperature field is measured by infrared
thermography. In that case, output of model M, at location (x;, y;) is

Ymod,i(t) = Tp(xi, zi = e, ty) (1.76)

Its experimental counterpart can be scrutinized: one notes now T, ¥ (x™, /) the temperature
signal at time f;, for pixel (x™,1/) of the infrared frame, where (m,j) designates a pixel
located in the mth line and jth column.

The output (y-averaged) temperatures of the model have to be compared with the
corresponding experimental response y;(#) of the ith detector: this can be obtained through
simple addition:

1 . ex m o
yilt) = — > TPy =) (1.77)
1 =1

where 7; is the number of pixels in the ith column (constant x™). The reader should not be
confused by the present notation in Equation 1.77: y;(t;) is the experimental temperature
signal of the ith detector, while y; is its coordinate, in the y-direction.

If the average temperature in the y-direction is really measured by a line sensor, there
will be no model error in the estimation of u,(x,t). However, the information on the
variation of u in the y-direction is lost by this reduced modeling, which means that the
description of u will be made with no resolution in this direction: people in charge of this
estimation would have therefore to reduce also their initial objective, that is, estimation of
uy(x, t) instead of u(x,y, t).

1.6.2.3 1D Model in Z-Direction

Such an averaging can be pursued if one considers now the averaged value of the source
over the whole front face area. The same type of averaging is made for the temperature
field. This leads to model M., shown in Figure 1.22c:

Ly

Uym() = % Jum(x, f)dx (1.78)
0
Ly
Ti(z,t) = % JTb(x, z,t)dx (1.79)
0
2
iR, (1.80)
T=Ty, fort=0 (1.81)

oT oT
—kgz Unm(t) atz=0; —kgzh(T—Too) atz=e (1.82)
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Once model M, is put in a dimensionless form, only (g + 6) independent variables remain
in the x list:

x =B, m, AT, Toe}  with B = ((zf, fori=1toq), 74, R H) (1.83)

This reduction in the number of variables is made at the expense of the space resolution for
u that is completely lost here since it is replaced by its space average 1.

1.6.2.4 2D Fin Model in X- and Y-Directions

If the Biot number H=he/k is much lower than unity, temperature variations in the
z-direction, corresponding to the slab thickness, can be considered as negligible and,
consequently, heat transfer in the slab becomes two-dimensional (2D). The resulting 2D
temperature field stems from an integration, with respect to z, of the 3D temperature field
(see Figure 1.22d):

Ti(x,z,t) =

Q| =

JTu(x, Y,z,t)dz (1.84)
0

This reduced model M, corresponds to a 2D fin whose temperature verifies the following
equations:

FT T WT—Ty) N u(x,y,t) 10T

=~ =5 1.
oxz  oy? ke ke a ot (1.85)
T=Ty att=0 (1.86)
oT _ T .
a:O inx=0,%4; @:0 iny=0,¢ (1.87)
List x is now composed of (29 + 8) independent variables:
x = B, AT, T} with B = ((xf,y! for i = 1 to ), 7, R, H, £, 1, ) (1.88)

This relatively high number of variables allows however to keep the initial spatial reso-
lution of stimulus u.

1.6.2.5 1D Fin Model in X-Direction

The 2D-reduced model M;, can be used now to construct a 1D fin model, noted M,, with
the same condition on the Biot number H, through an integration in the z-direction (the
same model M, can be obtained through integration of model M, in y-direction [see
Figure 1.22e]):

Te(x,t) =

Q| =

JTb(x, z,t)dz (1.89)
0
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O*T WT —Ty) u(x,yt) 10T
e T (190
T=Ty att=0 (1.91)
orT .
P 0 inx=0,¢ (1.92)
List x of the independent variables of the model is composed of (g + 7) quantities:
X ={B,um, AT, Toe} with B = ((zi fori=1"toq), 7, R H,LE) (1.93)

1.6.2.6 0D Lumped Model

If the source is nearly uniform in space, with a low Biot number in direction z, or if the
sensor provides the volume-averaged temperature of the slab, one obtains a 0D My model,
also called lumped model or « small body » model. It corresponds to integration of model
M, in x-direction (see Figure 1.22f):

J Te(x,t)dx (1.94)
0

1

Te(t) = 7

2

This temperature field is produced by a point source whose intensity u,,,(t) varies with
time, with

Ly

1
U (£) = . Jum(x, f)dx (1.95)
0
The heat equation becomes
dT
pcea + (T — Too) = Upym(t) (1.96)

The x list of this model is now composed of only five independent variables, includ-
ing a convective resistance (based on a unit area) G=1/kh and a time constant
T = pce/h = T4 /H:

X =B, hym, AT, T} withB=(1,G) and AT =Ty — Ty (1.97)

An analytical solution can easily be found:

t
T =Ty + AT exp (lt) + G Jumm(t’) exp (— - t> dt (1.98)
T T T
0
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This model is a limit model, only valid if the Biot number, based on the largest of the three
dimensions £y, ¢, or ¢, is much lower than unity. If not, it is a biased model, but its output T
can always be compared to the average temperature of the g sensors. This averaged
experimental temperature brings an interesting information on the time variation of the
average absorbed power density on the front face, u,,;, (f).

1.6.2.7 1D Local Model

A last model, noted M, here, can be used. It is a 1D « local » temperature defined by
Ymo,i = Tg(xi, yi, ) = Te(zi, t;ulxi, yis £), AT, Too, B) (1.99)
with
B; = (&, 7aifi, Ri, H) (1.100)

It corresponds to the previous 1D model M., applied locally for each sensor. Its response
depends on the sole excitation u(x;, y;, f) that prevails on the front face at the same (x, y)
location (see Figure 1.23).

This allows considering a 3D problem as a set of independent 1D problems, each
individual problem being associated to a specific sensor. Structural parameters belonging
to vector B, differ for each sensor. This vector is composed of a diffusion characteristic time
Taiffi, @ resistance R;, and a Biot number H; that have all local values corresponding to
location of sensor i. These structural parameters are related to local thickness e;, local heat
transfer coefficient /;, and local conductivity k; and diffusivity a;.

For the whole set of sensors, this model is composed of (g + 6) independent variables if
these sensors are embedded at the same depth in the slab and if the thermophysical
parameters, /1, and the slab thickness do not vary in the x—y plane.

This model is valid only if heat transfer is negligible in the directions of this same plane,
that is, if the slab is made of a composite material that is homogenized but anisotropic: the
principal directions of conductivity tensor k should be those of the slab, with principal
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components k, =k, = 0, k, = k. However, it is possible to use it with a reasonable bias for
sensors facing front face locations where stimulus u does not vary much (low gradient in
the plane of this face) and for low thickness and thermophysical local variations. This
model is also very interesting in nondestructive testing of composite slabs by infrared
thermography (see Benitez et al. [2008]).

Remarks

o The six reduced models M, to M, are all derived from the detailed model M, and
have lower order dimensions than this original 3D model. They are also charac-
terized by a lower number of structural parameters (see Chapters 13 and 14 for
more details concerning the model reduction).

e Structural parameters of the slab and of the sensors either disappear or are
transferred from one model to a more reduced one along this progressive physical
reduction process. So, passing from model M, to model My makes parameter /,, R,
and x; disappear while parameters H and 74 merge into a single parameter
T = 74 /H. This reduction of the parameters number is an irreversible one,
which means that it is not possible to rebuild values of H and 74 starting from
the knowledge of 7 only.

e One can also note that during this reduction process, relationships between former
and new parameters are linear if the logarithms of these parameters are consid-
ered: In(1) = In(745) — In(H). This gives an interesting relationship between
reduced sensitivities (see the corresponding course in this series).

o In parallel with the reduction in the number of parameters, a reduction of the space
dimension necessary for reproducing the sensor behavior appears: from an initial
u(x, y, t) stimulus for models M, and My, one gets a u,,(x, t) stimulus for models M,
and M, to finally u,,,(t) for models M. and My and u;(t) = u(x;,y;, t) for model M.

o All these models rely on specific physical assumptions, and none of them corres-
ponds to the absolute reality, even model M,,: this one neglects convecto-radiative
losses on the front face and on the four sides of the slab, coefficient & is supposed to
be uniform in the rear face plane, and the same is true for the initial temperature
inside the slab.

This example shows that the user has to make his or her own choice for the model, since
several representations are generally possible. Accordingly, a more reduced model con-
veys less information about the spatial distribution of the heat source. However, this
inconvenience in direct modeling can become an asset when inversion to reconstruct the
source takes place.

1.6.3 Linear Input—Output Systems and Heat Sources

This section is devoted to the definition of what can be considered as a thermal power
stimulus u. It can be later used for the purpose of estimating u, in an inversion procedure.
It has been shown above, for two geometries, semi-infinite medium (Example 1), and
plane wall (Example 2), that the system-forced response u, to a surface heat flux stimulus,
can be written, for any point P inside the medium, as a convolution product in time (see
Equations 1.39 and 1.96), with a degenerate lumped body model in the second case.
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In a very similar way, a continuous stimulus, that is, a power volumetric density, u(P, t),
once discretized in space (or, more generally parameterized, using any basis of functions in
3D) as an input vector U(f), yields a forced response, in any point of the system, that
corresponds to a convolution product in time, if the heat equation as well as its associated
conditions are linear, with coefficients that can vary in space (nonhomogeneous system), but
not in time (time invariant system). Let us notice that we consider only, in this section, linear
heat sources, that is, sources that do not depend on state, here temperature, in the system.

This very general result can be applied to such a system in the specific case of a stimulus
u whose time dependency can be separated from its space dependency:

u(P, t) = f(t)g(P) (1.101)

We assume here that the source intensity (W m ) is associated to its time component f(t),
while its distribution in space g(P) is its characteristic function (no unit): its value is 1, if
point P belongs to the source and zero otherwise.

If the model is linear (in terms of the input/output relationship) and if its coefficients do
not vary with time, model response y,,,i(f) at time ¢, in any point P; in the system, can be
written as a convolution product (Ozisik, 1980), for a zero initial temperature:

Yo, i(t) = J J Z(t — 7,P;g(P), B)f(v) dV(P) dr (1.102)
oV

In this equation, Z is a transfer function (impedance or space Green’s function) that
depends on location of the observed point P;, on the model structural quantities, as well
as on the space distribution g(P) of the source, P being any point inside the system. The
convolution product is implemented between this impedance and the intensity f(t) of the
source.

If stimulus u(P, t) cannot be separated into a product of space and time distributions, this
means that several different sources coexist in the system. Each of them can be “’separated”
and is noted ux(P, t) = fi (t)gx(P), where k is the number of the individual source. One can
think, for example, of two heating electrical resistances, embedded in a solid, and that are
not turned on at the same time. So, a superposition of solutions of the previous form (1.102)
can be implemented to get the global response in point P;:

u(P,t) =Y filHgk(P) (1.103)
k
t
o) = 3 | [ 24t = Pigu(®), BYfie) dr avep) (1.104)
k oV

Forms (1.102) and (1.104) remain valid in the quite general case where thermophysical
properties of the constitutive materials, as well as the heat transfer coefficients and
interface resistances used in the model, vary in space (system composed of heterogeneous
materials).

However, if these parameters vary with time, the heat equation and its associated
conditions may be still linear, but convolution products or transfer functions cannot be
used for calculating the sensor responses anymore.
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Nomenclature

thermal diffusivity (m? s™")
acceleration (m s 2)

state matrix

thermal effusivity (J s/2Zm2 K™Y
input matrix

specific heat (J kg™' K™

output matrix

diameter (m)

thickness (m)

M TAS WS R
9}
<

energy (])
E(...) vector function
exp(.) exponential of a matrix
) function (for time variable)
F force (N)
g() function (for space variable)
G coupling factor for the two-temperature model (W m > K ') or convective

thermal resistance for a unit area of 0D lumped model m?*K W1
G() Green'’s function
grad() gradient vector
h heat transfer coefficient (W m 2 K ™)
h Planck’s constant (J s)
Biot number, or enthalpy by unit volume (J m°)
thermal conductivity (W m 'K
Boltzmann’s constant (J K™
wave vector (m ™)
conductivity tensor, or thermal dispersion tensor (W m ' K™)
thermal conductance for a unit area (W m > K™?)
macroscopic conductivity tensor of the two-temperature model (W m™~' K1)
length (m)
number of data samples, or mass (kg)
model
number of parameterized input function components
size of the state vector
distribution function for mode g4
square of the function f; norm
dim(B), or Laplace parameter (s ")
=(x,y,z) point coordinates
number of measurement points
distributed volumic heat source (W m )
position vector
thermal resistance per unit area m> KW
time (s)
characteristic time (s)
dumb integration variable (s)
temperature (K)
initial temperature (K)
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Too temperature of the fluid environment (K)

T(t) column-vector of the discretized state (temperature)
Tp(t) state (temperature) of the system, continuous version
u(.) single input function (W m 2or Wm ™)

Wparam single input parameterized vector

ue inputs column-vector (dim p)

7,0 velocity vector (m s

x list of data of direct problem

x data list for the direct problem

y measured signal (output of a single sensor)

Yo theoretical signal, output of a model

y experimental output column-vector (dim 1)

Yoo simulated column-vector (dim m)

Z thermal impedance m>KJ™1h

Greek Variables

B parameter vector

X characteristic function

AT temperature difference (K)

€ volume fraction or porosity, or measurement noise
& noise at time ¢; (K)

n(.) function, output model structure
n(.) multiple-output model structure
I wavelength (m)

A mean free path (m)

\Y nabla operator (gradient)

) heat flux (W)

5 heat flux density (W m?)

p mass density (kg m )

T time constant or relaxation time (s)
Tdiff characteristic diffusion time (s)
Op Debye’s temperature (K)
Subscripts

c complementary (known)

calib calibration

det relative to a detailed model

e electron

H enthalpic

1 lattice

m space average

mm double space average

mo model

n normal

0 initial

param parameterized

pos position
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relative to point P

q mode number

r researched

red relative to a reduced model
s sensor

ss steady state

struct structural

t total

th thermal

X direction x

y direction y

z direction z

B B-phase

A relative to wavelength A
o o-phase

- time Laplace transform

= tensor

exact value, or dimensionless quantity of a dimensionless model
T transposed matrix
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2.1 Introduction

The purpose of this chapter is twofold: first we present, in a didactic form, the main ideas
underlying the method of homogenization (also called homogenization theory) and, sec-
ond, we use the method as a tool to develop a multiscale modeling approach, able to
analyze a wide spectrum of transport phenomena in random heterogeneous media (media
whose microstructures may be described appropriately by non-trivial joint probability
density functions [JPDFs]). The approach is also based on variational calculus and the
finite element method and leads to the prediction of macroscopic effective properties of
heterogeneous media. Here, the multiscale approach is exposed in the context of the heat
conduction problem in composite materials, whose components are all thermally conduct-
ing. An expression for the tensorial effective thermal conductivity of such materials is
derived, and some properties of the effective conductivity are shown.

In this chapter, we present in detail the continuous formulations of the heat conduc-
tion problems, which are part of the multiscale approach. On the other hand, we only
summarize the main steps for numerical solution of these problems via the finite
element method. Sample numerical results for the effective thermal conductivity of
the 2D square array of circular cylindrical fibers and of the 3D simple cubic array of
spheres are presented up to maximum packing. The reader is referred to the works by
Cruz and Patera (1995), Cruz et al. (1995), Cruz (1997, 1998), Machado and Cruz (1999),
Matt (1999, 2003), Rocha (1999), Machado (2000), Rocha and Cruz (2001), Matt and Cruz
(2001, 2002a, 2002b, 2004, 2006, 2008), and Pereira et al. (2006) for more details of the
numerical solutions and for the presentations and analyses of numerical results for the
effective thermal conductivities of 2D and 3D, ordered and random composites. Various
computational techniques developed to address the heat conduction problem in com-
posite materials are reviewed by Pereira et al. (2006), Matt and Cruz (2006, 2008), and
Cruz (2001).

It should be remarked that there are several other approaches to analyze transport
phenomena in heterogeneous and multiphase systems. Phenomenological effective med-
ium approaches (see Torquato 2002) do not tackle the underlying physics at the micro-
structural level, such that they attempt to establish the macroscopic properties by
proposing ad hoc assumptions. Another much employed technique is volume averaging,
as discussed in Chapter 1 and in the monograph by Whitaker (1999). The main objective of
volume averaging is to formulate the spatially smoothed governing equations that are
valid everywhere in the heterogeneous medium of interest. The development of closure
problems is then necessary to permit the prediction of the medium’s effective transport
properties, which relate macroscopic fluxes to intensity gradients. Regarding both volume
averaging and homogenization approaches, it appears that much more research effort has
been devoted to formulating several different classes of transport problems in heteroge-
neous media than to computing the associated macroscopic properties. Therefore, a com-
parative analysis of effective property results arising from these alternative methods is
beyond the scope of the present work.

The outline of this chapter is as follows. In Section 2.2, the method of homogenization is
introduced didactically. We first offer a formal definition and then illustrate with physical
examples the mathematical problems involved in the definition. Next, we give a brief
overview of the analytical techniques that may be employed in the homogenization proced-
ure. Finally, we apply the method to a general elliptic model problem in strong form.
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In Section 2.3, we apply the method of homogenization to the heat conduction problem of
interest, adopting a variational approach and exploiting the analysis of Section 2.2.
Although some of our results are also shown, in a different form, in Auriault (1983), we
not only present a more detailed derivation here, but also the variational treatment makes
the final expressions directly suitable for subsequent numerical treatment using the finite
element method. In Sections 2.4 through 2.7, we describe the multiscale modeling approach,
which decomposes the original multiscale problem into the macroscale, mesoscale, and
microscale (sub)problems. In Section 2.8, we briefly discuss the numerical treatment of the
pertinent problems, and in Section 2.9 we present some representative results stemming
from solutions to the mesoscale and microscale problems. Finally, in Section 2.10, we state
the conclusions.

2.2 Method of Homogenization

The method of homogenization can be applied to analyze a variety of periodic hetero-
geneous systems—those composed of several macroscopic phases and/or dissimilar
constituents and characterized by a repetitive elementary structure. A comprehensive
treatment of the subject is given in Bensoussan et al. (1978), and a survey of applications
of homogenization theory to a wide spectrum of problems can be found in Babuska
(1975). The method has been applied to study neutron and radiative transport (Larsen
1975, Bensoussan et al. 1979), to tackle the problem of dynamic fluid—-structure inter-
actions in large rod bundles (Schumann 1981) and to develop a procedure for shape
optimization of structures (Bendsge and Kikuchi 1988). In Mei and Auriault (1989), the
method is the essence of the formulation of the creeping flow problem through periodic
porous media with several spatial scales, and in Mei and Auriault (1991) the approach is
extended to include the effect of weak inertia. Kaminski and Kleiber (2000) have also
employed homogenization to investigate the behavior of random elastic composites
with stochastic interface defects.

In the heat transfer (or rather conduction) context, the objective is to determine the
effective thermal conductivity of an equivalent homogeneous medium, which will ther-
mally behave, in a macroscopic sense, as the original heterogeneous medium (Milton 2002).
Auriault (1983) and Auriault and Ene (1994) have used homogenization to determine the
effective conductivity of certain types of laminated composites. More recently, homogen-
ization theory has been applied in Cruz (1998) to derive an expression for the effective
conductivity of particulate composites whose continuous (the matrix) and dispersed (the
particles) components are thermally conducting. The dependence of the thermal conduct-
ivity of composite materials on temperature has been considered in Chung et al. (2001) by
applying homogenization.

2.2.1 Definition

In short, the method of homogenization employs volume averaging (see Chapter 1) to yield
a mathematically rigorous mixture-type model for a heterogeneous medium with periodic
microstructure and separated length scales. A formal definition may be offered by first
introducing three types of boundary value problems (BVPs).
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1. BVP-1
Afug=f in Q, (2.1)

ug subject to boundary conditions on (). (2.2)

The domain () is an open bounded set of R", 0} is the bounding surface of Q in
R"~!, A® is a general partial differential operator with periodically varying and
continuous coefficients, f: O — R™, m < n, is the source term, and u, is subject to
Dirichlet, Neumann, and /or mixed boundary conditions in (2.2).

The characteristic length scales of the domain () and of the periods of the
coefficients are, respectively, L and \; the positive parameter ¢ is the ratio of
such scales, and it is assumed here that the scales are well separated, that is,

A
e=7< 1, (2.3)
implying statistical homogeneity. BVP-1 is said to have rapidly oscillating coeffi-
cients.
2. BVP-2
Alug =f inQ, (2.4)
uy subject to boundary conditions on 0(). (2.5)

The partial differential operator AY has constant coefficients, that is, A™ is a
homogeneous operator; thus, this BVP is said to be homogenized.

3. BVP-3
ACuc =f¢ in QF, (2.6)
uc subject to boundary conditions on dQ°. 2.7)

The domain QC, an open bounded set of R", is a periodic cell of characteristic size
A, that is, with dimensions proportional to X\ in all n coordinate directions. The
partial differential operator A~ may have constant or variable coefficients within
QF, and uc and f© are \-periodic functions (functions that admit period C\ Ci=0
(1) € R, in the direction xj, j=1,...,n). This BVP is called a cell problem.

We are now in a position to offer a formal definition of the method of homogenization:
the method is a rigorous mathematical technique whereby one can replace, in the limit
€ — 0, a BVP with rapidly varying coefficients (type BVP-1) with a homogenized problem
(type BVP-2), whose coefficients must be determined through the solution of a cell problem
(type BVP-3). Although all three problems are, in general, hard to solve analytically, the
method of homogenization has the distinct advantage that problems of the types BVP-2
and BVP-3 are much easier to solve numerically than those of the type BVP-1, since the
latter not only require O(1/€") more degrees of freedom but are also much stiffer.

From the point of view of physics, problem BVP-1 may describe heat transfer, creeping
flow, or a neutron transport process in a heterogeneous medium of typical macroscale L
with a spatially periodic microstructure of period \. Problems BVP-2 and BVP-3 may
describe the same aforementioned phenomena, respectively, in a homogeneous, effective
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FIGURE 2.1
Diagrammatic representation of the method of homogenization.

medium (in general anisotropic) of typical macroscale L and in a periodic cell of size A.
Note that the coefficients of A" in BVP-2 correspond, by definition, to the effective
macroscopic properties of the original heterogeneous medium considered in BVP-1.
Because the determination of such coefficients demands that a solution be found to a cell
problem defined in the periodic microstructure of the medium, of size N <« L, it is said that
the method of homogenization allows one to describe macroscopically the behavior of a
heterogeneous medium through the analysis of the behavior of its underlying microscopic
structure; Figure 2.1 illustrates this process.

The lack of a unique precise definition of effective property of a heterogeneous medium
led to many reports in the past with discrepant results (Babuska 1975). The method of
homogenization not only provides a consistent way of computing effective properties for
heterogeneous materials with periodic microstructures, but it also relates global quantities
(e.g., bulk heat flow) defined for the original medium to those computed for the equivalent
homogeneous medium. It should be pointed out that, typically, real random heteroge-
neous media possess no period \, in which case homogenization theory does not directly
apply. The concept of the correlation length (Cruz and Patera 1995, Cruz 2005), developed
in Section 2.6.4, may be used to bridge the transition periodic — random, provided such
length is small compared to the macroscale L.

2.2.2 Additional Considerations

As previously discussed in Chapter 1, the elaboration of a mathematical model to describe
a given physical phenomenon is relative to the desired scale of observation, and is a typical
product of scientific investigation. Frequently, the model leads to a problem of the type
BVP-1, particularly when one is dealing with heterogeneous systems; homogenization
theory can thus be employed to solve such model. In order to replace the operator A® of
BVP-1 with the operator AH of BVP-2, several mathematical techniques can be used, based
on (see, e.g., Bensoussan et al. 1978) the following:

1. Asymptotic expansions using multiple scales, the fast scale proportional to \, and
the slow scale proportional to L

2. Energy estimates
3. Probabilistic arguments

4. Spectral decomposition of A®
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The method of asymptotic expansions is attractive when dealing with problems of the type
BVP-1 because of the presence of a natural separation of scales, as evidenced by Equation 2.3;
note that such clear separation of scales is not present in turbulence. The procedure is then
to look for the solution u, =u.(x), x € R", of BVP-1 in the form of an asymptotic expansion
in terms of the small positive parameter &:

Ug = U+ ey + Uy + -+, (2.8)

where the functions 1, j=0,1, ..., are now the new unknowns, having all the same order of
magnitude. Next, by 1nsert1ng (2 8) into (2.1) and (2.2) and collecting equal powers of ¢, a
problem of the type BVP-2 is obtained for uy, with boundary conditions dependent on
those prescribed for the original problem. The main result of the method, shown by
Bensoussan et al. (1978), is that u. converges weakly to 1y as ¢ — 0 (weak convergence
means convergence of suitable averages). The explicit analytical construction of the homo-
geneous operator A™ is crucial for the actual solution of the problem and involves solving a
\-periodic cell problem (type BVP-3), which yields the correct constant coefficients of A™.
In general, the homogenized and cell problems have to be solved numerically. In the
following section, we apply the asymptotic expansion technique to a typical elliptic
model problem.

2.2.3 Application to a Model Problem

Let us apply the method of homogenization to the following model problem in strong
form: in BVP-1, let

2 == (g ) T aoly), 29)

where x € R?, y = x/¢, and a;(y), i, j=1,2,3, and ay(y) are continuous A-triply periodic
functions; we remark that the summation convention is adopted throughout this chapter.
Formally, a function is said to be \-triply periodic if it admits periods proportional to \ in
all three coordinate directions. The second-order elliptic operator A® in (2.9) models many
physical phenomena (e.g., heat or electrical conduction) in composite materials with
periodic microstructure. We are now interested in determining the behavior of the solution
. of BVP-1, with A® given in (2.9), as ¢ — 0.

The presence of the two disparate scales L and \ in BVP-1, and the \-periodicity of A®
motivate the application of the method of asymptotic expansions using multiple scales
(Bensoussan et al. 1978, Mei and Auriault 1989), whereby we look for the solution u.(x) in
the form

ug(x)—uo( x)+8u1< :)—FS u2<x :)+--~, (2.10)

where u;(x,y), y = x/¢,j=0,1,2,..., are A-triply periodic in y. The “fast”” variable y scales
(magnifies) the period X to L and is introduced here to separate the periodic and nonper-
iodic parts of u,;, which vary, respectively, rapidly over A and slowly over L. The new BVPs
for the unknown functions u; are determined by first inserting (2.10) into (2.1), with A®
given in (2.9), and then by collecting the terms with equal powers of €. Note that care is
necessary with the operator 0/0x;; when operating on a function G = G(x)=G(x,y), we
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must first treat x and y as independent variables, and subsequently replace y with x/¢ to
obtain

) oG oG 100G
— ==t —. 2.11
6xj (G) ax]- 63(]‘ * € a}/]’ ( )

If, furthermore, G can be expanded as G =Gg+eG; + £%G, + O(e?), then from (2.11)

d 0Go 108Gy 0Gy 0G 3G, oG
(G = o et T T L 202 222 OED). (2.12)
0Ox; Ox; & Qy; Ox;  Qy; 0x; qy;

Inserting Equation 2.9 into 2.1, and using Equation 2.12, one obtains

Aluy = (e72A, + e 1A + 2Ap)u, =f, (2.13)
where
Ay =— a% (a,-j(y) ai;/]), (2.14)
t= =g (w2 ) ~ 5 (w35 ), @19
Ag = —aixi (aij(y) %) +ap. (2.16)

Now inserting Equation 2.10 into 2.13, and collecting the powers ¢ 2, ¢!, and €°, the
following equations involving Ag, A1, A and ug, u;, u, result:

Azuo = 0, (217)
Asuq + Aqug =0, (2.18)
Asur + Aquq + Agig :f (219)

Before proceeding further, we state a result to be used in the development to follow. The
solvability condition (i.e., uniqueness up to an additive constant) for the problem

Ad=FinY,
o (2.20)
¢ periodic in Y,
where A, is given in (2.14) and Y is a region in R, is (see Bensoussan et al. 1978)
JP(y) dy = 0. (2.21)

Y

To arrive at (2.21), we integrate (2.20) over Y, apply the first form of Green’s theorem
(Hildebrand 1976), and then use the periodicity of &.
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Noting that the operator A, involves y only, and considering the solvability condition
(2.21), we conclude that Equation 2.17 implies that 1, is a function of x only, that is,

g = up(x). (2.22)

Inserting Equations 2.15 and 2.22 into 2.18, we obtain

Aty — ( ai(y )) a”‘“(x), (2.23)

the separation of the variables x and y on the right-hand side (RHS) of (2.23) allows one to
represent u; in the following simple form: if ¥’ =x/(y) is defined as the A-triply periodic
solution (up to an additive constant) of

; 0
j— " g
Azx i aij ), (2.24)
then the general solution of (2.23) is given by
i auo ~
u(x,y) = —x (y)g + 111.(x). (2.25)
i

The problem for u; then reduces to finding x](y) since A, involves y only and both a;(y)
and x/(y) are \-triply periodic, Equation 2.24 (with proper boundary conditions) constitutes
the cell problem BVP-3.

From the condition (2.21), it is easily seen that one can solve (2.19) for u,, treating x as a
parameter, if

[ v+ Aquo) dy = [ ay (2.26)
Y Y

(note that, here, Y has dimensions proportional to X\ in all coordinate directions); using
(2.15), (2.16), and (2.25) and the fact that f=f(x), (2.26) becomes

o ( ouxy) 0 [ 0 ( odug
J {_ oy (azJ(Y) o, ) o (ﬂlk(}’) —ayk ( X (y) _ij + ul(x)>)
Y

0 auo _
_ 6_361 (a,](y) 6_x]> + aouo}dy —fjdy, (2.27)
Y

or, since x is a parameter,

1 ox Fuy 1
Y {J (“"f B >dy} ax,gfc v {J“OWY }uo =f (2.28)
Y
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where |Y| is the measure of the entire region Y,

Y| = de- (2.29)
Y
Clearly, the coefficients
1 ox
Cett; = — v J <aij — A a—yk) dy, (2.30)
Y
and
1
G =7 [ oy (2.31)
Y

are constants (y is integrated out); therefore, Equation 2.28 (with proper boundary condi-
tions) constitutes the homogenized problem BVP-2. We can thus write the homogenized
operator A™ explicitly as

2

AH = Cet; m + Co; (2.32)
defining, in general, the average
) =57 4y, 2.33)
Y

then
Cat, = —mi(ag) +m (a,-k 2;‘;) (2.34)

and
Co = m(ap). (2.35)

Mathematically, Cess; and Cy are the effective coefficients of the operator A®; physically, they
are the effective bulk properties of the heterogeneous medium, associated with the physical
process for which BVP-1 is the appropriate model.

It is worthwhile to conclude this section by stating the following results, which are
proved by Babuska (1975) and Bensoussan et al. (1978).

1. Symmetry. If A® is symmetric (a;; = a;;), then AM is also symmetric.

2. Ellipticity. For our model problem, the operator A™, which does not depend on (2,
is elliptic.
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3. Anisotropy. If A® is diagonal (a;;=0 for i # j), A™ is not necessarily diagonal.

4. Error. The method of asymptotic expansions is justified for both Dirichlet and
Neumann boundary conditions on 0(2; the end result for the error estimate is

||1/lg - MQHLOQ(Q) < CS,

where C depends on (), f, and a;;, but not on &.

5. Variational formulation. Using “energy’” (“weak’’) arguments, it can be proved that
the solution u, of BVP-1 converges weakly to uy as € — 0, uy being the solution to
the problem: find 1, € V(Q) such that

a'l(uo,0) = (f,v) Vv € V(Q),

where V() is an appropriate function space (Hj(Q) C V C HY(Q)), 4o =0, and
the bilinear form and inner product are defined, respectively, as

Oug v
aH(uOI U) = J _Ceff,-/- a_xf a_aqu'
Q
(f,v) = va ax.

Q

To obtain the expression for a*', multiply (2.28) by v € V and integrate by parts
over £).

6. Fluxes. The fluxes associated with u, and u,

Oug B Oug
q&i - al]a_x] and qu - Ceff,] ax] 7

are not close, since the partial derivatives 0u./0x; do not converge strongly to
Oup/0x;; however,

ox'
e, — 490, -

< Ce.
ax]- &

@)

The interpretation of gy, is that it represents average fluxes as € — 0.

2.3 Homogenization Applied to Heat Conduction in Composites

Several techniques are available to address transport phenomena problems in heteroge-
neous media (e.g., Beran 1968, Kohn and Milton 1989, Torquato 2002). In this section, the
method of homogenization (Bensoussan et al. 1978) is applied to the problem of heat
conduction in a composite medium.
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2.3.1 Description of the Multiscale Problem

We consider a composite material, periodic (Figure 2.2) or not (Figure 2.3), whose continu-
ous and distributed components are, respectively, a matrix of thermal conductivity k. and
randomly and homogeneously distributed inclusions (fibers or particles) of thermal con-
ductivity kg; for the sake of simplicity, the conductivities k. and k4 are taken constant. Both
components are assumed to be solid, homogeneous, and isotropic and have perfect
thermal contact (for defective thermal contact, see Auriault and Ene 1994, Rocha and
Cruz 2001, Matt and Cruz 2008). We define the conductivity ratio o, 0 < o < 00, as

Ky
ke

o (2.36)

The space coordinates are (x1, x5, x3) =x € R°, and the geometric regions occupied by the
continuous and dispersed components are, respectively, (). and (4. Physically, the com-
posite extends throughout a characteristic length LS; temperature gradients AT/L are
imposed over the large scale L, called the macroscale, which is O(L). The macroscale region
is indicated by (,, = Q. U Q4. In general, the volume fraction of inclusions is specified as a
concentration function, c(x): Qm, — [0, 1], varying significantly on the macroscale only. The
smallest scale present is the characteristic size of the inclusions, d, called the microscale.

LC

FIGURE 2.3
Y Random unidirectional fibrous composite in 2D.
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The representative volume element (RVE) of the composite, which may be a periodic cell
(Figure 2.2), contains many inclusions and is denoted by Qpc; the size of the RVE, \, is the
intermediate length scale, called the mesoscale (Section 2.6). The external boundaries of the
composite, where boundary conditions are specified, are denoted as 9{),,. In Figure 2.3,
0Qma =T U I'y U I'yq, where I'y, I', and I',4 are subregions of the boundary on which,
respectively, uniform temperatures T, and T3, and adiabatic conditions are imposed.

The multiscale heat conduction problem in the medium described above, under steady-
state conditions, can be mathematically expressed by the following equations:

0 orT*
——lke—) =g, InQ, 2.37
ax]' ( ax]-> 8 M ( 3 )
o (, ord
—— | ki— ) =¢, inQ 2.
o, < d ax]-> fa MR (2.38)
T¢=T9 on 0Q;, (2.39)
or* oTd
—kcaixjn]‘ - —kdaixjnj on GQS, (240)
T¢ and T subject to boundary conditions on 3y, . (2.41)

Here T¢, ¢. and T%, ¢4 are, respectively, the temperature field and the volumetric rate of
heat generation in the continuous and distributed components; d(), is the union of all the
interfaces between the matrix and the inclusions; and n is the unit vector locally normal to
0Q); and pointing into {}4. Note that the external temperature gradients are imposed
through the boundary conditions in (2.41). Problems (2.37) through (2.41) can also be
written as

0 oT,
AT, = —— [ k==) = ¢ in O, 2.42
ax]- ( ax]'> g m ( )
[Telon, =0, (2.43)

oT,

[—k ] nj =0, (2.44)

0xj | 50
T subject to boundary conditions on 0(p,, (2.45)

where, respectively,

ke, T, g in Qo C Qo
k, Tg,g—{ w8 ¢ (2.46)

kd, Td, gd in Qg C OQma

and the notation [d]yq, is used to indicate the discontinuity (or jump) of the function ¢ at
0L),. We note that, for this problem, the oscillating coefficient a;; =k3;; (3;; is the Kronecker
delta) of the operator A® in Equation 2.42, in contrast to the coefficient in Equation 2.9 of
Section 2.2.3, is isotropic and discontinuous, assuming different (constant) values in the
two components; also, here ay=0.
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2.3.2 Variational Formulation

A variational formulation (Cruz and Patera 1995, Rocha and Cruz 2001, Alzina et al. 2006)
of problem (2.42) through (2.45) is advantageous for carrying out the homogenization
procedure, because first, by transposing derivatives, we bypass the difficulty introduced
by the discontinuity of the coefficient a;; = k3;, which prevents us from using Equations 2.24
and 2.25 directly; second, the flux boundary condition at the inclusion surfaces, Equation
2.44, is automatically taken care of.

We consider the function space X(Qma) = {w € H{(Qma)lwjo.co,, = &%, Wjo,ca,, = w°,
[w]sn, = 0}, where H{(Qma) is the space of all functions which vanish on the portions of
00, where Dirichlet boundary conditions apply, and for which both the function and
derivative are square integrable over {,,, (Adams 1975). Multiplying (2.42) by v € X(Qna),
we obtain

0 oT:\ .
—va—xj (k 6xj> =0v¢ Vv € X(Oma)- (2.47)

Integrating (2.47) over (), it follows that

) T, B .
J _vé_xj (ka_x]) dx = J vg dx Vv € X(Qma). (2.48)

‘ma ma

Next, applying the first form of Green’s theorem (Hildebrand 1976) to (2.48), and consider-
ing the continuity condition (2.44) and the definition of the space X, we derive

0T, Ov 0T, )
k — dx — k ids = d X(Qma). 2.4
J o, o X J v o, n;ds J vg dx Vv e X( ) (2.49)

ma ma ‘ma

Note that, due to the space X, only the portions of 0(),, subject to Neumann boundary
conditions contribute to the integral on 0Q,,. To facilitate the presentation, such known
contributions are henceforth considered to be summed to the inhomogeneities on the RHS
of (2.49), and we can thus omit the integral on 0Q,,.

2.3.3 Asymptotic Expansion

We now introduce the multiple-scale asymptotic expansions
TS(X) = To(X, y) +¢Ty (X, y) + SZTZ(X/ Y) + 0(83)1 (250)
o(x) = vo(X,y) + €v1(x, ) + £202(x, y) + O(E®), (2.51)

where, as before, e=\/L and y =x/e. Combining Equations 2.49 through 2.51, and 2.12
yields, to order ¢,

E)TQ 1 aTo 6T1 6T1 6T2 aUQ 1 67}0 601 601 602
k(| — € € dx

ox Teay  Cox oy Coy)\ax edy oy oy oy

= J (Z)Q + 801)3 dx Yvy,v1 € X(Qma). (252)

Qna
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Inserting (2.50) into (2.43) and (2.44), we obtain
[To + €T1 + € Talan, =0, (2.53)

0
{—k— (To + €T + asz)} n=0; (2.54)
0x; 20,

applying (2.11) to (2.54), it follows that, to order ¢,

0T, 10T 0T, oT oT:
{—k<—°+——°+s—1+—l+s—2>} nj = 0. (2.55)
axj € Gyj ax]- ay]- ayj 20,

The next step is simply to identify terms in (2.52), (2.53), and (2.55) which have equal
powers of &. The analysis presented below applies, provided the ratio kq/$q, g4 # 0, is of the
same order of magnitude as the ratio k./g., §c # 0; equivalently, the analysis is valid if o =
kd/kc = O(gd/gc)

Collecting terms of order 1/¢ in (2.52), of order 1 in (2.53), and of order 1/¢ in (2.55), we
obtain

T, T, T, T
J k(ﬂ% D%JFQ%JFE%)EZX:O Yoo, 01 € X(Quma), (2.56)
Ox; dy; ~ Oy; O0x;  Qy; Oy;  Qy; Oy;

ma

[Toloa, =0, (2.57)
[—kaﬂ] 1y =0 (2.58)
oy 20,

Choosing 1o =0 € X(4n,) in (2.56), we derive

6T0 6211

k(— —) dx=0 Vo, € X(Qpa). (2.59)
J dy; dy; '

From (2.59) and considering the nontrivial case with k # 0, we conclude that

oTo =0 (2.60)
ay;
and thus, from (2.57) (Auriault 1983),

To =TS = T3 = To(x). (2.61)

Equation 2.61 can be motivated physically: the behavior of the function Ty(x) is dictated by
the external boundary conditions on 9€),,,, so that on the macroscale, such behavior is the
same in both components.
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Collecting terms of order 1 in (2.52), of order € in (2.53), and of order 1 in (2.55), and using
0Ty /dy; = 0vy/dy;= 0, we obtain

6T0 6T1 aUO avl .
J (ax,+ay,)<axj+ay]) - Jvog X V00,01 € X(Qma) 262)
[T1]eq. =0, (2.63)
{_k (aﬂ N ﬂ)} ny = 0. (2.64)
Oxj  Oyj 00,

We can break Equation 2.62 into two equations: we choose, first, v; =0 and, second, vp=0
to obtain

0T, 0Ty (dvg _ .
J k<ax] " ay]) (ax]) = J o3 dx 700 € X({hma), (2.65)
aTO 6T1> (6711)
k( + dx=0 Yo € X(Qrma). (2.66)
J Ox; ~ Qy; ) \Qy; !

‘ma

As we show in Section 2.4, Equations 2.65 and 2.66 will lead to the homogenized and cell
problems.

2.4 Multiscale Modeling Approach

For the multiscale composite material described in Section 2.3.1, it is apparent that finding
a solution to the heat conduction BVP in ). U (14 is an enormous task: analytically,
because of the geometrical complexity and numerically, because of the excessive number
of degrees of freedom required to resolve both the microscale and the macroscale.
Fortunately, however, it is not usually necessary to solve the problem down to local detail:
in engineering practice, one is typically interested in the macroscopic behavior and deter-
mination of bulk quantities. For a particular set of positions of the inclusions, an effective
(macroscopic) property of the medium associated with a given transport phenomenon can
be viewed as the ratio of the volume-averaged (bulk) flux through the medium and the
volume-averaged externally imposed gradient of the corresponding potential (Milton 2002).

In this section, we present the multiscale modeling approach to predict effective
properties and statistical correlation lengths of heterogeneous media. The approach is a
first-principle analytical-numerical methodology based upon the following (see Cruz and
Patera 1995, Cruz et al. 1995, Machado and Cruz 1999, Matt and Cruz 2002a, Cruz 2005):
(1) a variational, homogenization-based hierarchical decomposition procedure which
recasts the original multiscale problem as a sequence of three scale-decoupled (sub)
problems; (2) a variation-bound nip-element technique by means of which microscale
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START
Level 4: for each dispersed-phase volume fraction ¢;, i=1,...,m,
Level 3: for each periodic cell size N, j=1,...,m,

Level 2: Outer Monte-Carlo Loop
draw samples, {y}5, from dispersed-phase JPDF
construct periodic cell domain for configuration {y}x
Level 1: Inner Finite-Element Solution Kernel
loop: for each realization {y}y
construct mesh
effect discretization
solve periodic cell problem
compute effective property ke/ =K.(ci N {tyIn)
endloop
End of Level 1
perform statistical analysis (estimate <K,>(c; \;) and uncertainties)
End of Level 2
determine correlation length, A,
estimate k.(c;) = <K,>(c; 00) ~ <K,>(c; \(c;))
End of Level 3
construct functional relation k,(c)
End of Level 4
END

FIGURE 2.4
Scheme of the four-level numerical algorithm to solve the mesoscale problem.

models are incorporated into the mesoscale problem; and (3) numerical solution of the
resulting mesoscale problem by nested Monte Carlo and finite element methods (see
Figure 2.4). In the macroscale problem (Section 2.5) for heat conduction in composites,
the effective thermal conductivity of the homogenized medium is supplied (input) to
the energy equation in order to calculate the bulk heat flow rate of interest. In the
mesoscale problem (Section 2.6), the effective conductivity, as well as the statistical correl-
ation length, is determined (output) by solving an appropriate sequence of many-inclusion
periodic-cell problems generated in the Monte Carlo loop (Figure 2.4). The finite element
procedure to solve the mesoscale problem suffers from the severe geometric stiffness that
arises when treating the distorted domains associated with the presence of very close
inclusions. The boundaries of very close inclusions form nip regions that may be hard, or
even impossible, to mesh, rendering numerical solutions either prohibitively expensive,
due to excessive degrees of freedom and ill conditioning, or hopeless. In the microscale
problem (Section 2.7), the nearfield behavior of clustered inclusions is modeled, alleviating
the difficulties caused by geometric stiffness. The microscale problem is treated by a
variational-bound nip-element technique (Cruz et al. 1995, Machado and Cruz 1999,
Machado 2000, Matt and Cruz 2002a): an inner-outer decomposition of the geometrically
stiff problem is effected, by means of which analytical approximations in inner nip
regions—the microscale models—are folded into a modified outer problem defined
over a geometrically more homogeneous domain. As a result, by virtue of the variational
nature of the problem, rigorous upper and lower bounds for the configuration effective
property may be designed. This technique is rigorously applicable to problems for which
the effective property of interest is the extremum of a quadratic, symmetric, positive-
(semi) definite functional.
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2.5 Macroscale Problem

The key realization needed to derive the macroscale problem and, also, the mesoscale cell
problem is to assume, motivated by solvability (see Section 2.2.3, Equations 2.24 and 2.25),
that we can separate the functional dependence of T; on the variables x and y:

Ti(x,y) = —xp(y)% a%(:) =0, (2.67)

Xp(y) in Qc C Onma,
Xy(y) = (2.68)

Xp(y) in Q4 C Qg

where the unknown function x,, p=1,2,3, is a A-triply periodic solution (to (2.66)) corre-
sponding to a temperature gradient AT/L imposed in the x,, direction (summation over p is
implied). Note that, since x, is a temperature, the inverse of the external temperature-
gradient scaling factor, L/AT, is necessary on the RHS of (2.67) to preserve dimensionality.

In order to derive the macroscale, or homogenized, problem for the function
To(x) = T5(x) = Tg(x), we first insert (2.67) into (2.65) to obtain

0Ty L aXp 0Ty Ovg _ .
J k(a_x] ~ AT By, ox, a_x]-dx = J vog dx Vv € X(Qma), (2.69)

‘ma ‘ma

where x,, p=1,2,3, are now taken as known functions. Equation 2.69 can be shortened to

L aX aTO al)o .

k(8 — = 2t | 0 o dx = d X(Qma)- 2.7

(o &) [ron e o
Because our heterogeneous medium is (assumed) periodic, we can use the periodicity

property (see Keller 1980, Auriault 1983, Bendsee and Kikuchi 1988, Rocha and Cruz 2001),

which for our purposes can be expressed as

tim [ gyix= [ |5 [ soomay |ax @71)
e—0 |Qpc|

Oma Qma Qpe

where Q| = J}lpc dy is the total volume measure of a many-inclusion periodic-cell Q..

Property (2.71) expresses the fact that as € — 0, integration of a quantity over Q,,, = Q. U Qg4
can be performed by just capturing the average of the quantity over a representative periodic
cell, since the latter becomes essentially a point relative to (),,.

Applying the periodicity property (2.71) to Equation 2.70 yields the weak-form homogen-
ized, or macroscale, problem

1 L Ox 3T, dvo 1 ,
k 8 ___P)d ——dX: J - J o) d dX vv EXQma,
QJ |Qpc| J ( AT dy; y Ox, Ox; ; Qe 08 4y 0 (Qma)

ma Qpc ma Qpc

2.72)
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which can also be written as

1 L OX§ L oxd 0T, O,
- k8, — — 22 )d Kyl 8 — — 2 |dy $ 220220,
RO T N

'ma pec pe,d

1 . :
- J Wi J g dy + J gq dy |dx Yoy € X(Oma). (2.73)

ma pcc ¢ ch,d

In (2.73), Qpec and Q.4 are, respectively, the portions of (). in the continuous and
dispersed components. The macroscale region (1,,, (see BVP-2 in Figure 2.1) is much less
geometrically complex than the individual regions (). and 4 of the components, such that
it is easy to conclude that the homogenized problem will require only a small fraction of
the number of degrees of freedom demanded by the original problem. The macroscale
problem can then be routinely solved with state-of-the-art commercial software packages.

2.5.1 Nondimensional Homogenized Problem

In practice, a numerical treatment of the macroscale problem is based on the nondimen-
sional form of Equation 2.73. Choosing, arbitrarily, the inclusion size d as the characteristic
length, and T<=AT(d/L) as the characteristic temperature, we define To* = T/ TS, x* =
X/TS, v* = v/TS, ve* = vo/TS, x* = x/L, y* = y/d, and ¢* = ¢ L?/k. T. Using these
definitions to normalize Equation 2.73, and considering k. and k4 to be constants, we obtain

ox;* ox; oTy ot
8y — —F ) dy* 8y — —F | dy* § 0 770 gy
J J(”’ @y]*>Y+J°‘<] %’")y ox; o
QO

ma ( pc.c pe,d

= J g J g dy* + J grdy* [dxt Voi € X(Qma). 2.74)

ma Q'pc,c Qpc,d

The reader will note that problem (2.74) is analogous to (the nondimensional version of)
problem (2.49), that is, the weak form for problems (2.42) through (2.45), provided it is
identified that the effective thermal conductivity, introduced in Section 2.6.2, plays the
role of k.

2.6 Mesoscale Problem

The assumed statistical homogeneity of the analyzed (ordered or random) heterogeneous
medium leads to a natural assumption: there exists an intermediate length scale, called the
mesoscale N, d <\ < L, which represents the size of the region around one inclusion, inside
which most of the interactions of the inclusion with neighboring inclusions occur. This
region is treated in the mesoscale problem of the multiscale approach. As illustrated in
Figure 2.4, the mesoscale problem encompasses four nested loops (Cruz and Patera 1995,
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Cruz 2005). The solution to this problem yields the appropriate function ke(c(x)) to the
macroscale problem. The microscale analysis, described in Section 2.7, must be incorpor-
ated into the mesoscale equations to circumvent the difficulty associated with the geomet-
rical stiffness arising from the presence of close inclusions.

2.6.1 Level 1—The Cell Problem

Inlevel 1, the microstructure of the composite medium must be prescribed: a volume fraction,
or concentration, of inclusions, c, is assumed; next, a particular configuration (i.e., realization)
of the composite is considered, by introducing a representative periodic cell of specified
edge length \, which contains many inclusions, whose geometrical centers are located at
YIN=Y1,--.,yn; N is the number of inclusions, for example, N = 4c\*/wd” for circular cylin-
ders. An illustration of a 2D periodic cell with many inclusions (long, circular, cylindrical
fibers) is shown in Figure 2.5. Given the model for the medium’s microstructure, we now need
to derive the appropriate BVP for the transport phenomenon being investigated.
To derive the periodic-cell problem, we first insert (2.67) into (2.66) to arrive at

aTO 0 L 6T0 601 o
J k{a_x]- + o <Xp(y)ﬁ 6_x,,>} a—yjdx =0 Vo1 € X(Quma)- (2.75)

Equation 2.75 can be rewritten as

d
J k(a]-,, _L ﬁ) Mo 80 4y 0 Yoy € X(Qma), (2.76)

where 8;; is the Kronecker delta. Because the heterogeneous medium is considered peri-
odic, we can, again, apply the periodicity property (2.71) (Keller 1980, Auriault 1983,
Bendsge and Kikuchi 1988, Rocha and Cruz 2001) to Equation 2.76 to yield

1 L aXp avl aTO
J |Qpe| J k(SW AT a_yj> dy; ay ox, dx=0 Vo € X(OQma).  (2.77)

ma pe

Ay
|

0.0 4
yQ OWBQ"“’SC k
. ot OO0

RN /) (v FiGURE25

N Realization of a 2D periodic cell with many inclusions.
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Equation 2.77 implies that the inner integral must be zero for any A-triply periodic test
function v:

L 0x,\ ov
k(& - ”) —dy=0 YoveY(Q), (2.78)
J AT o)y Y ’
Qpe
or
L Ox, 0v ov
k— L — dy = J k— dy Yo e Y(Quo), (2.79)
QJ AT dy; dy; ay, Y ?
pc pc

where Y(Qpc) = {w € Hy(Qpo)|wa,..ca,. = W5, Wa, jc, = wd, [wloa,., = 0}, HL(Qp) is

the space of all A-triply periodic functions (subscript #) in {1, for which both the function
and derivative are square integrable over (), (Hl(QpC)), and 0(), is the portion of 0(); in
the cell. Equation 2.79 is the appropriate mesoscale cell problem, which is clearly solvable:
setting v =0 € Y({,,), both sides of (2.79) vanish. Note that the left-hand side of (2.79) is the
standard (negative) Laplacian operator, and the RHS, although slightly nonstandard, is
easily computed for a chosen test function. The cell-problem boundary conditions imposed
by (2.79) and the space Y({1,,.) are A-triple periodicity for x,; from (2.61), (2.63), and (2.67),

Xploo,.. = 0; (2.80)

and, from (2.64) and (2.67), the following flux condition is naturally enforced:

L Ox,\ oT,
k(8 - )0, (2.81)
AT dy; ) Oxp |4,
pes

We can rewrite the cell problem in the following way:

L 0x, ov° L 0xy oot ov* ovd
caraladyt | kegmal ody= [ kgldy | kgdy Vo€ Y@
J AT dy; dy; AT dy; dy; Yy %y, !
Qpc,c pec,d pc,c ped
(2.82)
The imposed boundary conditions, besides the \-triple periodicity of x,, become
X;C] = X,C;l on a()pc,s (283)

and from (2.61),

L Ox; L Oxy
_kC (8] — E a—y]> 7’1] = —kd ij — E a—y] 7’1] on anC,s- (284)
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In (2.82) through (2.84), the functions Xp and x;l are determined up to a (common) constant;
thus we further require for uniqueness that

J X, dy + J Xy dy = 0. (2.85)

Q'pc,c O'pc,d

2.6.1.1 Nondimensional Cell Problem

In practice, a numerical treatment of the cell problem is based on the nondimensional
form of Equations 2.82 and 2.85. Using the same nondimensional variables as before
(Section 2.5), and considering k. and kg to be constants, we obtain

OXE v ax:! oo
J Xp ov dv* J Xp v dv*

* * a *
oy Oyj Oy Oy
pe,c ped
ov*c ov*d
— * * * Q c .
J Gy;ﬁdY+ Jaay;dy Vo* € Y(Qpe) (2.86)
poc pe,d
and
J X< dy* + J x4 dy* = 0. (2.87)
Qpoc Qped

2.6.2 The Configuration Effective Conductivity

For the particular cell configuration of level 1, by simply inspecting Equation 2.72, we
easily recognize the tensorial effective thermal conductivity to be

1 L Ox,
ro_ _ = ) gy 2.
g || Jk<8’"’ AT @y> o 289
P o 4
pc

alternatively, k; = can be written as

) | (b e J _ Lo
kepﬂ_|Qpc| ke ( Spg AT 3y, dy + | ka| 3y AT 3y, dy ». (2.89)

pec ped

The prime in Equations 2.88 and 2.89 is used to designate the configuration effective
conductivity, which corresponds to the particular realization of the representative cell of
the heterogeneous medium. Note the presence of the factor 1/|{,. in Equation 2.89
multiplying the integrals over (.. and ()4, irrespective of whether k. or kq is zero.
A physical motivation for the division by the total periodic cell measure, [(),|, is that the
homogenized medium occupies the total extension of the cell; therefore, division by (|
yields the correct average over the periodic cell (Cruz and Patera 1995).
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2.6.2.1 Nondimensional Effective Conductivity

The nondimensional effective conductivity is given by

*C *d
I __ 1 J _ aﬁ * J _ axq *
= T ) W ey )

pc,c pe,d

where kl* =k, /[ke [Qpel* = [Qpe| /d°.

€pg €pq

2.6.2.2 Properties of k;,

We can now show some properties of kfaw.

(2.90)

1. Symmetry. From Equation 2.82, taking v € Y({),c) such that v = Xg and v4 = X;, we

obtain

d dad

% % L 0x, 0x; L 0x, 0x
ke gy + J ko X gy — ch——”—qd + J PR ]
J oy, oy, Y AT By, dy; Y AT By; oy Y

P
pcc ped pc,c pe,d

therefore, switching p and g in (2.91), we conclude that

oxs oxd oxs oxd
ke =1 dy + J kit dy = Jk—pdy+ J ka =" dy
J ‘ Yy oYy ‘ Vg Yy
pc,c pe,d pe.c pe,d

or, in short,

L 0x, 0x % ox
k— 22 2 g :Jk—"d :Jk—”d.
J AT dy; Qy; Y Yp Y Yy y

pc pc pc

(2.91)

(2.92)

(2.93)

From (2.89) and (2.92), and the fact that 3;;=3;;, we conclude that kgw is symmetric.
2. An equivalent expression. We now show that k, = can alternatively be written as

oo L Jki L oNOS (L oy,
em*|QpC| @y]' yP ATXp a}/j yq ATXq y.

Qe
Expanding the RHS of (2.94), we obtain
1 L O L O 12 0x, ©
RHS = — Jk(ajpajq— Xp s, X5, +_ﬁﬁ> dy;

Q] y AT dy; ¥ AT dy; 7 " AT? dy; y;
pc

simplifying the terms with the Kronecker delta, we get

0 0 2 0x, 0
1 Jk(sl”? L 0x, L 0x, L* Ox, xq)dy.

[Qpel AT dy, AT dy, AT? dy; dy;

RHS =
5 AT dy, AT oy, AT? Oy; Qy;

pc

(2.94)

(2.95)

(2.96)
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Using (2.93), (2.96) simplifies to

1 L Ox\ ,

pc

from (2.88) and (2.97), we deduce that (2.94) is true.

3. Positive definiteness. From Equation 2.94, it follows that for any vector function
lbp € R3/

;1 o L\ o L
bkes =10 | k{a_y]-“’*’ (yp - Ex,;) 3y % (yq - Exq)} 4y, 2.98)

pc

which is essentially the square of the modulus of the gradient of {,(y, — X,)
integrated over (),.; hence, lllpkémlbq > 0. We conclude that k’em is positive definite,

which guarantees the well posedness and uniqueness for the homogenized prob-
lem (2.72) (Lax-Milgram lemma).
2.6.2.3 Extremizing Property

We now show an extremizing property of k . Defining the functional I,

L ov
I (v) = Jkﬁ &, dy. (2.99)
Q

Equation 2.88 can be rewritten as

o1 .
kepq T Qpe| J kdpq dy — IQPC(Xq) . (2.100)

pc
We also introduce the functional J},

[* dv Qv
p _ _njP
9]

the first term of which is a positive-definite bilinear form. From (2.99) and (2.101), we
have that

L? 0x, Ox L 0Ox
p _ Xp Xp p
Jo, 0) = J kAT2 dy; dy; dy =2 J kAT Y, ay; (2.102)

Qe Qe

but from (2.93) we know that

L? Ox, 9x, L 0Ox,

pc pc
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Thus, from (2.102) and (2.103), we conclude that

L Ox
P N
Jo,. (%) = J kT %, dy, (2.104)
pC
or
L* Ox, 0x
4 _ 7P — P P
Io (xp) = —Jo, . (xp) Jk AT 3y, O, dy. (2.105)

pc

Now note that the solution ,, in (2.79) can also be written as (Bendsege and Kikuchi 1988,
Cruz and Patera 1995, Matt and Cruz 2002a)

X, = arg min J{, (v). (2.106)
VEY(Qpe) T

Clearly, the weak form for x, presented in (2.79) derives from the first variation of the
functional ]flpc (0):

1?2 9v dw L dw
p _ _ = %
8]Qpc(v) =2 J kAT2 y; Oyj 2 J kAT oYy 4y, (2.107)

pc pc

where w =38v € Y({)y,) is the variation of v; the function that minimizes ]f)pc (v), denoted as
Xp, must be such that SIBPC (x,) =0, and, therefore, dividing (2.107) through by 2(L/AT), we
obtain

L 0x, ow ow
k— 2P == g ,J —dy=0 Ywe Y Qp), (2.108)
J AT oy; oy Y oy, P

Q‘PC P

which is the same as Equation 2.79.
From (2.100) and (2.105), it follows that

1
/o _IF
kew a |Qpc‘ J kdy IQPC(XP)

Qe

1
= kdy +Jo_(x,)
|QPC‘ pe
Qpe
1 L* 0Ox, Ox
= kd —J — 2 Pyt (2.109)
Ol )T ) TAT By Y
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thus, from (2.106) and (2.109), we derive

;1
ke””_m Jkdy+vel§/l(l({lc)] () p. (2.110)

pc

Finally, defining the bilinear form

1 d L\ 3 L
Rew=pg [ ey (v-m) oy (o-so o e

pc

Wwe can rewrite képq as given in (2.94) in the equivalent form

K = affpc (Xpr Xg)- (2.112)

€pg

Since, using (2.103) and (2.106),

1 0 L 0 L
pp - _ R — N
LIQPC(Xp/ Xp) - |Qpc| QJ k{ay] (yp ATXp) a]/] (yp AT XP)} dy

pc

_ 1 J{l L O, L O I* axpaxp}

AT 3y, AT 0y, | ATZ dy, 0y,

_ 1 P

Qpe
1
=a) | in Jo (v) - 2.11
|Qpc| J y + v&g})c)]()pc (v) ( 3)
Ope
It finally follows that
1o _
o = )ﬂg (©,0) = ag (X Xp)- (2.114)

The extremizing property (here, minimum) (2.114) can be extended to the off-diagonal
terms of the effective conductivity tensor in a form similar to the inequalities derived in Nir
et al. (1975) for the components of the shearing tensor. Property (2.114) is crucial for the
development of the microscale models (see Section 2.7).

2.6.3 Level 2—The Sample of Cell Configurations

Inlevel 1, as described in Section 2.6.1, the volume fraction of inclusions, ¢, and the periodic
cell size, \, are prescribed quantities; furthermore, the configuration of the N inclusions in
the cell, expressed by their positions {y}y, is assumed to be given. The configuration
effective conductivity of the cell is then determined as kf% (c, N\, {y}n), Equation 2.89.
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In level 2, we consider the spatial distribution of the dispersed phase (i.e., the inclusions)
in the periodic cell (Cruz and Patera 1995). The positions of the geometric centers of
the inclusions in the cell are now treated as continuous random variables, {Y}xy=Y;,...,
Yn € Q. and the spatial distribution of the centers is specified by means of a JPDF,
Pn(fy)n). Naturally, any results obtained for the effective property based on an assumed
JPDF for the microstructure will be practically relevant, only if the random medium under
study is well characterized with respect to the geometry and distribution of inclusions, or if
the behavior of the medium is (known to be) rather insensitive to the geometry and
distribution of the inclusions.

For a real random medium, there appears to be no unique approach to determine the
JPDF which (best) characterizes its microstructure. The JPDF can, in some cases, be known
a priori, for example, when the heterogeneous medium is manufactured via a well-known
controlled process. In general, it is very difficult to ascertain an assumed JPDF experimen-
tally a posteriori.

A much utilized JPDF is the one corresponding to the random sequential addition
process (Torquato 2002), illustrated in Figure 2.6. This JPDF is defined and constructed
recursively from conditional JPDFs. Each conditional JPDF is uniform over the available
region in the cell, in a manner to impose the condition that any two inclusions must not
overlap. The statistical properties of this JPDF approximate well-defined limits as \, and
therefore N, tend to infinity. The JPDF corresponding to the random sequential addition
process is isotropic and homogeneous, and is equivalent to the equilibrium distribution of
the hard disk fluid up to third-order moments. Still, one may conjecture that this JPDF is
similar to the one associated with the (physically intuitive) hypothesis that all possible
configurations in which there is no overlap of inclusions are equally likely to occur.

The effective conductivity of the composite medium, in this level, is thus a random
variable, expressed by Ke, = k’em (c, N, {yln)- The objective in level 2 is, therefore, to deter-
mine the average effective conductivity of the composite over the ensemble of possible
configurations, (Kem)(c, N),

(Ke,) (6, N) = J ke, (€N (yIn)Pn(lyln) dy, - - dyy. (2.115)
(2]

Inclusion 1 Inclusion 2 Inclusion 1

Acceptable space for y, Acceptable space for y;

FIGURE 2.6
Tllustration of the random sequential addition process.
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As shown in Figure 2.4, in order to solve the multidimensional integral in (2.115), Monte
Carlo methods can be used (see, e.g., the studies by Ghaddar 1995 and Lisboa 2000 on flow
through fibrous porous media), which require repetition of the level-1 procedure for many
realizations of the medium.

2.6.4 Level 3—The Size of the Cell

In level 3, we progressively increase, for each concentration value ¢, the size A (and,
thus, N) of the periodic cell, with the objective to determine the correlation length of the
composite, \“(c) (Cruz and Patera 1995). The concept of the correlation length is based on
the regularity assumption, according to which the limit limy ., (Ke,,)(c, N) = ke, (c) exists.
The correlation length is defined as that value of the edge length of the periodic cell for
which two conditions are satisfied:

1. For A >\S(c), the value of (Ke,,)(c,\) does not change appreciably, such that the
quantity

|<Kepq> (C/ A > )\C(C)) - kem ©)
ke, (c)

(2.116)

is smaller than a small prescribed tolerance, €.

2. The standard deviation of (K, ) (e, N> )\C(c)) is smaller than a small prescribed
fraction, &,, of kew (©).

The first condition guarantees that, as the edge length of the periodic cell increases
beyond \© (therefore incorporating more inclusions), the average (Ke,,) does not
change appreciably; the condition on the standard deviation of K, guarantees that, for
A >\S, a particular realization of the medium will have an effective conductivity suffi-
ciently close to the mean (K, ). The correlation length is, thus, a key quantity of the
multiscale modeling approach and establishes the connection between the behaviors of
periodic and random media. We observe, furthermore, that an important practical appli-
cation of the correlation length \“ is that it indicates whether a given heterogeneous
body is large enough to apply ke, (c) ~ (Ke,)(c, A\S) to compute global (engineering)
quantities.

2.6.5 Level 4—The Volume Fraction of Inclusions in the Cell

Finally, in level 4, we determine, by repeating the evaluation procedure of level 3 for
different values of c, the functional dependencies \“(c) and (Ke,) (c, AS(0)) for 0 < ¢ < Cmaxs
where ¢y is an appropriate maximum packing for the particular inclusion geometry and
distribution under consideration.

Given the four-level mesoscale procedure described in this section, the problem of heat
conduction in a composite material—or, in general, the transport phenomenon problem in
a heterogeneous medium—for which the concentration distribution, c(x), varies appre-
ciably only on the macroscale, L, and for which the macroscale is large compared to
maxyen,, A\ (c(x)), is basically solved: with high quantifiable probability, the macroscale
result for the bulk flux will accurately predict the one for the original problem for any
particular realization of the random composite medium.
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2.7 Microscale Problem

In Cruz et al. (1995), Machado and Cruz (1999), Machado (2000), and Matt and Cruz
(2002a), the microscale component of the macro-meso-microscale approach for the heat
conduction problem in composite materials is described and discussed in detail. Similarly,
in Ghaddar (1995), Cruz et al. (1995), and Lisboa (2000), the macro-meso-microscale
approach for the fluid flow problem in fibrous porous media is presented. Here, we
formulate isotropic microscale models to avoid the nip regions between close inclusions
which hamper mesh generation. In this section, the nip-region models are presented and
applied to the 3D isotropic heat conduction problem in particulate media (i.e., the inclusions
are particles) with thermally conducting phases; for a particular configuration containing
nips, the models lead to lower and upper bounds for the corresponding effective conduct-
ivity k, = kéw. The bounds rely on the minimization property, Equation 2.114, of k.. The
variational forms of the microscale-prepared mesoscale problems associated with the
lower and upper bounds resemble Equation 2.106, and are respectively defined over
the modified (“less stiff”’) domains £ and U, as shown in the following.

2.7.1 Nips Geometries

When dealing with random media, as the concentration increases, it is more likely that one
particle in a cell will get very close to other particles in the same cell or in neighboring cells;
in ordered media, the number of neighbors of one particle in the cell is fixed, and regular
clusters of very close particles will be formed when the concentration is high enough. Here,
we postulate that a pair of close unitary diameter particles forms a nip region when the
center-to-center (nondimensional) separation distance 1 + v is less than 1+ +y., where y.is a
“small”” prescribed parameter. A nip region between two close spherical particles, as
illustrated in Figure 2.7, is delimited by a circular cylindrical surface of radius B and
with the axis parallel to the line joining the particles” centers, and two spherical end caps
on the particle surfaces. Figure 2.8 shows the geometries of vertical y;—y, cuts of the nip
regions for the lower (Figure 2.8a) and upper (Figure 2.8b) bounds, for which we, respect-
ively, define that Dy g ,, and Dyp , are the domains associated with nip regionn, n=1,..., N,
N is the number of nips in the cell (note that N'=3 for the simple cubic array);
L=0, U, Dip, and U = Qp\UY | Dug, are the associated modified cell domains;
and 0D, and 0Dy, are the boundary surfaces of nips Dy 5, and Dyg .

In the next two sections, we employ isotropic microscale models to construct rigorous
lower and upper bounds for the effective conductivity, ki <k, < kyg, based only on

FIGURE 2.7

One 3D nip region between two proximal spherical par-
ticles; a circular cylindrical surface and two spherical end
caps delimit the nip.



http://www.crcnetbase.com/action/showImage?doi=10.1201/b10918-4&iName=master.img-000.jpg&w=179&h=122

Multiscale Modeling Approach to Predict Thermophysical Properties 81

Y ZI Isotropic insulator M QT Isotropic superconductor

(a) (b)

FIGURE 2.8
Geometries of vertical cuts across the 11—y, plane of (a) one lower-bound nip region filled with an isotropic
insulator and (b) one upper-bound nip region filled with an isotropic superconductor.

solutions defined over £ and U, respectively: we avoid the hard- or impossible-to-mesh
nip regions, while maintaining strict control over the resulting error.

2.7.2 Lower Bound

A lower bound for k., kg, can be obtained by simply assuming that the material in the nip
regions Dip,, n=1,...,N, is an isotropic insulator, Figure 2.8a; thus, since the total available
volume for heat flow is decreased, we physically expect kg to be a lower bound. Because
the thermal conductivity is zero inside the nips, the inner problems in Uﬁ/:lﬂLB,n
are irrelevant. The lower bound kg will depend on the temperature field x;p inside the
modified cell domain £ = L. UQpcd, Lo = Qpec\ UnN:1 D, which is given by the vari-
ational form

XLp = arg min [ (w), (2.117)

ZUEX#/ LB(L)

where Xy 15(L) = {w € Hj(L)|w), = w°, wygq

=wd, [, wdy+ Jo,. wd dy = O}. From
Equation 2.101, we write [ (w) as

ped

C C d d C d
IL(W)ZJ%GW d Ja%@ﬂd ) J@w d J Cw
dy; dy; dy; Qy;

< pe,d Le Qpc,d

Therefore, from the first variation of [ (w), we derive the weak form for the field of
the microscale-prepared mesoscale lower-bound problem: Find x5 € Xy 5(L) such that
Yo € X#,LB(-E):

c C d d c d
J Oxip 0v° dy + J aaXJai dy = J o dy + J cxai dy. (2.119)
dy; Oy; dy; Qy; ] oY1 Y1

c pc,d c Qpc,d

The main difference between problem (2.119) and the original problem (2.82) is that L. in
the former substitutes (), in the latter. Equation 2.119 naturally enforces the appropriate
Neumann boundary conditions on xr g at the three curved surfaces of 0D;p, of each
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insulating nip region n,n=1,...,N, such that the global (macroscopic) heat flux is
zero at these surfaces.

In view of the results in the previous section for the effective conductivity k., we now
define, based on the solution xi s of the modified problem (2.119) in £, the quantity ki g as

ki = az(xip), (2.120)

which is shown below to be a lower bound for k. From Equations 2.117 through 2.120 and
(2.111), it follows that (Cruz et al. 1995, Machado 2000)

kig = i . 2.121
LB weg}g 0 az(w) ( )

Also, from Equations 2.119 through 2.120 and (2.111), we can rewrite ki g as

c d
kip :(175)+0LC7L J Oxip dy + J o b dy |, (2.122)
|Qpe oy 0
c ped

where ¢ is an “effective concentration”” given by ¢ =1 — (1/|Qpc|) Iz dy.

Finally, we now prove mathematically the physically expected bounding property of ki s,
by using domain embedding arguments:

kig = as(xip) = » min a,(w)

€X4, 180
<ag(xlg +s)=aclxly) (2.123)
< ag,.(x) =k, (2.124)

In (2.123), x|, is the solution to the original mesoscale problem (2.82) restricted to £, and
s € R is the required shift such that |, (x|, +s)dy = 0. The inequality (2.123) follows from
the fact that (x|z+5) € Xy 1p(L); the inequality (2.124) follows from the positive (semi)
definiteness of the quadratic form defined in Equation 2.111, which leads to a positive
contribution over Q,\ L.

2.7.3 Upper Bound

An upper bound for k., kyg, can be obtained by simply assuming that the material in the
nip regions Dyg,, n=1,..., N, is an isotropic superconductor, Figure 2.8b; thus, since the
total volumetric capacity for heat flow is increased, we physically expect kyp to be an upper
bound. Because the thermal conductivity is infinite inside the nip regions, the inner
problems in U, Duyg, , have trivial solutions: the nips are isothermal, so that the tempera-
ture field xup over the cell domain (), is constant inside each superconducting nip. The
upper bound kyg will depend on xyg, whose variational form is

Xup =arg min Jo (W), (2.125)

we W#, UB (Qpc)

where Wy, up(@p0) = {w € HL(Qpo)lwj, = @, Wi, = @, wipyy, = Co =1, N,

pe,d

jﬂpc wdy = 0}, the constants C,, € R are part of the solution, and U is the modified cell
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domain, U = U U Qpeq, Ue = Qpec\UY; Dyp,y; it is important to note that Wy yp(Qpe) C
Y(Qpe) (function space restriction). We can express the functional Jo, (w) as

N
Jop @) = Ju@ar) + > Jus, @ p4s,), (2.126)
n=1

where wq, and w)p, ,  are the restrictions of w(y) to U and Duyp ,, respectively.
We can now break the problem (2.125) into NV inner (microscale) problems defined over
the nip regions,

Xuin (Y;Cul =arg min  Jp, (w), n=1, ..., N, (2.127)

weWup(Dus,n)

and one outer problem defined over U,

N
XUBout = arg ~ min (]'L{(w) + Z]DUB,H (XuB,inly; waDUB,n})> ’ (2.128)
weWy, up(U) n=1

where Wyg(Dusg,,) is the rather trivial set of all functions w(y) € Hl(DUB,n) for which
w=C,, C, € R given (inner nip regions are isothermal); Wy, yp(u) = {w GHL((L{)WWC =us,
W0, :wd,w@@wm =C,n=1,...,N, ﬁuwdy: 0}, C,, € R part of the (outer) solution; and

XUB,out = Xusly + s, XUB, in {y; XUB,out\aDUB,n} = XUB|DUB,n +s, n=1,... N, (2.129)

s’ € Ris a constant shift such that Iﬂpc xus 4y = 0 and [¢/ xuB,out 4y =0 may be obtained.

The inner problems have trivial solutions, since by assumption Xupn{y; Ci} =C,, n=
1,..., N. The outer problem thus becomes

XUBout = arg min  Jy(w), (2.130)
weW#,UB(ﬂ)

since Jp, , (XuB,inly; C:})=0,n=1,..., N. Taking the first variation of J¢,(w), we obtain the
weak form for the field of the microscale-prepared mesoscale upper-bound problem: Find
XUB,out € W#,UB((L{) such that Vv € W#,UB(W)I

ov€ C ) d d ¢ d
J X, ou 00° dy + J o XUB.out oot dy = J oot dy + J otai dy. (2.131)
dy; dy; P Y1 Y1

c pe,d c Qpc,cl

Problem (2.131) differs from the original problem (2.82) in that U. and Wy yp(¥/) in the
former, respectively, substitute (). . and Y({)) in the latter.

In view of the previous results for the effective conductivity k, and lower bound ki,
we now write, based on the solution xypou: Of the modified problem (2.131) in U, the
quantity kyg as

kus = aq, (xus) = ag,. (W), (2.132)

min
weW4,uB(Qpe)
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which is shown below to be an upper bound for k. From Equations 2.131, 2.132, and 2.111,

and the fact that | D (xuBin ly; Ci}=0,n=1,..., N, kyp) can be rewritten as (see algebraic
details in Machado 2000)

kUB:1+(OL—1)C

ox¢ X}
1 J XUB,out J a%d (2.133)

- |Qpe| Oy

c pe,d

Finally, we now prove mathematically the physically expected bounding property of kyg,
by using function space restriction arguments:

kus = aq, (Xus) = ag,.(w)

min
ZUGW#,UB (Qpc)

> mi = =k, 2.134
> min a0, (@) = 00,00 = K, 2134

where ¥ is the solution to the original cell problem (2.82). The inequality (2.134) follows
from the fact that Wy up(Qpe) C Y(Qp0).

2.7.4 Application of the Bounds

In Figure 2.9, we show an illustrative periodic cell with 10 fibers in which a medium-
grained triangular finite element mesh has been generated and which has been prepared
for the lower- and upper-bound microscale models (Machado 2000). In Figure 2.10, we
show a 3D cell for the simple cubic array, containing one sphere in which a tetrahedral
finite element mesh has been generated and which has been prepared with three nips for
the microscale models (Matt and Cruz 2002a). As previously remarked, the cell must be
prepared for the microscale models in two situations: when the cell possesses nip regions
that prevent the generation of a mesh, or when a mesh can be generated, but the geomet-
rical stiffness is so high as to prevent that a numerical solution be found. Therefore, for a
level-1 periodic cell configuration, or realization, such as those in Figures 2.9 and 2.10, the

FIGURE 2.9
Microscale-prepared medium-grained triangular finite
element mesh for a 2D periodic cell with 10 fibers.
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FIGURE 2.10
Microscale-prepared tetrahedral finite element mesh for a
3D periodic cubic cell with one spherical particle.

configuration effective conductivity k., cannot be directly computed; in this case, the

configuration effective conductivity must be substituted by its estimate, k; ., given by

Ko ki + kus
eest — f

(2.135)

The absolute error incurred with the substitution of k by k. is equal to half of the

difference (kyg — ki), and it can be made to be of the same order of magnitude as the
discretization error (Machado 2000, Matt and Cruz 2002a). The corresponding relative
error is equal to the absolute error divided by k. ..., multiplied by 100%.

€,es!

2.8 Numerical Solution

Numerical solution of problems (2.82), (2.119), and (2.131) requires three steps: geometry
and mesh generation (Section 2.8.1), finite element discretization, and solution of the
resultant linear system of algebraic equations (Section 2.8.2).

2.8.1 Geometry and Mesh Generation

Finite element discretization requires that the physical domain of interest be meshed, that
is, subdivided into a collection of nonoverlapping conforming subdomains called the
elements. Thus, geometry and mesh generation are needed for the domains representing
the microstructures of the class of composite materials under study. An automatic or
semiautomatic geometry and mesh generation procedure must be developed, preferably
based on third-party accredited software; for example, in Cruz and Patera (1995) and
Machado (2000), the program MSHPTG developed at INRIA (Hecht and Saltel 1990) is
used, while in Matt and Cruz (2002a) and Matt (2003), the program NETGEN developed in
Austria (Schoberl 1997, 2001) is employed. NETGEN can perform boolean operations with
many different primitive solids and can generate 2D and 3D unstructured meshes using
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the advancing front algorithm. The user may also choose to effect a smoothing operation to
optimize the shape of the finite elements. For planar and surface meshes, linear or quad-
ratic triangles can be chosen; for volume meshes, linear or quadratic tetrahedra can be
chosen. The reader is referred to Machado (2000) and Matt (2003) for detailed descriptions,
as well as several illustrative figures, of the domain and mesh generation procedures
developed to study heat conduction in 2D and 3D composites, respectively.

2.8.2 Finite Element Discretization and Iterative Solution

In this section, we discretize the heat conduction problems formulated previously, but for
the isotropic case. Therefore, the associated effective conductivities k, kg, and kyg are scalar
quantities, and ¥, is simply x. We first present the discretization procedure for the problem
in the standard cell domain, ()., and then describe the procedural differences for the
problems in the modified cell domains, £ and U.

The field variable of interest in the periodic cell ), is the temperature x(y) € Y(.),
given by Equation 2.82, rewritten here in the general form

a(v, x) = L(v) Yo € Y(Qpe), (2.136)

where a(v, w) = fﬂ f(y)(©v/dy;)(0w/dy;) dy is the symmetric bilinear form, where f(y) =
if y belongs to the contmuous—phase portion of the domain and f(y) = « if y belongs to the
particle-phase portion of the domain; 4(v) = fnpc f(y)(©v/0y1) dy is the linear functional on
the RHS of Equation 2.82.

An accurate representation of the geometry is increasingly necessary as the conductivity
ratio a increases. It is thus appropriate to effect quadratic isoparametric discretization
(Bathe 1982, Hughes 2000, Reddy and Gartling 2001), for which the Galerkin approxima-
tion to (2.136) can be written as

a(, x,) = L©) Yo € Yi(Qpcn), (2.137)

where
X, is the discrete approximation to x
Y (Qpen) = {w] IS Pyt N H#(Qpc,h), where P(t) is the space of all polynomials of
degree 2 defined on the kth element ¢,
numerical domain (), is the quadratic representation of ().

All the quadratic-element midside nodes, generated by the mesh generator, which belong
to edges whose extremities lie on a curved surface in (). are thus moved to the curved
surface by changing their (1, 2, ¥3) coordinates appropriately.

Expressing the space coordinates y;, j=1,2,3; x;, and v in (2.137) in terms of the usual
nodal second-order Lagrangian interpolants (or shape functions), and performing all the
quadratures numerically using Gauss integration (Bathe 1982), the discrete linear system of
equations is obtained:

Ay, =EF (2.138)

where
A is the global system matrix corresponding to the discrete (negative) Laplacian operator
X, and F are, respectively, the global vector of unknown nodal values of the scalar field
X, and the global vector of nodal values of the inhomogeneity £(v)
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The uniqueness condition, given in continuous form in the definition of the space Y({,,), is
discretely imposed by requiring that x; have zero algebraic average.

The discrete equation for the numerical equivalent of the effective conductivity, ké/h,
nondimensionalized with respect to k., is obtained by substituting x;, for x and €2, , for .
in Equation 2.90,

;o1 e
ke,h—r s Jf(y)(l ay1> dy ¢ (2.139)

peh

As verified in Matt and Cruz (2002a) and Matt (2003), k;,;, is optimally approximated by the
finite element method, in that cubic convergence of k, is obtained when quadratic
isoparametric elements are used.

Solution of the discrete problem (2.138) can be carried out iteratively, using the well-
known conjugate gradient algorithm (Golub and Van Loan 1989), with or without pre-
conditioning. The global system matrix A is not formed; instead, the memory-efficient
technique of elemental evaluation of the operator (Fischer and Patera 1994, Cruz and
Patera 1995, Machado 2000) is used. The iteration proceeds until a criterion for the
incomplete-iteration error, based on the Euclidean norm of the residual, is satisfied; the
stopping criterion should be such that the incomplete-iteration error is made much smaller
than the discretization error.

Finally, we now describe the differences of the numerical solutions of problems (2.119)
and (2.131) with respect to that of problem (2.82). For problem (2.119) in the modified cell
domain £, equations similar to (2.137), (2.138), and (2.139) are obtained: in Equation 2.136,
we substitute xrg, £, and Xy 18(£) for x, Qpe, and Y(L1y,.), respectively, and follow the same
discretization and iterative solution procedures indicated above. Note that the appropriate
Neumann boundary conditions on xi g at the curved surfaces of 8Dy g, of each insulating
nip region n, n=1,..., N, are naturally enforced. All the midside nodes that belong to
element edges whose extremities lie on the curved surfaces of 0Dy p,,, n=1,..., N, in L are
moved to the curved surfaces. For problem (2.131) in the modified cell domain U,
equations similar to (2.137), (2.138), and (2.139) are also obtained: in Equation 2.136, we
substitute xupou, U, and W#,UB U for x, Qp, and Y(L)p), respectively, and slightly
modify the discretization procedure to impose the appropriate boundary conditions on
the nips surfaces. Constant temperature conditions are enforced by making all the finite
element global nodes on the boundaries of each nip region Dyg ,, to correspond to the same
temperature degree of freedom C,, n=1,..., N (Cruz et al. 1995, Machado and Cruz 1999,
Machado 2000). All the midside nodes that belong to element edges whose extremities lie
on the curved surfaces of 0Dyg,, n=1,..., N, in U are moved to the curved surfaces. The
iterative solution procedure is the same as that for x;.

2.9 Sample Results

In this section, for completeness of the chapter, we present some sample numerical results
for the effective conductivity (1) of the 2D square array of circular cylindrical fibers (Cruz
1997, Machado and Cruz 1999) in Table 2.1 and (2) of the 3D simple cubic array of spheres
(Matt and Cruz 2002) in Table 2.2. Both sets of results are made nondimensional with
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TABLE 2.1

Numerical Results, k., for the Transverse Effective Conductivity of the Square
Array of Circular Cylindrical Fibers, as a Function of the Dispersed Phase Volume
Fraction, ¢, and Conductivity Ratio, o

ke

c a=2 a=10 a=50
0.10 1.069 1.178 1.213
0.20 1.143 1.391 1.476
0.30 1.222 1.652 1.813
0.40 1.308 1.980 2.263
0.50 1.401 2415 2915
0.60 1.503 3.037 3.990
0.70 1.615 4.063 6.342
0.75 1.677 4.946 9.546
0.77 1.702 5.469 12.75
0.78 1.715 5.805 16.32
/4 1.714 (+0.53%) 5.9 (£4.1%) 18 (+£26%)

Source: Cruz, M.E., Two-dimensional simulation of heat conduction in ordered composites
with a thermally-conducting dispersed phase, Proceedings of the 14th Brazilian
Congress of Mechanical Engineering (COBEM), Paper COB288, December 8-12,
Bauru, Sao Paulo, Brazil, 1997; Machado, L.B. and Cruz, M.E., Bounds for the
effective conductivity of unidirectional composites based on isotropic microscale
models, Proceedings of the 15th Brazilian Congress of Mechanical Engineering
(COBEM), Paper AACEDD, November 22-26, Sao Paulo, Brazil, 1999.

TABLE 2.2

Numerical Results, k., for the Effective Conductivity of the Simple Cubic
Array of Spheres, as a Function of the Dispersed Phase Volume Fraction, c,
and Conductivity Ratio, o

ke,h
c a=2 a=>5 a=10 a=>50
0.05 1.0380 1.0883 1.1169 1.1484
0.10 1.0769 1.1819 1.2434 1.3123
0.15 1.1169 1.2817 1.3814 1.4954
0.20 1.1580 1.3883 1.5324 1.7018
0.25 1.2003 1.5035 1.6998 1.9399
0.30 1.2438 1.6278 1.889 2.220
0.35 1.2887 1.7649 2.106 2.568
0.40 1.3351 1.9173 2.364 3.016
0.45 1.3836 2.094 2.692 3.674
0.50 1.434 2.304 3.147 4.920
0.51 1.444 2.353 3.269 5411
/6 1.458 2.420 (£0.06%) 3.465 (£0.3%) 6.9 (£6.9%)

Source: Matt, C.F. and Cruz, M.E., Effective conductivity of longitudinally-aligned composites
with cylindrically orthotropic short fibers, Proceedings of the 12th International Heat
Transfer Conference (IHTC), Vol. 3, pp. 21-26, August 18-23, Grenoble, France, 2002a.
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respect to the matrix thermal conductivity and are given as functions of the dispersed
phase volume fraction c and phase conductivity ratio . The volume fraction c increases all
the way up to the corresponding maximum packing values, such that the techniques for
the conductivity lower and upper bounds, described in Section 2.7 and illustrated in
Figures 2.7 through 2.10, have been applied. To obtain the results in Tables 2.1 and 2.2,
respectively, linear triangles and isoparametric quadratic tetrahedra have been used. The
results in the tables are shown with the proper number of significant digits and have been
validated in Cruz (1997) and Machado and Cruz (1999) for the 2D case, and in Matt and
Cruz (2002a) for the 3D case. For the maximum packing volume fractions in Tables 2.1 and
2.2, the relative errors incurred with the substitution of the configuration conductivity with
the estimated conductivity are also indicated.

For numerical effective conductivity results for other 2D and 3D, ordered and random
geometries, the reader is referred to the works by Cruz and Patera (1995), Cruz et al. (1995),
Cruz (1997, 1998), Machado and Cruz (1999), Matt (1999, 2003), Rocha (1999), Machado
(2000), Rocha and Cruz (2001), Matt and Cruz (2001, 2002a, 2002b, 2004, 2006, 2008), and
Pereira et al. (2006).

2.10 Conclusions

In this chapter, we have presented the continuous formulations of the problems that are
part of the multiscale modeling approach, a technique applicable to the analysis of trans-
port phenomena in random heterogeneous media. The approach consists in the variational
hierarchical decoupling of the length scales of the original multiscale problem, such that
the macroscale, mesoscale, and microscale (sub)problems are derived. In the macroscale
problem, for which the effective property is input data, one seeks to compute global
quantities. In the mesoscale problem, in four levels, the random nature of the medium is
considered, and one seeks to calculate not only the effective property of interest but also the
statistical correlation length. Finally, in the microscale problem, local effects are modeled,
mitigating the difficulty associated with the geometrical stiffness present in some realiza-
tions of the periodic cells with many inclusions.
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Nomenclature

a bilinear form
A operator
c dispersed phase volume fraction
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d microscale

f,F,G  generic functions

L] functionals

k thermal conductivity
L linear functional

L macroscale

p space of polynomials
q flux

N set of real numbers
T temperature

u solution function

W, X,Y function spaces

X,y space coordinates

Greek Variables

conductivity ratio

radius of 3D nip region
mesoscale temperature

ratio of fast scale to slow scale
mesoscale

domain

5> 0 xX ™R

Superscripts

! quantity pertaining to a cell configuration

* nondimensional quantity

c continuous phase

C pertaining to correlation length
d dispersed phase

Subscripts

c continuous phase

d dispersed phase

e effective

in pertaining to inner problem
LB lower bound

out pertaining to outer problem
pc periodic cell

UB upper bound

References

Adams, R. 1975. Sobolev Spaces. New York: Academic Press, Inc.

Alzina, A., E. Toussaint, A. Béakou, and B. Skoczen. 2006. Multiscale modelling of thermal conduct-
ivity in composite materials for cryogenic structures. Compos. Struct. 74: 175-185.

Auriault, ].-L. 1983. Effective macroscopic description for heat conduction in periodic composites. Int.
J. Heat Mass Transfer 26: 861-869.



Multiscale Modeling Approach to Predict Thermophysical Properties 91

Auriault, J.-L. and H. I. Ene. 1994. Macroscopic modelling of heat transfer in composites with
interfacial thermal barrier. Int. ]. Heat Mass Transfer 37: 2885-2892.

Babuska, I. 1975. Homogenization and its application. Mathematical and computational problems.
Technical Note BN-821, University of Maryland, Maryland.

Bathe, K. J. 1982. Finite Element Procedures in Engineering Analysis. Englewood Cliffs, NJ: Prentice-
Hall, Inc.

Bendsge, M. P. and N. Kikuchi. 1988. Generating optimal topologies in structural design using a
homogenization method. Comput. Methods Appl. Mech. Eng. 71: 197-224.

Bensoussan, A., J.-L. Lions, and G. C. Papanicolaou. 1978. Asymptotic Analysis for Periodic Structures.
Amsterdam, the Netherlands: North-Holland Publishing Co.

Bensoussan, A., J.-L. Lions, and G. C. Papanicolaou. 1979. Boundary layers and homogenization of
transport processes. Publ. RIMS, Kyoto Univ. 15: 53-157.

Beran, M. J. 1968. Statistical Continuum Theories. New York: John Wiley & Sons, Inc.

Chung, P. W., K. K. Tamma, and R. R. Namburu. 2001. Homogenization of temperature-dependent
thermal conductivity in composite materials. J. Thermophys. Heat Transfer 15: 10-17.

Cruz, M. E. 1997. Two-dimensional simulation of heat conduction in ordered composites with a
thermally-conducting dispersed phase. Proceedings of the 14th Brazilian Congress of Mechanical
Engineering (COBEM), Paper COB288, December 8-12, Bauru, Sao Paulo, Brazil.

Cruz, M. E. 1998. Computation of the effective conductivity of three-dimensional ordered composites
with a thermally-conducting dispersed phase. Proceedings of the 11th International Heat Transfer
Conference (IHTC), Vol. 7, pp. 9-14, August 23-28, Taylor and Francis, Inc., Levittown, PA.

Cruz, M. E. 2001. Computational approaches for heat conduction in composite materials. In Compu-
tational Methods and Experimental Measurements X, eds. Y. V. Esteve, G. M. Carlomagno, and
C. A. Brebbia, pp. 657-668. Southampton, U.K.: WIT Press.

Cruz, M. E. 2005. Introduction to stochastic homogenization (in Portuguese). In First Meeting on
Multiscale Computational Modeling, eds. M. A. Murad, F. Pereira, H. A. Souto, M. Cruz, and
G. Braga, Chap. 5. Petrépolis, Brazil: Grafica LNCC.

Cruz, M. E,, C. K. Ghaddar, and A. T. Patera. 1995. A variational-bound nip-element method for
geometrically stiff problems; application to thermal composites and porous media. Proc. R. Soc.
Lond. A Math. Phys. Sci. 449: 93-122.

Cruz, M. E. and A. T. Patera. 1995. A parallel Monte-Carlo finite-element procedure for the analysis of
multicomponent random media. Int. ]. Numer. Meth. Eng. 38: 1087-1121.

Fischer, P. F. and A. T. Patera. 1994. Parallel simulation of viscous incompressible flows. Ann. Rev.
Fluid Mech. 26: 483-527.

Ghaddar, C. K. 1995. On the permeability of unidirectional fibrous media: A parallel computational
approach. Phys. Fluids 7: 2563-2586.

Golub, G. H. and C. F. Van Loan. 1989. Matrix Computations, 2nd edn. Baltimore, MD: The Johns
Hopkins University Press.

Hecht, F. and E. Saltel. 1990. Emc? Editeur de maillages et de contours bidimensionnels. Manuel
d’Utilisation, Rapport Technique No. 118, INRIA, France.

Hildebrand, F. B. 1976. Advanced Calculus for Applications, 2nd edn. Englewood Cliffs, NJ: Prentice-
Hall, Inc.

Hughes, T. J. R. 2000. The Finite Element Method: Linear Static and Dynamic Finite Element Analysis.
New York: Dover Publications, Inc.

Kaminski, M. and M. Kleiber. 2000. Numerical homogenization of N-component composites includ-
ing stochastic interface defects. Int. . Numer. Meth. Eng. 47:1001-1027.

Keller, J. B. 1980. Darcy’s law for flow in porous media and the two-space method. In Nonlinear Partial
Differential Equations in Engineering and Applied Science: Proceedings of a Conference Sponsored by
ONR Held at University of Rhode Island, eds. R. L. Sternberg, A. ]. Kalinowski, and J. S. Papadakis,
pp. 429-443. New York: Marcel Dekker, Inc.

Kohn, R. V. and G. W. Milton. 1989. Random Media and Composites. Philadelphia, PA: STAM.

Larsen, E. W. 1975. Neutron transport and diffusion in inhomogeneous media. I. ]. Math. Phys. 16:
1421-1427.



92 Thermal Measurements and Inverse Techniques

Lisboa, E. F. A. 2000. A multi-scale approach for the calculation of the longitudinal permeability of
random fibrous porous media. MSc dissertation (in Portuguese), UFR]J-PEM/COPPE, Rio de
Janeiro, Brazil.

Machado, L. B. 2000. Determination of the effective thermal conductivity of unidirectional fibrous
random composites. MSc dissertation (in Portuguese), UFRJ-PEM/COPPE, Rio de Janeiro,
Brazil.

Machado, L. B. and M. E. Cruz. 1999. Bounds for the effective conductivity of unidirectional
composites based on isotropic microscale models. Proceedings of the 15th Brazilian Congress of
Mechanical Engineering (COBEM), Paper AACEDD, November 22-26, Sao Paulo, Brazil.

Matt, C. F. 1999. Heat conduction in three-dimensional ordered composites with spherical
or cylindrical particles. MSc dissertation (in Portuguese), UFRJ-PEM/COPPE, Rio de
Janeiro, Brazil.

Matt, C. F. 2003. Effective thermal conductivity of composite materials with three-dimensional
microstructures and interfacial thermal resistance. DSc thesis (in Portuguese), UFRJ-
PEM/COPPE, Rio de Janeiro, Brazil.

Matt, C. F. and M. E. Cruz. 2001. Calculation of the effective conductivity of ordered short-fiber
composites. 35th AIAA Thermophysics Conference, 2001 Summer Co-Located Conferences, Paper
ATAA 2001-2968, June 11-14, Anaheim, CA.

Matt, C. F. and M. E. Cruz. 2002a. Application of a multiscale finite-element approach to calculate the
effective conductivity of particulate media. Comput. Appl. Math. 21: 429-460.

Matt, C. F. and M. E. Cruz. 2002b. Effective conductivity of longitudinally-aligned composites with
cylindrically orthotropic short fibers. Proceedings of the 12th International Heat Transfer Conference
(IHTC), Vol. 3, pp. 21-26, August 18-23, Grenoble, France.

Matt, C. F. and M. E. Cruz. 2004. Calculation of the effective conductivity of disordered particulate
composites with interfacial resistance. 37th AIAA Thermophysics Conference, Paper AIAA
2004-2458, June 28-July 1, Portland, OR.

Matt, C. F. and M. E. Cruz. 2006. Enhancement of the thermal conductivity of composites reinforced
with anisotropic short fibers. J. Enhanc. Heat Transfer 13: 17-38.

Matt, C. F. and M. E. Cruz. 2008. Effective thermal conductivity of composite materials with
3-D microstructures and interfacial thermal resistance. Numer. Heat Transfer, Part A: Appl.
53: 577-604.

Mei, C. C. and J.-L. Auriault. 1989. Mechanics of heterogeneous porous media with several spatial
scales. Proc. R. Soc. Lond. A 426: 391-423.

Mei, C. C. and J.-L. Auriault. 1991. The effect of weak inertia on flow through a porous medium.
J. Fluid Mech. 222: 647-663.

Milton, G. W. 2002. The Theory of Composites. Cambridge, U.K.: Cambridge University Press.

Nir, A., H. F. Weinberger, and A. Acrivos. 1975. Variational inequalities for a body in a viscous
shearing flow. J. Fluid Mech. 68: 739-755.

Pereira, A. C., C. F. Matt, and M. E. Cruz. 2006. Numerical prediction of the effective thermal
conductivity of fibrous composite materials. 9th AIAA/ASME Joint Thermophysics and Heat
Transfer Conference, Paper AIAA2006-3429, June 5-8, San Francisco, CA.

Reddy, J. N. and D. K. Gartling. 2001. The Finite Element Method in Heat Transfer and Fluid Dynamics,
2nd edn. Boca Raton, FL: CRC Press LLC.

Rocha, R. P. A. 1999. Heat conduction in unidirectional fibrous composites with interfacial thermal
resistance. MSc dissertation (in Portuguese), UFRJ-PEM/COPPE, Rio de Janeiro, Brazil.

Rocha, R. P. A. and M. E. Cruz. 2001. Computation of the effective conductivity of unidirectional
fibrous composites with an interfacial thermal resistance. Numer. Heat Transfer, Part A: Appl. 39:
179-203.

Schéberl, J. 1997. NETGEN—An Advancing Front 2D /3D-Mesh Generator Based on Abstract Rules. Linz,
Austria: Institute of Mathematics, Johannes Kepler Universitit Linz.

Schoberl, J. 2001. NETGEN—4.0, Numerical and Symbolic Scientific Computing. Linz, Austria: Johannes
Kepler Universitét Linz.



Multiscale Modeling Approach to Predict Thermophysical Properties 93

Schumann, U. 1981. Homogenized equations of motion for rod bundles in fluid with periodic
structure. Ingenieur-Archiv. 50: 203-216.

Torquato, S. 2002. Random Heterogeneous Materials, Microstructure and Macroscopic Properties.
New York: Springer-Verlag.

Whitaker, S. 1999. The Method of Volume Averaging. Dordrecht, the Netherlands: Kluwer Academic
Publishers.



3

Temperature Measurements: Thermoelectricity
and Microthermocouples

Francois Lanzetta and Eric Gavignet

CONTENTS

3.1 INErOAUCHON ..ot 96
3.2 Measurement of Thermocouple VOItage .........cccoviiiiiiiiiiiiiiccceceeeeeeennes 98
3.2.1 Thermoelectric Effects ......coooeiirimiiiiinieciiriccereeecteeeee e 98
3.2.1.1 Peltier Effect ... 99
3.2.1.2 VOIS LAW ecvviiiiiiciciciciccc s 99
3.2.1.3 Thomson Effect ... 99
3.2.1.4 Seebeck Effect.......ccccoviiiiiiiiiiiiiiiicc 100
3.2.2 Practical Measurement of Thermocouple Voltage...........ccccocoeuiieiiccccnnas 101
3221 Measurement of Junction Voltage .........ccccccoevuviiiviiinniiniiinne 101
3.2.2.2 Intermediate Metal.........cccooiiiiiiiiiiiiii e 102
3.2.2.3 Temperature Gradient along a Metal Element ..............ccccoooeeenenn. 102
3.2.2.4 External Reference JUNCHON ........ccecveieiiiiiiiieniiieeieeeesee e 104
3.22.5 Thermocouple Extension/Compensation Wire ...........ccoccceuveeucuenne. 105
3.2.2.6 Connection with Copper WIres .........cccccccuvuviviviiinniiiiiicenne 106
3.2.2.7 Thermopile CoNNECtion ..........cccceucuiviiiieiiiiiiiiiiiiinics 106
3.2.2.8 Parallel Thermocouple Arrangement...........ccccccouoiomeieieiiineiiiccnennn. 107
3.2.2.9 Differential Thermocouple........c.ccccooeiiiiiiiiiniiiiiii 108
3.3 Wire Microthermocouple Measurements............cccoouvviiiiciiininicceeeeeinns 108
3.3.1 Typical Microthermocouple DeSIgNS ..........ccccceiuiuiiuiuiiiiiiemeieciieeeeenenenenas 109
3.3.2 Dynamic Temperature Measurements in Fluids............cccooooeiiiiii 111
3.3.21 INtroduCtion.........cccccuiiiiiiiiiiiiiiiiicicccc s 111
3.3.22 TREOTY ..ot 112

3.3.2.3 Dynamic Calibration with Single-Wire
Thermocouple Technique.........cccccccueeuiiciieieiieerrceceeeeeeees 116
3.3.3 Measurements in Fluids with Multi-Wire Thermocouple Technique........... 122
3.3.3.1 Basic Analysis of a Two-Thermocouple Probe............cccccccvviininnne 122
3.3.3.2 Fluid Velocity Measurement with a Two-Thermocouple Probe..... 124
3.3.3.3 More Realistic Analysis of a Two-Thermocouple Probe.................. 126
3.3.4 Fluid Velocities and Static Pressure Measurements with Thermocouples... 129
3.34.1 Velocity and Temperature Measurements ...........c.ccccceueueururerererurennes 130
3.3.4.2 Pressure and Temperature Measurements.............ccccceeuvuvurririrunennes 135
3.4 CONCIUSION. ....oviiiiice ettt 137
INOMENCIALUTE ... 138
REfEIOICES ... 140

95



96 Thermal Measurements and Inverse Techniques

3.1 Introduction

What is temperature exactly? How to measure it? These are two simple questions but the
answers are complex. A brief history of the temperature measurement gives us the keys to
understand how the intuitive concept of temperature becomes a scientific reality [1].
Temperature “measures” hot and cold and the word is Latin in origin: temperare—to
mix. It was mostly used when liquids are mixed that cannot afterward be separated, like
wine and water. The ““-tur” of the present tense indicates that some liquid is being mixed
with another one. For Hippocrates of Cos, the Greek physician, proper mixing represented
an imbalance of the bodily fluids blood, phlegm, and black and yellow bile that was
supposed to lead to disease that made the body unusually hot or cold or dry or moist.
Klaudios Galenos, another Greek physician, took up the idea and elaborated on it. He
assumed an influence of the climate on the mix of body fluids that would then determine
the character, or temperament, of a person.

Until about 260 years ago, temperature measurement was very subjective. Intuitively,
people have known about temperature for a long time: fire is hot and snow is cold, and the
first temperature measurement was mainly indicated to confirm the presence or absence of
fever. In the time of Hippocrates, only the hand was used to detect the hot or cold of the
human body, although fever and chills were known as signs of morbid medical processes.
In the Middle Ages, the four humors were assigned the qualities of hot, cold, dry, and
moist, and thus fever again acquired importance. Galileo in 1592 devised a crude tempera-
ture-measuring instrument, but it had no scale and therefore no numerical readings;
further, it was affected by atmospheric pressure. A large step forward was achieved by
Sanctorio Sanctorius who invented a mouth thermometer [2]. He described his inventions
in 1625. He produced several designs, but all were cumbersome and required a long time
to measure the oral temperature. To this day, the time to get an accurate, stable reading
remains difficult.

By the early eighteenth century, as many as 35 different temperature scales had been
devised. In 1714, Daniel Gabriel Fahrenheit invented both the mercury and the alcohol
thermometer. Fahrenheit’s mercury thermometer consists of a capillary tube that after
being filled with mercury is heated to expand the mercury and expel the air from the
tube. The tube is then sealed, leaving the mercury free to expand and contract with
temperature changes. Although the mercury thermometer is not as sensitive as the air
thermometer, by being sealed, it is not affected by the atmospheric pressure. Mercury
freezes at —39°C, so it cannot be used to measure temperature below this point. Alcohol, on
the other hand, freezes at —113°C, allowing much lower temperatures to be measured.

At the time, thermometers were calibrated between the freezing point of salted water
and the human body temperature. Fahrenheit subdivided this range into 96 points,
giving his thermometers more resolution and a temperature scale very close to today’s
Fahrenheit scale. Later in the eighteenth century, Anders Celsius realized that it would
be advantageous to use more common calibration references and to divide the scale
into 100 increments instead of 96. He chose to use 100° as the freezing point and 0°
as the boiling point of water. This scale was later reversed and the centigrade scale
was born.

Lord Kelvin, or William Thomson, postulated the existence of an absolute zero and
established the absolute scale of temperature. Sir William Hershel discovered that when
sunlight was spread into a color swath using a prism, he could detect an increase in
temperature when moving a blackened thermometer across the spectrum of colors.
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Hershel found that the heating effect increased toward and beyond the red in the region we
now call “infrared.” He measured radiation effects from fires, candles, and stoves and
deduced the similarity of light and radiant heat. However, it was not until well into the
following century that this knowledge was exploited to measure temperature.

In 1821, Thomas Johann Seebeck discovered that a current could be produced by
unequally heating two junctions of two dissimilar metals, the thermocouple effect. Seebeck
assigned constants to each type of metal and used these constants to compute total amount
of current flowing. Also in 1821, Sir Humphrey Davy discovered that all metals have a
positive temperature coefficient of resistance and that platinum could be used as an
excellent resistance temperature detector (RTD). These two discoveries marked the begin-
ning of serious electrical sensors. The late nineteenth century saw the introduction of
bimetallic temperature sensor. These thermometers contain no liquid but operate on the
principle of unequal expansion between two metals.

The twentieth century has seen the discovery of semiconductor devices, such as the
thermistor, the integrated circuit sensor, a range of noncontact sensors, and also the fiber-
optic temperature sensors. Also, Lord Kelvin was finally rewarded for his early work in
temperature measurement. The increments of the Kelvin scale were changed from degrees
to kelvins. The twentieth century also saw the refinement of the temperature scale.
Temperatures can now be measured to within about 0.001°C over a wide range,
although it is not a simple task. The most recent change occurred with the updating of
the International Temperature Scale in 1990 [3] to the International Temperature Scale
of 1990 (ITS-90).

The twenty-first century will see the new definition of the kelvin. The international
measurement community, through the International Committee for Weights and Meas-
ures, is considering updating the International System of Units (SI). This update, which
will probably occur in 2011, will redefine the kilogram, the ampere, and the kelvin in
terms of fundamental physical constants. The kelvin, instead of being defined by the
triple point of water as it is currently, will be defined by assigning an exact numerical
value to Boltzmann’s constant. The change would generalize the definition, making it
independent of any material substance, measurement technique, and temperature range,
to ensure the long-term stability of the unit. This new definition will allow the accuracy of
temperature measurements to gradually improve without the limitations associated with
the manufacture and use of triple point of water cells. For some temperature ranges at
least, true thermodynamic methods are expected to eventually replace the International
Temperature Scale as the primary standard of temperature. The unit of thermodynamic
temperature, also referred to as Kelvin temperature or absolute temperature, is kelvin (K) [4].
It is defined in terms of the interval between the absolute zero and triple point of pure
water, 273.16 K. Kelvin is the fraction 1/273.16 of that temperature. In addition to the
thermodynamic temperature, the Celsius (°C) temperature is defined as equal to the
thermodynamic temperature minus 273.15, and the magnitude of 1°C is numerically
equal to 1 K.

The numerous measurement techniques can be classified into three different categories
depending on the nature of contact between the sensor and the external system (gaseous,
liquid, or solid) [5]. The first one is invasive: the sensor is in direct contact with the medium
(i.e., sensor in liquid). The second one is semi-invasive: the medium is treated in some
manner to enable remote observation (i.e., temperature sensitive paint). The third category
concerns noninvasive method: the medium is observed remotely (i.e., pyrometry, infrared
thermography). Besides, the usual temperature sensors present a lot of limitations: the
different thermal processes allowing to obtain the equilibrium of sensors are based on
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relatively slow phenomena, inducing a low time resolution; the association of the three
basic modes of heat transfer in these processes induces difficulties for the theoretical
modeling. Then, most often, a temperature sensor only gives its own temperature, which
can be quite different from the fluid one. Of course, the sensor volume appears always as a
main parameter: it governs the intrusive character of the measurement and its spatial
resolution. Being omnipresent in the heat transfer equations, its effect on the thermal
inertia and thus on the time resolution is preponderant too. This is why a reduction of
the volume of the sensors is a very interesting way.

Among the numerous families of sensors, thermoelectric junctions present a well-known
disadvantage: their limited sensitivity, due to the low level of the thermal electromotive
force (EMF), imposes efficient electronic devices in order to amplify the signal and a lot
of precautions in order to maintain a good signal-to-noise ratio. But they present also a lot
of advantages, particularly a large temperature range and a good linearity. Above all, they
make very good competitors in the race for the volume reducing, and the term ““micro-
thermocouple” is now usual in the scientific literature.

3.2 Measurement of Thermocouple Voltage
3.2.1 Thermoelectric Effects

The thermocouple is the most widely used electrical sensor in thermometry, and it appears
to be the simplest of electrical transducers. Thermocouples are inexpensive, small in size,
rugged, and remarkably accurate when used with an understanding of their peculiarities.
Accurate temperature measurements are typically important in many scientific fields for
the control, the performance, and the operation of many engineering processes. A simple
thermocouple is a device that converts thermal energy to electric energy. Its operation is
based upon the findings of Seebeck [6]. When two different metals A and B form a closed
electric circuit and their junctions are kept at different temperatures T; and T, (Figure 3.1),
a small electric current appears.

The electromotive force, EMF, produced under these conditions is called the Seebeck
EMF. The amount of electric energy produced is used to measure temperature. The EMF
depends on materials used in the couple and the temperature difference T; — T. Seebeck
effect is actually the combined result of two other phenomena, Peltier effect [7] and
Thomson effect [8]. Peltier discovered that temperature gradients along conductors in a
circuit generate an EMF. Thomson observed the existence of an electromotive force due to
the contact of two dissimilar metals. Thomson effect is normally much smaller in magni-
tude than the Peltier effect and can be minimized and disregarded with proper thermo-
couple design.

Metal A

FIGURE 3.1 iotal B
Thermocouple circuit.
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. FIGURE 3.2
Peltier effect without current flow.

FIGURE 3.3
Peltier effect with current flow.

Q ¥ Heat flow

3.2.1.1 Peltier Effect

APeltier EMF V1 — Vyis created at the junction of two different materials (wire or film) A and
B, at the same temperature T, depending on the material and the temperature T (Figure 3.2):

Vi — Vy =1 (3.1)

where 1145 is the Peltier coefficient at temperature T.

When a current I flows through a thermocouple junction (Figure 3.3), heat Qp is either
absorbed or dissipated depending on the direction of current. This effect is independent of
Joule heating.

dQP:(VM_VN).].dt:HZ;B.[.dt (3.2)

where Qp is the heat quantity exchanged with the external environment to maintain the
junction at the constant temperature T.
The phenomenon is reversible, depending on the direction of the current flow and

Il = —1I1}, (3.3)

3.2.1.2 Volta’s Law

In an isothermal circuit composed by different materials, the sum of the Peltier EMFs is null
(Figure 3.4) and

Iap +1pc +Ilcp +1Ipa =0 (3.4)

3.2.1.3 Thomson Effect

Thomson EMFs correspond to the tension es(T1, T2) between two points M and N of the
same conductor, submitted to a temperature gradient, depending only on the nature of
the conductor (Figure 3.5):

T,

ea(Th,Tr) = J TAdT (3.5)
T

where 74 is the Thomson coefficient of the material A.
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HBC

FIGURE 3.4
Volta’s law with four materials. Ipy
M N
E) [ J Metal A [ &
FIGURE 3.5 r, —- T,
Thomson effect without current flow. es(T1, Ty)
Qp
6 Metal A 8
FIGURE 3.6 T, T,
Thomson effect with current flow. Current [
Metal A
T T,
FIGURE 3.7
Seebeck effect. Metal B

When a current I flows through a conductor within a thermal gradient (T; — T»), heat Qr
is either absorbed or dissipated (Figure 3.6):
T,
dQT = EA(Tl, Tz)] dt = J TAdTIdt (36)

Ty

3.2.1.4 Seebeck Effect

When a circuit is formed by a junction of two different metals A and B and the junctions are
held at two different temperatures T; and T, a current I flows in the circuit caused by the
difference in temperature between the two junctions (Figure 3.7).
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Metal A

FIGURE 3.8
Metal B Seebeck voltage.

The sum of the different Peltier and Thomson EMFs for the circuit corresponds to the
Seebeck EMF:

Tz Ty

Eap(Ta, Th) = T4, + T3 + J pdT + J T4 dT
T T,
I (3.7)
Ean(Ta, ) =10, ~ 1055 + | (s = 7a)dT
T
Then, the Seebeck EMF becomes
Eap(T1,T2) = oap(T1 — T2) (3.8)

where 0 45 is the Seebeck coefficient for the A and B metals of the couple (WV °C~! or uV
K™!). This coefficient corresponds to a constant of proportionality between the Seebeck
voltage and the temperature difference.

If the circuit is open at the center (Figure 3.8), the net open voltage is a function of the
junction temperature and the composition of the two metals.

The thermoelectric power, or sensitivity, of a thermocouple is given by (Table 3.1)

dE 4B

OAB — diT (39)

Thermocouples are made by the association of dissimilar materials producing the biggest
possible Seebeck. In industrial processes, the common thermocouples are presented in
Table 3.2.

3.2.2 Practical Measurement of Thermocouple Voltage
3.2.2.1 Measurement of Junction Voltage

We consider a thermocouple composed by two dissimilar materials A and B (Figure 3.9)
[9,10]. The hot junction is submitted to a medium whose temperature needs to be measured
(T). The voltage E4p is measured by a voltmeter placed at the cold end of the thermo-
couple at temperature T;. The Seebeck EMF is

T, T,
Eap = JGAdT+JUBdTZ(UA—UB)(Tz—Tl) (3.10)
T, T,

EAB = O'AB(TZ — Tl) where OAB =04 — OB (3.11)
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TABLE 3.1

Seebeck Coefficients of Various Thermocouple Materials Relative
to Platinum at 0°C

Seebeck Seebeck

Material Coefficient (uV °C ) Material Coefficient (WV °C )
Bismuth -72 Silver 6.5
Constantan =35 Copper 6.5
Alumel -17.3 Gold 6.5
Nickel -15 Tungsten 7.5
Potassium -9 Cadmium 7.5
Sodium -2 Iron 18.5
Platinum 0 Chromel 21.7
Mercury 0.6 Nichrome 25
Carbon 3 Antimony 47
Aluminum 3.5 Germanium 300
Lead 4 Silicium 440
Tantalum 45 Tellurium 500
Rhodium 6 Selenium 900

Source: Rathakrishnan, E., Instrumentation, Measurements and Experiments in
Fluids, CRC Press, Boca Raton, FL, 2007.

Platinum =Platinum is the reference material for calculating the Seebeck

coefficient of all other materials, because its value is 0 WV °C ™.

3.2.2.2 Intermediate Metal

A third isothermal metal (i.e., metal C) is inserted between the two metals A and B (Figure
3.10). Then, the Seebeck EMF E 45 becomes

T, T1

Exp=|o0o dTJrJO' dT

A J 4 ? (3.12)
T, Ty

Eap = 0ap(T2 — Th)
The output voltage E 45 is not influenced by the additional isothermal metal C.

3.2.2.3 Temperature Gradient along a Metal Element

Heating or cooling is provided along a metal element (Figure 3.11). This phenomenon
creates a temperature gradient (T — T4). The Seebeck voltage E 45 is

T, T T, T
EAB:JaAdT+JaBdT+JoBdT+JaBdT (3.13)
7 T, T3 T,
Eap = 0a(T2 — T1) — op(T2 — Ty) (3.14)
Eap = 0ap(T2 — T1) (3.15)

The temperature gradient along the element of metal B does not affect the output voltage.



TABLE 3.2
Thermocouple Types
Seebeck
Temperature Coefficient a Standard Minimal
Type Metal A (+) Metal B (-) Range (°C) (nV/°C) at T°C Error (%) Error (%) Comments
B Platinum-30% rhodium Platinum-6% platinum 0 to 1820 5.96 nV at 600°C 0.5 0.25 Idem R type
(glass industry)
E Nickel-10% chromium Copper-nickel alloy —270 to 1000 58.67 nV at 0°C 1.7-0.5 1-0.4 Interesting sensitivity
(constantan)
J Iron Copper-nickel alloy —210 to 1200 50.38 wV at 0°C 2.2-0.75 1.1-0.4 For atmosphere reduced
(constantan) (plastic industry)
K Nickel-chromium Nickel-aluminum —270 to 1372 39.45 wV at 0°C 2.2-0.75 1.1-0.2 The most widely used
alloy (chromel) alloy (alumel) because of its wide
temperature range,
supports an oxidizing
atmosphere
N Nickel-chromium-— Nickel-silicium —270 to 1300 25.93 wV at 0°C 2.2-0.75 1.1-04 New combination
silicium alloy (Nicrosil) alloy (nisil) very stable
R Platinum-13% rhodium Platinum —50 to 1768 11.36 wV at 600°C 1.5-0.25 0.6-0.1 High temperature
applications,
resists oxidation
S Platinum-10% rhodium Platinum —50 to 1768 10.21 wV at 600°C 1.5-0.25 0.6-0.1 Idem R type
T Copper Copper-nickel alloy —270 to 400 38.75 nV at 0°C 1-0.75 0.5-0.4 Cryogenic applications
(constantan)
W Tungsten Tungsten—26% rhenium -+20 to 42300 Sensitive to oxidizing
atmospheres,
linear response and good
performance in high
temperature
W3 Tungsten-3% rhenium Tungsten—25% rhenium +20 to +2000 Idem W type
W5 Tungsten-5% rhenium Tungsten—26% rhenium +20 to +2300 Idem W type

Source: Devin, E., Techniques de I'Ingénieur, tome R2594:1-26, 1997.

891dN020ULIIYFOIN puv AJOLIIII20ULIIY T SPUIUIINSVITA] dAngviadia |

€01



104 Thermal Measurements and Inverse Techniques

Hot junction at T

T
Metal A Metal B
T, © @ o T,

FIGURE 3.9
Basic thermocouple measurement voltage. Cold junction at T}
Metal C
Metal A Metal B
FIGURE 3.10 - @ 5o
Isothermal intermediate material.
T,
Ty
Metal A \ Metal B
\
\
\
\
T,
FIGURE 3.11 ® Q O
Temperature gradient along a metal element. n 1

3.2.2.4 External Reference Junction

The circuit contains two thermocouples in differential mode (Figure 3.12). This circuit
maintains one thermocouple at an external reference temperature T,,=0°C. The output
EMF voltage E4p is

Trer T, Ty

Eag = J opdT + J oadT + J opdT (3.16)
Ty Ty T,

Eap = 0ap(T2 — Trer) (3.17)

If T,,=0°C, then the output voltage becomes Eap = 045 T>. This method is used to
determine the Seebeck coefficient for any thermocouple. For example, if one metal A is
Platinum (for which Seebeck effect is null), this method provides Seebeck coefficient for the
metal B and allows the construction of tables [4].
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Metal B

T
Metal A Metal B ST
1
o g Ice bath
T, ooa" T, =0°C FIGURE 3.12
Reference junction kept at T,,r=0°C.

3.2.2.5 Thermocouple Extension/Compensation Wire

The wire connecting the thermocouple to the instrument may be made of the same material
as the thermocouple with the same physical characteristics. But, this is not always the most
cost-effective method. So, a less expensive substitute material is selected. Thermocouples
can be connected to an instrument by the following:

e Thermocouple wires: The same material as that used to manufacture the thermo-
couple. This solution can be expensive.

o Extension wires: Wires with chemical composition and EMF characteristics similar
to the thermocouple materials over a limited temperature range.

o Compensating wires (Figure 3.13): Alloys that have EMF characteristics similar to
the thermocouple alloy, less expensive than thermocouples. Then, the output

voltage is
T3 T, T3 T,
EAB:JUA/dT+JUAdT+JUBdT+JGB’dT (318)
Ty Ts T2 Ts

with o4 ~ o4 and o =~ op

T, T

Eup ~ J oadT + J opdT (3.19)
T T,

Eap ~ 0ap(T2 — T1) (3.20)

The correction appears at the cold junction at temperature T;.

Metal A iTy | Metald'
0 T
T2 g g a
~ T,
Metal B iTy i Metal B’
Thermocouple _ Compensation FIGURE 3.13

< > € > Compensation wires.
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Metal A Ty : Copper wire
: T
~ T

Metal B T, Copper wire

FIGURE 3.14 Thermocouple Copper wires
Connection with copper wires. < > <

A
y

3.2.2.6 Connection with Copper Wires

The thermocouple is connected to the instrument with two copper (Cu) wires (Figure 3.14).
In this case, the output voltage is

Ts T, Ty T

Eap = JO'CudT—i— JO‘AdT+ JO‘B T + JUCudT (3.21)
Ty Ts T T
T, T

Eag = J oadT + J opdT (3.22)
T3 T

Eap = oap(T2 — T3) (3.23)

The correction of the cold junction is at temperature T5. Then, if T; =T}, the output voltage
is equal to

Eag = 04p(T2 — Th) (3.24)

3.2.2.7 Thermopile Connection

Figure 3.15 presents the circuit with n thermocouples A—B (n =4 in this example) placed in
series arrangement. The objective is to multiply the EMF of one thermocouple by the
number of thermocouples. The output voltage E 5 for four thermocouples is equal to

TS T2 T3 T1
EAB:JUCudT+4JUAdT+4JUBdT+JO'CudT (3.25)
T1 T3 TZ T3
Ty T3
EAB:4JUAdT+4JUBdT (326)
Ts T>
Metal A
—
 Mewl B —
—
\
—
\
- —
o T,
Copper wire

FIGURE 3.15 e
Thermopile connection (serial connection of thermocouples). T, T,
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Finally,

EAB = I/IO'AB(TZ — T3) and forn=4 EAB = 40'AB(T2 — Tg) (327)
If T3 = Tl ’ then,

EAB = TlO'AB(Tz — T1) and forn=4 EAB = 4UAB(T2 — T1) (328)

3.2.2.8 Parallel Thermocouple Arrangement

The thermocouples are placed in a parallel arrangement (Figure 3.16). They are connected
to a common cold junction. This method needs equal electrical resistance R; for each i
thermocouple. A thermocouple is associated to an electric generator with voltage E and an
electric resistance R. The parallel arrangement presents an equivalent electrical resistance
Requ (Figure 3.17):

LU S SR
Requ Ri R Ry

R
and if Ry =R; =--- =R, =R then Ry, = p (3.29)

The measured temperature T),.; becomes

Eo_ Y1 (Ei/R) _(1/R)>TE;

TN A/R)

(n/R)

L nE T 1 ”T
—Ezlz i = mes—Ezl: i

T;=0°C
MetalA 7T Copper wire
T, @ i e
T,
TC
T, @ ——————— N i FIGURE 3.16
,,,,,,,,,,,,,, Metal B i i Copper wire Parallel connections of thermocouples.
I I, I, I
Ry R, - R, <:> Ry
El T T T En Eequ

FIGURE 3.17

Analog circuit for the parallel. Connec-

Toes tion of thermocouple.
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Metal A
T,
Metal B
FIGURE 3.18 T,
Differential thermocouple. Metal A

In this example, n =4 for the four temperatures T,, T}, T,, and T}:

Thes = (Ta + Tb +Te+ Td) (331)

AN

This complicated method can be used to measure a mean temperature.

3.2.2.9 Differential Thermocouple

In this method, two thermocouples are mounted in a series arrangement (Figure 3.18). The
differential thermocouple is composed of two similar wires A joined to a single dissimilar
wire B with the two measuring junctions normally at different temperatures. The resulting
EMEF is the difference between the two junctions, commonly referred to as the differential
temperature. So that

Ts Tz/ T, T Ty
EAB:JUCudT+JUAdT+JUBdT+JUAdT+JUCudT (3.32)
Ty T3 Ty T, T3
Eap = 04T — T3) + 04(T5 — T2) + op(T2 — T2) (3.33)
Eap = 04p(Ty — T2) (3.34)

3.3 Wire Microthermocouple Measurements

A microthermocouple has two major interests: small size and good response to transient
phenomena. The small size is the most important geometric parameter for systems with
very small sizes like microsystems. For the last 10 years, the intense development of micro
electromechanical systems (MEMS) has prompted the growth of modern hydrodynamics,
thermodynamics, and heat transfer with applications in areas as various as aerospace,
mechanical engineering, biology, chemical analysis, and optics. The development of the
first transistor by Shockley in 1948 [11], Bardeen and Brattein [12] has opened the way of
electronic miniaturization called microelectronics, and very high density of components
has been achieved ever since. Today, a MEMS includes a variety of devices, structures, and
systems that contains both electrical and mechanical components with characteristic
sizes ranging from nanometers to millimeters [13]. In this chapter, we limit our discussion
to temperature measurement with microthermocouple wires in systems for which the
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miniaturization of components introduces quantitative downscaling effects [14,15]. Then, it
becomes very difficult to measure physical quantities like temperature, heat flux, pressure
drop, fluid flows, and velocities in microchannels. These measurements are a real challenge
for designing new mechanical and physical systems.

A good response to transient phenomena is the second major interest for a thermocouple
to accurately monitor the time-temperature history. However, when a thermocouple is
placed in a gas flow, or on the external surface of a material or embedded, and when its
temperature suddenly changes, it indicates a temperature different from that of the true
value at any time before the thermodynamic equilibrium has been reached.

This chapter presents experimental and theoretical results for the dynamic calibration of
microthermocouples ranging in wire size from 0.5 to 50 um applied to fluid temperature
measurements.

3.3.1 Typical Microthermocouple Designs

Different methods are used to design a thermocouple probe. It consists of a sensing
element assembly, a protecting tube, and terminations. Two dissimilar wires are joined
at one end to form the measuring junction, which can be a bare thermocouple element
twisted and welded or butt welded. The protecting tube protects the sensing element
assembly from the external atmosphere by a non-ceramic insulation, a hard fired ceramic
insulator, or a sheeted compact ceramic insulator [16-19].

The thermocouple probe consists of two wires inserted in a ceramic double bore tube
with length and external diameter depending on the experimentation. The wires are cut
with a razor blade to produce a flat edge perpendicular to the axis. To realize the junction,
the thermocouple wires are connected to a bank of condensers (Figure 3.19).

The two extremities are approached together in the same time, and the beaded junctions
are made by a sparking method. The energy release produced by the voltage—capacitance
pair is sufficient to weld together the wires. One advantage of this technique is that the
resulting junction diameter is not significantly greater than the wires diameter (Figure
3.20). Aside from the low heat capacity effect, another consequence is that the cross-
sectional area of the wire itself can be used to calculate time constants. A drop of glue is
deposited at the tube extremity and pushed down around both wires to minimize the
probe fragility (Figure 3.21).

Materials used for thermocouples are numerous and classified in terms of thermoelectric
polarity. A thermocouple associates a positive wire and a negative wire. A positive material

Wire A
L ° ire
1 C N
I N
Bank of condensers Wire B
I
|

FIGURE 3.19
Thermocouple spark welding device (FEMTO-ST Belfort).


http://www.crcnetbase.com/action/showImage?doi=10.1201/b10918-5&iName=master.img-000.jpg&w=156&h=116

110 Thermal Measurements and Inverse Techniques
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FIGURE 3.20
K type thermocouples. (a) Diameter =12.7 um. (b) Diameter =53 pm.

FIGURE 3.21
Thermocouple probe (diameter of the wires =1.27 um).

has an EMF that increases with temperature along its length, and a negative material has an
EMF that decreases with temperature along its length. This chapter deals only with micro-
thermocouples designed with two kinds of couples, chromel-alumel couples and platinum-—
rhodium couples. The chromel-alumel thermocouple, called K type thermocouple, with a
positive chromel wire and a negative alumel wire, is recommended for use in clean oxidizing
atmospheres. It is the thermocouple that is most widely used in industrial applications. The
operating range for this alloy is 1260°C for the largest wire sizes. Smaller wires should
operate at lower temperatures correspondingly. The K type thermocouples exhibit a number
of instabilities and inaccuracies at higher temperatures, changing their EMF versus tem-
perature characteristics.

The commercial wire diameters are 7.6, 12.7, 25.4, and 50 pum. The Seebeck coefficient is
40 wV °C ! in the linear region at 20°C. The temperature-EMF data have been extracted
from NIST Monograph 175 [19] (Figure 3.22 and Table 3.2). The platinum-rhodium
thermocouple, called S type thermocouple, is a noble-metal thermocouple in common
use. The S type thermocouples show a positive wire of 90% platinum and 10% rhodium
used with a negative wire of pure platinum. Both metals have a high resistance to
oxidation and corrosion. However, hydrogen, carbon, and many metal vapors can con-
taminate a platinum-rhodium thermocouple. The recommended operating range for
the platinum-rhodium alloys is 1540°C. The commercial wire diameters are 0.5, 1.27, 5.4,
25.4, and 50 pm. The Seebeck coefficient is 6 wV °C~! in the linear region at 20°C [20]
(Figure 3.22).
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FIGURE 3.22

EMF and Seebeck coefficients versus temperature for different thermocouples (ITS-90).

3.3.2 Dynamic Temperature Measurements in Fluids
3.3.2.1 Introduction

Transient phenomena appear in many industrial processes, and many researchers and
engineers have been paying attention to the measurement of temperature fluctuations in
turbulent-reacting flows, compressible flows, boiling, cryogenic apparatus, fire environ-
ments, under the condition of simultaneous periodical variations of velocity, flow density,
viscosity, and thermal conduction in gas [21-28].

There has been considerable progress in recent years in transient thermometry tech-
niques. Some of these techniques are applicable for solid material characterization while
others are suitable only for fluid thermometry. This chapter deals only with temperature
thermocouple measurements in fluids (gases and liquids). Many concepts involved in the
temperature measurements in fluids are common to both types and they are discussed
here. The techniques for temperature measurement in a fluid consist in inserting a thermo-
couple, allowing it to come to thermal equilibrium, and measuring the generated electrical
signal. When a thermocouple is submitted to a rapid temperature change, it will take some
time to respond. If the sensor response time is slow in comparison with the rate of change
of the measured temperature, then the thermocouple will not be able to faithfully represent
the dynamic response of the temperature fluctuations. Then, the problem is to measure the
true temperature of the fluid because a thermocouple gives its own temperature only. The
temperature differences between the fluid and the sensor are also influenced by thermal
transport processes taking place between the fluid to be measured, the temperature sensor,
the environment, and the location of the thermocouple. Consequently, the measured
temperature values must be corrected. Whereas in steady conditions only the contributions
of the conductive, convective, and radiative heat exchanges with the external medium
occur, unsteady behavior introduces another parameter, which becomes predominant: the
junction thermal lag that is strongly related to its heat capacity and thermal conductivity.
The corrections generally decrease with the thermocouple diameters, and both temporal
and spatial resolutions are improved. However, while spatial resolution is fairly directly
connected with the thermocouple dimensions, the temporal resolution does not only
depend on the dimensions and the thermocouple physical characteristics, but also on the
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rather complex heat balance of the whole thermocouple. To obtain the dynamic character-
istics of any temperature probe, we analyze its response to an excitation step from which
the corresponding first time constant T can be defined as

pcV
T="—

i (3.35)

where
7 is the time constant
p is the density
c is the specific heat
V is the volume of the thermocouple
A is the area of the fluid film surrounding the thermocouple while / is the heat transfer
coefficient

The goal of this work consists in calculating or measuring time constants of thermo-
couples and comparing their behavior according to different dynamical external heating
like convective, radiative, and pseudo-conductive excitations.

3.3.2.2 Theory

An accurate calibration method is an essential element of any quantitative thermometry
technique, and the goal of any measurement is to correctly evaluate the difference between
the “true” temperature and the sensor temperature. Figure 3.23 shows the energy balance
performed at the butt-welded junction of a thermocouple for a junction element dx result-
ing from the thermal balance between the rate of heat stored by the junction dQy and heat
transfer caused by the following:

e Convection in the boundary layer around the thermocouple dQ,

e Conduction along the wires dQCd

e Radiation between the wires and the external medium ded

e Contribution of another source of heat power (a laser source in our work) AQext

During a transient period, because of its thermal capacity, the thermocouple temperature
will lag behind any gas temperature variation. This leads to an error from which a
thermocouple time constant can be defined. The general heat balance for a junction of
length dx is expressed as

thh = dch + dQed + ded + dQext (336)

[ External media Tg ]

Radiation Convection

Wire A % J Wire B

e e

FIGURE 3.23 Conduction Conduction
Heat balance of the probe.
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The thermoelectric junction stores the heat by unit time dQy,:

. wd? T
AQum = py,Cen T a—tthdx (3.37)

where py,, ¢y, and Ty, are the density, the specific heat, and the temperature of the junction,
respectively.

The junction is approximated by a cylinder whose diameter equals the wire diameter d.
This does not exactly fit reality but remains currently used in numerical calculations
[29-35]. Moreover, if the wires are uniformly curved, the observation near the junction
confirms the previous assumption (Figures 3.20 and 3.21). Newton’s law of cooling is

dQw = - dx - Nut - Ny(Tg — Ty,) (3.38)

where A\, and T, are the thermal conductivity and the static temperature of the gas,
respectively. The difficulty is to obtain an accurate relation between the Nusselt number
Nu and the flow characteristics around the junction assumed as a cylinder [31,36-39].
Indeed, such a thermocouple is surrounded by both a thermal and aerodynamic gradient
that acts as a thermal resistance that is estimated from empiric approaches. A purely
convective heat transfer coefficient & is generally deduced from correlations about the
Nusselt number that is generally expressed as a combination of other dimensionless
numbers, such as Eckert, Reynolds, Prandtl, or Grashof numbers. Table 3.3 presents a list
of dimensionless numbers relevant to heat transfer. However, if many cases have been

TABLE 3.3
Selected Dimensionless Groups of Heat Transfer
Group Definition Interpretation
VZ
Eckert number E.= T Kinetic energy of the flow relative
(T =Tx) to the boundary layer enthalpy difference
T —Ty)L
Grashof number Gry = gﬁ(izw) Ratio of buoyancy to viscous forces
v
Knudsen number Kn = { Ratio between the mean free path
of a gas molecule and the macroscopic dimension
Mach number Ma = v Ratio between the speed of matter relative to the local speed
¢ of sound
hL . . .
Nusselt number Nu = N Dimensionless temperature gradient at the surface,
it represents the ratio between the heat transfer by convection
and the transfer by conduction alone
Prandtl number Pr= E Ratio of the momentum and thermal diffusivities
VL . N .
Reynolds number Re = Ratio of the inertia and viscous forces

v

V is the fluid velocity, T and T, are the surface and fluid temperatures, c, is the specific heat capacity, g is the
gravitational acceleration, B is the fluid dilatation coefficient, L is the representative macroscopic dimension (i.e.,
diameter, local or mean length), c is the speed of sound, ¢ is the mean free path of a molecule, v is the kinematic
viscosity, h is the convection coefficient, \ is the thermal conductivity, and a is the thermal diffusivity.
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TABLE 3.4
Heat Transfer Laws
Temperature
for A, p, Reynold’s Number
Author and p Correlation Domain
Andrews Ty Nu = 0.34 4 0.65 R 0.015 < Re < 0.20
Bradley and Mathews Ty Nu = 0.435Pr%% + 0.53 Pr933 Re052 0.006 < Re < 0.05
0.7< Pr<1
Churchill and Brier Ty Nu = 0.535 Re*(Ty /Ty 300 < Re < 2,300
Collis and Williams Tim Nu = (0.24 + 0.56 Re*) (T / Tgaz) "7 0.02 < Re < 44
Collis and Williams Tim Nu = (0.48 Re®*)(Tgin / Tgaz)™ " 44 < Re < 140
Davies and Fisher Ty Nu = (2.6/ym)Re®3? 0.01 < Re < 50
Eckert and Soehngen / Nu = 0.43 + 0.48 Re®® 1 < Re < 4,000
Glawe and Johnson Ty Nu = 0.428 Re%0 400 < Re < 3,000
King Thim Nu = 0.318 + 0.69 Re%® 0.55 < Re < 55
Kramers Tfitm Nu = 0.42 Pr°2 4 0.57 Pr33 Re%5 0.01 < Re < 10,000
0.7 < Pr < 1,000
McAdams T and Nu = 0.32 4 0.43 Re?5? 40 < Re < 4,000
Ty for p

Olivari and Thiim Nu = 0.34 + 0.65 Re%* 0.015 < Re < 20

Carbonaro L/d > 40
Parnas Ty Nu = 0.823 Re®3(Ty, / T7)* %% 10 < Re < 60
Richardson / Nu = 0.3737 4 0.37 Re®5 + 0.056 Re0-6° 1< Re< 10°
Scadron and Ty Nu = 0.431 Re%0 250 < Re < 3,000

Warshawski
Van den Hegge Thitm Nu = 0.38 Pr%2 + (0.56 Re®> + 0.01Re) P03 0.01 < Re < 10*

Zijnen

These laws describe the heat transfer from a cylinder of infinite length. The film temperature Ty, is defined as the
mean value between the fluid temperature Ty and the thermocouple temperature Ty, [30-32,34-39,43-47].

investigated, the example of thin cylinders cooling process is still an open question.
Table 3.4 gives a list of the main Nusselt correlations in this particular case.

Conduction heat transfer dQ,; that occurs along the wires to the thermocouple supports
has the following general expression:

dQui = Nip——

wd? 0°Ty, i

4 0Ox?

(3.39)

However, different studies and experiments have shown that conduction dissipation
effects along cylindrical wires can be neglected when the aspect ratio between the length
and the diameter is large enough [17,40-46]. Indeed, practical cases of anemometry and
thermometry have led to fix such a condition:

% > 100 (3.40)

Hence, the temperature gradient can be considered null in the axial direction of the
thermocouple wire. The thermocouple is placed in an enclosure at temperature T,.
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The enclosure dimensions are assumed to be large with respect to the probe dimensions.
Then, the influence of the radiative heat transfer can be expressed by the simplified form:

ded = _Ug(Tth)(T?h - T?{)) dsmy (341)
where

o is the Stefan-Boltzmann constant
&(Ty,) is the emissivity of the wire at the temperature Ty,

The exchange surface of the radiative heat transfer dS,,; = wd dx nearly equals the surface
exposed to the convective heat flux. This supposes that the radiative heat transfer between
the sensor and the walls is greater than between the gas and the sensor. Here, the
assumption is that the gas is transparent; however, it is not satisfied in several practical
applications like temperature measurements in flames.

In Section 3.3.2.3.2, we consider a radiative calibration so that the thermocouple junction
is submitted to an external heat contribution dQ.. produced by a laser beam [41].

. [2(1-R) d x?
AQext = \/; P Pperf L\—@] exp [—2{1—2} dx (3.42)
where

Py is the laser beam power

R is the mean reflection coefficient of the thermocouple junction surface

d is the diameter of the junction

a is the laser beam radius (this value corresponds to the diameter for which one has 99%
of the power of the laser beam)

The total heat balance of the thermocouple may be written as follows [18]:

wd? oTy, wd? Ty,
P =5~ g = NNl =T+ = g
2(1-R) d x?
oe(Ty)(Ty, — Tpy)md + \/; Py erf L ﬁ} exp[ 2 (3.43)

The expression of the gas temperature T, is deduced from Equation 3.43:

aTth_ A a2Tth doe(Ty,)

- T: —T*
ot pyCy 0x2 puCind (T — To)
Ty = T + Teo (3.44)

4 2(1-R) d 2
iV a P e[

Equation 3.44 represents a general expression of the thermocouple dynamic behavior,
including each of the heat transfer modes. In this expression, the time constant 7., of the
thermocouple junction is defined by

S Py Cnd” _ Pucmnd
“ T 4ANuN, 4k

(3.45)
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If the radiation, the conduction, and the external heat supply are neglected, the gas
temperature simplifies to
OTy,
Tg =Ty + Tew a; (346)
The time-response of a temperature sensor is then characterized by a simple first order
equation. This is a common but erroneous way. For a step change in temperature, Equation
3.46 reduces to

Tg - Tth t
N 47
T —T, eXP[ TCJ (347)

where T; is the initial temperature.

Conventionally, the time constant 7., is defined as the duration required for the sensor to
exhibit a 63% (=1 — e~ ') change from an external temperature step, in the case of a single-
order equation. Actually, the fact that different kinds of heat transfers are involved should
lead to a global time constant in which the different phenomena contributions are included
[30,43]. As a consequence, the ability of a thermocouple to follow any modification of its
thermal equilibrium is resulting from a multi-ordered time response where the most
accessible experimental parameter remains the global time constant. The multi-ordered
temperature response of a thermocouple can be represented by the general relation:

Tg — Ty, t t t
ﬁ = Kjexp [— E} — Ky exp [— E} ----- K, exp [— —} (3.48)

where
T; is the initial temperature
T, is the fluid temperature

The values of the constants Kj, Ky, ..., K,, as well as the time constants 74, 75, ..., T, depend
on the heat flow pattern between the thermocouple and the surrounding fluid

If experiments have shown that most configurations involve nearly first-order behaviors,
the measured time constant does not allow isolating each of the different contribution modes.

Therefore, the remaining problem of experiments is to relate this global time constant to
the different implied heat transfer modes. Then, our contribution in this section will be to
show the influence of the heat transfer condition on the measured time constant value
through three different methods of dynamic calibration.

Classical testing of thermocouples often involves plunging them into a water or oil bath
and for providing some information only about the response of the thermocouple under
those particular conditions. It does not provide information about the sensor response
under process operating conditions where the sensor is used. In order to improve thermo-
couple transient measurements, a better understanding of the dynamic characteristics of
the sensor capability is necessary.

3.3.2.3 Dynamic Calibration with Single-Wire Thermocouple Technique

The calibration methods consist of a series of heating and cooling histories performed by
submitting the thermocouple to different excitation modes. Then, the resulting exponential
rise and decay times of the thermocouple signals allow estimating the time constant 7. The
thermocouple signal is amplified with a low-noise amplifier having a —3 dB bandwidth of
25 kHz (Gain = 1000). The output voltage is finally recorded by a digital oscilloscope.
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3.3.2.3.1 Conwvective Calibration

Figure 3.24 illustrates the convective experimental device. The thermocouple junction is
exposed continuously to a constant cold airstream at constant temperature Tyy. A second
hot airflow excites periodically the thermocouple and creates a temperature fluctuation of
frequency f [18,47]. The response of a thermocouple submitted to successive steps
of heating or cooling is close to a classical exponential first-order response from which
the time constant can be determined (Figure 3.25). It can be deduced from the measure-
ment of four temperatures, Tajax, Tan, Tonmax, @A Ty i

Trmax: the maximal temperature when the thermocouple is submitted to a constant hot
flow

Trin: the minimal thermocouple temperature in a constant cold flow

90
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FIGURE 3.25

Typical exponential responses: temperature histories for a 12.7 pm K type thermocouple.
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Tt max: the maximal temperature when the thermocouple is submitted to the periodic hot
flow

Tty min: the minimal temperature when the thermocouple is submitted to the periodic hot
flow

For the heating period t;, we define the temperature differences 8;, and 8

01 = Tmax — Tonmin (3.49)
and

Son = Tmax — Tinmax (3.50)
For the cooling period ¢, the temperature differences 8, and 8. by

O1c = Tthmax — TN (3.51)
and

O2c = Tonmin — Tmin (3.52)
Then, the two convective time constants are defined while the thermocouple is heating (7;,)

and cooling (7.). If we consider a first-order response of the sensor, we obtain the expres-
sions as follows:

ty
T = 3.53
" T /o) 05
and
t
_ 54
" I rc/52) .
Then the period of the thermocouple response is as follows:
ﬁresp =t + 1ty (3.55)

Figure 3.25 presents temperature histories for a 12.7 pm K type thermocouple. The
excitation frequency is 37 Hz. The velocities of both hot and cold air are 13 m s~ at the
outlet of the airflow tubes. In any case, the measured time constants are longer during
the heating phase than during the cooling one. This phenomenon corresponds to a greater
magnitude of the convection coefficient (/). Table 3.5 presents convective time constants for
the different thermocouple diameters, resulting from heating periods only and for two
airflow velocities (13 and 23 m s~ ") and for a 5-72 Hz explored frequency bandwidth. One
can notice that time constants decrease when increasing the flow velocity because of a
larger surface over volume ratio exposed to the flow. Finally, even if the repeatability is
good, such a calibration method remains however quite difficult to perform because the
fragility of the sensor increases when the wires” dimension decreases and the fluid flow
increases.
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TABLE 3.5

Convective Time Constant 7., (ms) and Bandwidth Af (Hz) versus
Junction Diameters

Junction Diameter Air Velocity: 13 m s™* Air Velocity: 23 m s™*
d (jum) Tep (MS) Af (Hz) Tep (MS) Af (Hz)
S 0.5 — — — —
1.27 — — — —
5 29 55 22 72
K 12.7 15.2 10.5 8.5 18.7
25 20 8 17 9.4
250 32 5 25 6.4

The thermocouple mechanical resistance is not sufficient for the flows with 13 and
23 m s~ ! air velocities.

3.3.2.3.2 Radiative Calibration

This calibration method is based on a radiative excitation produced by a continuous argon
laser [18,48,49]. A set of two spherical lenses allows locating the beam waist on the junction
and an optical chopper generates a periodic modulation of the continuous laser beam.
In order to avoid parasitic turbulences around the junction, the sensor is placed in a
transparent enclosure (Figure 3.26). The signal obtained is close to a first-order response,
which gives immediately the sensors dynamic performances. Time constant decreases as
diameter and heat transfer (the laser power) increase (Figures 3.27 and 3.28). This is
consistent with the effect of an increasing value of the power density or a decreasing of
the beam radius that both act on the power to heated mass ratio. Table 3.6 presents the
radiative time constant for all the thermocouple junction diameters, and the explored
frequency bandwidth ranges from 5 to 2274 Hz.

Enclosure —\ Sensor
Beamsplitter J
F ¥

Chopper—\

|1

/

Photodetector

Argon laser (2 W)

/

Optical telescope

Chopper controller Oscilloscope

FIGURE 3.26
Radiative excitation device.
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Calibration of K thermocouples with a laser beam step.
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FIGURE 3.28
Calibration of S thermocouples with a laser beam step.
TABLE 3.6

Radjiative Time Constant 7,,; (ms) and Bandwidth Af (Hz)
versus Junction Diameters

Junction Diameter  Radiative Time Constant = Bandwidth

d (pm) Traq (MS) Af (Hz)
S 0.5 0.07 2274
1.27 0.18 884
5 1.3 123
K 12.7 8.5 19
25 34 5

50 64.5 25
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FIGURE 3.29
Radiative excitation device.

3.3.2.3.3 Shock Tube Calibration

The experimental device is based on a shock tube. This process is generally used for
pressure sensors calibration. Experiments were performed in a tube with an overall length
of 20 m and a diameter of 0.5 m as illustrated in Figure 3.29. The shock tube and high
pressure chamber (filled with dry air) are isolated from each other with cellophane
membranes. A quartz pressure transducer and the thermocouples are mounted flush
with the end wall of the shock tube. Nevertheless, in this experiment, the pressure step,
which propagates in the tube and reflects off the end wall of the shock tube, produces a
suitable temperature step used to test the thermocouple [41] (Figure 3.30). The quartz
pressure transducer signal is used to identify the transient pressure step and to compare
with the response of the different thermocouples. The thermal exchange between the
junction and the gas is not radiative. In fact, both conduction and convection take
place. Table 3.7 presents the pseudo-convective time constant for thermocouple whose
time responses are compatible with the excitation duration produced by the shock tube.
This one being limited to about 6 ms, this technique is not available for the larger
thermocouples (K types). The explored frequency bandwidth ranges from 100 to 758 Hz.

Thermocouples, responses in the shock tube
Pressure step: 5000 Pa
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FIGURE 3.30

Calibration of S thermocouples with a pressure step.
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TABLE 3.7

Pseudo-Convective Time Constant 7,. (ms)
and Bandwidth Af (Hz) versus Junction Diameters

Pseudo-Convective

Junction Diameter Time Constant Bandwidth
d (um) Tpc (ms) Af (Hz)

S 0.5 0.21 758
1.27 0.45 354
5 1.50 106
K 12.7 — —
25 — —
50 — —

The thermocouple is not sensitive to the temperature variation
and the signal is totally integrated during the pressure step.

3.3.3 Measurements in Fluids with Multi-Wire Thermocouple Technique

Measuring fluid temperatures with a single thermocouple requires knowledge of the fluid
velocity and fluid properties to determine the global heat transfer coefficient of the wire,
integrating convection, conduction and radiation, and its natural frequency. In such a case,
the thermal inertia of the thermocouples acts as first-order low-pass filters attenuating the
high frequency fluctuations. Another technique consists of temperature measurements
with a probe using two [19,27,50-54] or three thermocouples [55,56] of same nature but
different in diameter located close together at the measurement point (Figure 3.31). This
method was first used to characterize fluctuating gas flows for combusting flows. A two or
multithermocouple probe allows simultaneously the estimation of thermocouple time
constants and the compensation of thermocouple response.

3.3.3.1 Basic Analysis of a Two-Thermocouple Probe

The basic analysis neglects the effects of the radiative and conductive environment in
which the thermocouple junction is located and the effects of catalytic reaction on the
thermocouple wire surface [19,50].

FIGURE 3.31

Two-thermocouple probe with K (chromel-alumel) type
wires (FEMTO-ST Belfort). (From Lanzetta, F. et al., Two-
microthermocouple probe for temperature and velocity
measurements in an oscillating flow in a heat exchanger
of Stirling machine, ASME ATI Conference, Energy: Produc-
tion, Distribution and Conservation, Milan, Italy, May 14-17,
2006, pp. 633-642.)
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The instantaneous heat balance written for each thermocouple permits to estimate the
gas temperatures Ty and T, function of the measured temperatures T; and T, and the
time constants 7, and T,, respectively:

dT
Tao=T1+m =1 (3.56)
dt
and
dT
T =T+ T tz (3.57)

The two thermocouples are assumed to be exposed to identical flow conditions. Since the
velocity V is the same for both thermocouple junctions, the time constants can be written
from Equation 3.45 as follows:

™ = KdF "y (3.58)
and
T, = Kdi "y (3.59)

where
K'is a constant
d; and d, are the thermocouple junction diameters
m is an exponent function of the ratio between the Nusselt and Reynolds numbers and is
generally assumed to lie in the range

03<m<07 (3.60)

From Equation 3.58, a constant a can be defined as the ratio of the time constants:

T dl 2—m
T2 dz

3.3.3.1.1 Frequency Domain Reconstruction

The Fast Fourier Transform (FFT) of Equations 3.56 and 3.57 is used for reconstruction of
signals from a two-thermocouple measuring rig [52,53,55,56] to obtain the following
frequency domain equation, assuming T, = Ty1 = To:

T _ TlTQ(OL — 1)

— 3.62
§ 63 Tl — Tz ( )
where T denotes the FFT.
Then, the time-domain representation is found by taking the inverse FFT:
T, = FFT ' (Ty) (3.63)

This method is simple, but it presents the inconvenient to be dependent on singularities
and noise.
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3.3.3.1.2 Time—Domain Reconstruction

In order to reconstruct the gas temperature, another technique consists in data smoothing
followed by parameter estimation in the time domain [19,27,51,54,55,58]. Data smoothing is
implemented through filtering the data with a low-pass filter or through a moving window
averaging.

The next step consists in estimating the time constants 7, and 7,, assuming T, =
Tg1 = Tgo, by minimizing the time-average difference between the two reconstructed
temperatures Ty, Ty and then (Tg — ng)z.

For a given data window, an ordinary linear least square estimation based on a
one parameter (1) model y,, for the difference of the two observable quantities
T; = Ty + 7,(dT;/dt) (for i = 1,2), see Equations 3.56, 3.57, and 3.61, can be constructed. It
is based on the following least square sum, see Chapter 7:

N
Sors(m) = Y (i = Ymo(£;72))° (3.64)

i=1
with

(t )__ @_@
Ymoll; T2) = —T2| @ i it

and with their experimental counterparts: y; = T} — T} with

. . dTl Ti _ Ti—l dTl Ti _ Ti—l
T=T"w; T=T"0) F="F G- A

The sensitivity coefficient to T, can be calculated with experimental temperatures:

_Owo _ ATy dT, AT} dT}

X=an, ~ %@ ~w Ny T

(3.65)

Estimation of 1, is calculated with the linear estimator, see Chapter 7, where X and y are
column vectors constructed with the different values in time of both X and y.

. o[ dTy  dT;
Zé\il |:(T2 - Tl) (a dtl - dt2>:|

T, dT}
N 1 4l;
L (a at dt)

%1 = OL’T'Z (367)

= (XTX) ' XTy =

(3.66)

Finally, after determining the two time constants 7; and 7, the temperatures T,; and Ty, are
calculated from Equations 3.56 and 3.57.

3.3.3.2 Fluid Velocity Measurement with a Two-Thermocouple Probe

The goal of this technique is to measure the temperature and the velocity of the periodic
flow inside an engine (Stirling machine in our case) with different two-microthermocouple
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Cold exchanger

‘ FIGURE 3.32
Experimental setup.

probes [57]. Once the time constants 7, and 7, are determined, it is possible to extract the
value of the fluid velocity V from Equations 3.58 and 3.59, and

T —1/m ™ —1/m
V= (Kd) - (Kd%m> (3:68)

The experimental apparatus consists of a rigid circular tube with a diameter of 10 mm
placed before and after the regenerator of a Stirling machine (Figure 3.32). A sinusoidal
flow is generated by the way of a compression cylinder, a piston, and a crankshaft with
adjustable stroke lengths. The crankshaft is driven by a dc electric motor with variable
speed. In the present experiments, oscillating frequencies vary from 1 to 10 Hz. With this
maximal frequency and the diameter of the tube, the mean flow can be considered
laminar. The sinusoidal pulsating flow in a rigid circular tube may be described by the
frequency of pulsation, the mean-flow velocity and temperature, and the magnitude of
the harmonic velocity and temperature. The reconstructed signal from the two-wire
microthermocouple probe allows the determination of the temperature of the fluid. The
frequency response of the fine-wire thermocouples can be described as a first-order lag
system in the presence of convective heat transfer only without radiation and negligible
conduction along the wires. For this last point, each thermocouple presents the ratio wire
length on diameter greater than 200 (Figure 3.33), and thus, the conduction can be
effectively neglected.

Figures 3.34 through 3.36 give the temperature measurements with the three different
probes composed by the wires with 7.6, 12.7, 25.4, and 50 wm diameters. After having
smoothed the curves, we calculate the mean time constant on a cycle for each thermo-
couple with Equation 3.67.

The results are given in Table 3.8. They show that the smallest sensors answer with a
very small response time. Table 3.9 gives the values of flow velocities calculated by
Equation 3.68. The values are relatively close. They show a difference of 4% between the
extreme values.
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$7.6 pm $12.7 um

$0.8 mm

FIGURE 3.33
Two-microthermocouple probe (FEMTO-ST Belfort).
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FIGURE 3.34
Measurements with a 7.6/12.7 pm probe (frequency =8 Hz).

3.3.3.3 More Realistic Analysis of a Two-Thermocouple Probe

The basic analysis neglects radiation and catalytic effects. We consider a fluid at high
temperature and an ambient medium at T,,,; temperature [19,27,51]. Heat is exchanged
between the wires and the fluid only by convection and radiation. In these conditions, the
heat balance, Equations 3.56 and 3.57, becomes

Ta=T1+m— +7— (T = Top) (3.69)

dTl (0 x4
dt a



Temperature Measurements: Thermoelectricity and Microthermocouples

50

45
K type thermocouple

404 diam =12.7 ym

T(°C)

35 : = 4
3 \----- Smooth signal é/,'
30 ¥

25 \“§ E :

i

20

Time (s)

FIGURE 3.35
Measurements with a 12.7/25.4 pm probe (frequency =8 Hz).
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FIGURE 3.36
Measurements with a 25.4/50 pm probe (frequency =8 Hz).

TABLE 3.8

Experimental Time Constants

d (um) 7 (ms)
7.6 5.2
12.7 12
254 34

50 91

0.25

0.3

127
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TABLE 3.9

Velocity Calculated by Equation 3.68

dy o m [ zom 1
o afg a7<d2> V(ms )
7.6/12.7 2.30 2.20 0.86
12.7/25.4 2.83 2.90 0.83
25.4/50 2.68 2.83 0.86

Thermocouple: K type (chromel-alumel): p=8600 kg m™>;

c=480] kg~! K7Y; fluid = air (35°C): A=0.0268 W m ' K™}
p=1.146 kgm > L =178 x 107" Pa s.

and

dT, oe
Ty =Ty + de i (T3 — Tt.) (3.70)

where
o is the Stefan-Boltzmann constant
€ is the emissivity of the thermocouple
Tamp is the ambient temperature with the assumption T, < T1,2

Then, the set of two Equation 3.68 becomes

dly | B
Tgl =T14+m (W + d—lT%> (371)
and
dT, B 4

where B = (47¢/pc) is an independent constant, taking account of the fluid flow conditions.
The two time constants are calculated as previously in the time domain, and the new
corresponding expressions are as follows:

N i\2 =N i (i i pi i (i i
T = Zi:l (R2) Z [R (T Tl)} B Zl 1 [R R ] Zl 1 [R (T Tl)] (373)

Z (Rz) {E Rz Rz }
o S0 [RR S (R (13— 1)) - S (RPN [RT-T))
S (RPN, (R - [, (RiRY)|

with

4T B
RFTIRFN

(Th)* (3.75)
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and

i dTy B4
Ry =2+ () (3.76)

Finally, after determining the two time constants 7, and T,, the temperatures Ty; and Ty,
are calculated from Equations 3.71 and 3.72.

3.3.4 Fluid Velocities and Static Pressure Measurements with Thermocouples

This paragraph presents the development of a microthermocouple sensor for velocity/
temperature measurements or pressure/temperature measurements [59-62]. The transient
thermocouple sensor consists of two type K microthermocouples used in an electronic oscil-
lator. One is placed in the system and the other takes place in a reference volume. During a half
period, the two microthermocouples are heated to a suitable temperature above ambient.
During the next half period, when the supply of current is interrupted, the microthermocouple
placed in the system measures the flow (or pressure) while the other compensates for the
ambient temperature changes. Cooling caused by experimental conditions under variable
flow (or pressure) results in a change in the oscillator frequency. The sensor is developed in
order to measure flows (or pressures) and temperatures in microsystems like small channels
(width < 500 pm), microtubes (diameter < 50 wm), and small structures (volume <100 pm?).

The working principle of the anemometer consists in heating two identical K type
thermocouples (Figure 3.37) during a predetermined time f;, by means of an electrical
current step. One of the thermocouples, Ths,,s, is put inside the fluid in which the meas-
urement of the velocity (or the pressure) is required, while the other one, Th,., is disposed
in a closed volume to avoid the external disturbances. The probe Th,. is used for the
generation of a reference signal (Figure 3.38). At the end of the heating state, the thermo-
couple Thy,, attains a temperature higher than that of the fluid temperature Tr. The time ¢,
necessary to the sensor during the cooling phase to reach the value T depends directly on
the fluid velocity V (or the pressure P). The general form of the signal detected from the

FIGURE 3.37
Microthermocouple (K type, diameter 25.4 um).
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FIGURE 3.38
Block diagram of the sensor.
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FIGURE 3.39
Sensor response in ambient conditions and without flow (I=32 mA, t,=1 s). (a) Heating and cooling phases.
(b) Zoom of the cooling phase.

thermocouple Thy,,s placed in the flow is shown in Figure 3.39a in which the two periods
are clearly distinguishable.

The first, whose issued voltage from the thermocouple is constant, corresponds to the
heating time t;,. The amplifier is then saturated resulting in a voltage nearly equal to
the supply one. The second period corresponds to the relaxation state of the sensor. Its
duration t, is not constant, and it depends directly upon the velocity V (or the pressure) of
the fluid. The action of the fluid is then traceable only during the cooling phase, and the
frequency f of the obtained signal is directly proportional to the fluid velocity V.

3.3.4.1 Velocity and Temperature Measurements

3.3.4.1.1 Theory

The theoretical analysis is conducted through the dynamic behavior of the resistive wire
subjected to a periodic heating and cooling by forced convection. The two thermocouple
wires are modeled by a single wire whose average thermo-physics characteristics are
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considered as constants. Thermocouple wires are assembled for forming a wire of length
2L and diameter d placed in the fluid. The wire is heated by Joule effect by intensity of
current I and dissipates the heat produced into the surrounding fluid of temperature Ty by
convection. The air fluid characteristics are supposed constant. The one-dimensional
thermal balance interprets the equality between the accumulated power by the cylindrical
volume of the wire and the sum of the following modes of heat transfer: the convection
through the boundary layer surrounding the wire, the conduction along the wires towards
the support of the thermocouple, the radiation between the probe and the surrounding
wall of the conduit, and the internal heating by Joule effect:

0T T  4(heo + hraa) >

with oy, the coefficient of thermal dependency of the resistivity of the wire material

2
A:<4 ) Po (3.78)

)

with pg the electrical resistivity at reference temperature that corresponds to the fluid
temperature T
Equation 3.36 interprets the thermal balance between a wire of circular section heated by
Joule effect and the surrounding fluid and wall. This equation brings in two thermo-physics
parameters representing the quality of the thermal exchange between the wire surface and
the fluid: the convection coefficients k., and the linear radiative heat transfer coefficient 1,,4.
The convective time constant of the wire is defined by the classical expression

_pepd pc,[,d2
" 4h, 4 Nu (3.79)
with
th
Nu = X d =C; + Gy Re" (3.80)
f

the Nusselt number of the flow where the Reynolds number Re is based on the wire
diameter d and the local velocity V. We consider the relation of Olivari and Carbonaro
(Table 3.4), valid for a Reynolds number 0.015 < Re < 20 with

C1 =034, C;=065 and n=045 (3.81)
The radiative time constant of wire is also defined by the expression:

pcyd pcyd
_ _ 3.82
Trad = 4 16z0T} (3.82)

with h,,y = 4eT? the linear radiative heat transfer coefficient (the heating of the wire is
very small, its surface temperature remains near to that of the fluid flow).
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Moreover, the time constant corresponding to the heating of the wire next to the heat
accumulation by the Joule effect is defined as follows:

1

Tel = m (383)

Finally, we call 7, the global time constant of the sensor that can be defined by the relation:

it 1.1 (3.84)

Te  Tewo  Trad  Tel
Then, Equation 3.77 can be modified by introducing the global time constant 7,:

orT T (T-Tp)

S 2
=5 - + Al (3.85)

The conduction effect along the wire can be neglected with respect to the convection for the
aspect ratio L/d > 200 sufficiently large. Taking into account the simplifying hypotheses,
the thermal balance is finally written in the form of a differential equation of first degree
whose solution gives the temperature profile of the wire during the heating and relaxation
states of the wire:

ar (T —T,
ar (T-T)

— 2 —
= - AR =0 (3.86)

3.3.4.1.2 Heating Phase
The solution of the differential equation (3.86) describes the temperature rising of the wire
during the time:

T(t) = Ty + APy + (Ting — T — AP 1g) €717 (3.87)

with the initial condition:
T(t=0)= Ty (3.88)
where T, is the reference temperature corresponding to the threshold temperature for

heating the wire. The temperature Ty, can be expressed at the end of the heating period .
T(t =t) = Ts,p and Equation 3.88 written as (3.89)

Top = Tf + AP1g + (Ting — Ty — A1) e/ (3.89)

If, under convective conditions, duration #, of heating is much larger than characteristic
time T, (1; << t;), the sensor can reach thermodynamic equilibrium with the fluid, at
temperature level Ty, (Figure 3.38):

Tow ~ Tr + AT (3.90)
p f g



Temperature Measurements: Thermoelectricity and Microthermocouples 133

hence, for a heating with respect to the average temperature of the flowing fluid,
Toup — Ty ~ A1, (3.91)

3.3.4.1.3 Relaxation Phase

The relaxation phenomenon, of duration ¢, (Figure 3.38), is due to the cooling of the
thermocouple wire caused by the fluid flowing at the velocity V. In this way, the duration
of dynamic cooling produces two informations relative to the local velocity of the flow and
the temperature of the thermocouple when its thermal equilibrium is reached with the
fluid. The wire is cooled by forced convection from the new temperature T, obtained at
the end of heating period t;,. It tends towards the corresponding temperature T;,, either to
the threshold temperature where the voltage is fixed by the electronic system or to the
regime of thermal equilibrium if the inertia of the wire is sufficient. The differential
equation that governs the relaxation phenomenon is obtained from the balance equation
(3.86) for which the heating current is set to zero.

So, for I=0:
dr (T -T,
ar @T-1p _, (3.92)
dt T
with the initial condition:
T(t = ty) = Tsup (3.93)

and now the global time constant of the sensor becomes

-1 L (3.99)

T T Trad

Considering Equations 3.93 and 3.94, the solution of the wire temperature has the follow-
ing expression:

T@t) = Tf + (Tsup - Tf)e(i(tith)/‘r;) (3.95)

From Equation 3.95, the temperature T, corresponds to the threshold temperature
attained by the sensor at the end of relaxation time ¢,:

T(t = 1) = Ty = Ty + (T — Tp) el /) (3.96)
Or on heating
Ting — Ty = (Taugy — Ty) e ~E0/7%) (3.97)

From Equation 3.97, we can express the relaxation time ¢, at the end when the temperature
tends towards the value T;,. Then, it occurs T(t = t,) = T, and, finally,

— ot ] Ty — T5 3.98
t, = th Te n T — Tf ( . )
sup
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3.3.4.1.4 Oscillation Frequency

The sensor is heated by an electric current during a constant time #;,. Next, it is cooled by
convection during a variable time t,, which depends upon the nature of the flow and the
fluid properties. The temperature then attains the threshold value Tj, fixed by the elec-
tronic system. A new heating is thus achieved. By this way, the sensor is subjected to an
oscillation whose frequency is proportional to the cooling and thus to the velocity of the
flow as well. The oscillation frequency f of the sensor can be related by putting the heating
time as a parameter fixed by the electronic system. So we get

1 1

th + tr Zth — Tg* In (7,1_,””f ,1{)
sup — T

f

(3.99)

Finally, the oscillation frequency of the sensor can be expressed as a function of the
following parameters: flow velocity V and wire diameter d (taking place in the expressions
of the time constant 7§ and ), heating duration t,, heating current I, and relaxation
heating Tj,r — Tf.

-1

Tinf - Tf
B 3.100
f [ h— Tg (AIZTg + (T,-nf — Tf _ AIZTg)e(_t’1/Tg)>] ( )

3.3.4.1.5 Applications

In the case of gas velocity measurement, the sensor calibration system is presented in
Figure 3.40. The calibrated airflow is at ambient temperature, and the flow rate may be
regulated with a Brooks calibration mass flowmeter. This flow is realized in a long cylin-
drical tube of length 20 cm in order to obtain a sufficient length of flow establishment, and
of circular section of diameter 2 mm. The thermocouple Th,,; is then installed in the center
of the section. The Brooks flowmeter being used as a reference, it allows fixing a flow rate in
the tube and therefore measuring the signal frequency for different values of flow rate. For
these operating conditions, the velocity range obtained is 0-3.5 m s, corresponding to a
laminar flow regime (Figure 3.41). The measured frequency is then directly proportional to
the maximum velocity since the thermocouple is introduced at the center of the tube.

FIGURE 3.40
Microflow in a circular tube (internal diameter
2 mm).
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FIGURE 3.41
Flow measurement in a circular tube.

3.3.4.2 Pressure and Temperature Measurements

3.3.4.2.1 Theory

The sensor is used for the measurements of pressure from 10~' to 10° Pa range. In this
pressure range, the pressure dependence of the conductivity can be split up into three
regimes: molecular, viscous slip, and viscous. In such type of sensor, heat from the heating
element is dissipated to the ambient through thermal conduction of physical parts of the
sensor, radiation, convection, and thermal conduction of surrounding gas. Heat dissipation
by convection and thermal conduction of gas has an essential effect on the sensor charac-
teristics versus pressure [63—-65].

3.3.4.2.2 Heating Phase

The heat balance is the same than in the previous paragraph. We obtain a differential
equation where the convection effects are estimated by a general Morgan correlation (Table
3.10). The initial condition is T(0) = T;,~ The heating time f. is a given data.

dr 1 1
—+ (T -T)(KP(T -Tp)"+———) — A =0 (3.101)
dt Trad  Tél
TABLE 3.10
Morgan Relations
Nu = C(Gr Pr)"
C m Gr Pr Range
0.675 0.058 1071 < GrPr < 1072
1.020 0.148 1072 < Gr Pr < 107
0.850 0.188 102 < GrPr < 10*
0.480 0.250 10* < GrPr < 107
0.125 0.333 107 < GrPr < 10'2

Physical characteristics at Tg,, = (Tf + T)/2.
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where

4\*p pcyd 1
R B N . R
<wd2) pe,” T 16eoT T Aol

:g‘B'(T—Tf)'LS‘ pr

G ;
r 7 y (3.102)
1 . 4)\fC ngfd3 "
— = K(PXT — T,)" th K(P) = p
Tev ( )( f) wi ( ) pdeZ <T?)\f1)f7"

3.3.4.2.3 Relaxation Phase

The relaxation phase corresponds to the cooling of the wire by natural convection varying
with the mass of gas in the system, that is, the pressure. This dynamical phase gives two
informations: one corresponds to the gas pressure and the other to the gas temperature at
steady state. The wire is cooled from the temperature Tj,,, obtained at the end of the
heating period by natural convection, and drops to the temperature Tj,;, corresponding to
the thermal equilibrium of the wire. The differential equation is obtained with a heat
balance without electrical current (I=0):

ﬂ;—f +(T-Ty) (K(P)(T - TH)" + %) =0 (3.103)

The relaxation phase is represented by a nonlinear differential equation, the solution of
which gives the wire temperature along the time.

3.3.4.2.4 Oscillation Frequency
The oscillation frequency f of the sensor can be related by putting the heating time as a
parameter fixed by the electronic system:

1
_th""tr

f (3.104)

3.3.4.2.5 Applications

Figure 3.42 shows the schematic diagram of the calibration system for pressure measurement
application. It consists of the microthermocouple Th,,s introduced in a measurement cham-
ber, a vacuum pump, and two valves to control the vacuum. The measurement chamber is a
copper cylinder of interior volume equal to 90 cm?, and the interior pressure is regulated by
two valves. The first valve O; allows connecting directly the pump to the measure chamber
and so as to establish the vacuum in this volume. The second valve O, is connected to the
ambient pressure and is used to adjust the working pressure in the cylinder. At the beginning
of the experiment, O, is closed and O open until reaching with the pump a primary vacuum.
Then O; isolates the pump to the chamber and the valve O; is used to increase the pressure
in the chamber. The measure range obtained with this device corresponds to 10" to 10° Pa.
A Pirani vacuum gauge (Thermovac TM 20) introduced close to the measurement volume
gives the value of the pressure and is used as reference. The characterization of the sensor
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consists in measuring the signal frequency as a function of the static pressure. Figure 3.43
gives the experimental and theoretical results of the oscillatory frequency versus pressure
realized in the test section presented above.

3.4 Conclusion

The thermocouple is one of the most widely used devices for temperature measurement. It
presents advantages: inexpensive, rugged, simply constructed, fast in the response to
changes in temperature (microthermocouples), and capable of being used to directly meas-
ure temperatures from —200°C up to 2600°C. But, disadvantages exist too: temperature
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measurement with a thermocouple requires in fact independent measurements of two
temperatures, the junction at the hot junction and the junction where wires meet the
instrumentation copper wires (cold junction). To avoid error, the cold junction temperature
is in general compensated in the electronic instruments by measuring the temperature at the
terminal block using with a semiconductor, thermistor, or RTD. Thermocouple operation is
relatively complex with potential sources of error. The materials of thermocouple wires are
not inert, and the thermoelectric voltage developed along the length of the thermocouple
wire may be influenced by corrosion, etc. The relationship between the process temperature
and the thermocouple signal (millivolt) is not linear. The calibration of the thermocouple
should be carried out while it is in use by comparing it to a nearby comparison thermo-
couple.

The size reduction of thermal sensors has been significant during the last 20 years. So, the
reducing of the time and spatial resolutions and the increasing of the nonintrusive charac-
ter of measurements have opened the way to a real improvement of performances and to
various new applications. Wire microthermocouples, well adapted to fluid investigations,
are champions in the field of low inertia measurements: micronic and even submicronic
junctions are operative today. A diameter of 1.3 pm is almost usual in advanced research
laboratories and a diameter of 0.5 wm possible, but both are subject to specific cautions
because of their weakness. The present limit (0.5 wm) is essentially due to the commercial
unavailability of smaller thermoelectrical wires.

Nomenclature

thermal diffusivity (m?s™)

area (m?)

heat capacity (J kg ' K1)

constant

diameter (m)

tension (V)

c Eckert number

EMF thermocouple electromotive force (V)
frequency (Hz)

r Grashof number
convection coefficient (W m 2 K1)
electric intensity (A)
constant

n Knudsen number
mean free path (m)
length (m)
constant

a  Mach number

Nusselt number

Prandtl number

heat quantity (J)

rate of heat (W)

electric resistance ({2)

MRS MR

NS RR=S QS

=3

AO0TZ
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(3

Reynolds number

least square sum (Equation 3.64)

time (s)

absolute temperature (K)

fast Fourier transform of the temperature

volume (m?)

sensitivity coefficient

column vector of the sensitivity coefficients

difference of observable quantities (Equation 3.64)

column vector of the difference of observable temperatures

L N <IHN T O

Greek Symbols

ratio of time constant

temperature difference (K)
emissivity

thermal conductivity (W m 'K
Peltier voltage (V)

density (kg m )

Seebeck coefficient (V K™)

time constant (s)

kinematic viscosity (m?s™)
period (s)

T AQgT >0 e

Subscripts

cd conduction
cv convection
el electric

equ  equivalent

ext external

f fluid
film  film

8 8as

h heating
inf  inferior
L laser

mea  measured

mod  model

OLS ordinary least square
P Peltier effect

r relaxation

rad  radiation

ref  reference

sup  superior

S Seebeck effect

th thermocouple
T Thomson effect
w wall

0 temperature reference
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4.1 Introduction

Temperature, as well as pressure, acceleration, and so on, is a variable that can be
measured to acquire information about a physical process to be scientifically described
and mastered in an engineering application. To do this, one must interact with the process
through a measuring system embedding a physical phenomenon capable of translating the
process variable into an “indicated” suitable signal, usually some electrical variable such
as voltage, current, capacitance, etc. The indicated signal should be of electrical nature
because further processing can be accomplished through analog circuits and digital micro-
processors that are basically electronic devices. Possibly, in a near future, signal processing
will be accomplished through photonic devices and our transducers will be based on
physical phenomena through which the process variable modulates some light-related
variable as, for example, the effect of temperature on a fiber Bragg grating sensor. Anyway,
the fundamental and frequently overlooked concept here is that the measured or indicated
variable is the response to the stimulus imposed by the process and, as such, it contains
transformed rather than original information about the process. Thus, any measurement
problem is actually an inverse problem (in the mathematical sense of the term) because one
wants to recover the original information from the transformed information, that is, the
process signal from the indicated signal. The question of if and how this is possible
constitutes an important new research area.

One important type of sensor is the resistance temperature detector or resistive thermal
device (RTD) whose working principle is based on the change in electrical resistance of
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some material with changing temperature. Several materials can be used, such as iron and
copper. However, platinum is the most common resistance thermometer (PRT) because of
its linearity with temperature and chemical stability. RTDs are gradually becoming pre-
dominant in industrial applications, particularly in applications under 600°C, due to their
higher accuracy and repeatability, in addition to the simplicity of its conditioning electron-
ics compared with thermocouples or other types of thermal sensors. More specifically, the
RTD being essentially a resistor element, one can take advantage of a great number of
standard electronic measurement techniques and integrated components suitable for meas-
uring under myriads of practical condition.

Specifying the most adequate RTD to a particular application can be a difficult task, as it
can be for all other types of sensor. To ensure the desired performance, one must consider a
number of aspects such as thermochemical compatibility and materials, dimensions and
size, temperature range and dynamics, accuracy, precision and errors, effects of lead
wiring configuration, conditioning electronics, and nominal resistance and temperature
coefficients. Some of these aspects are informed by the manufacturers of the sensor,
electronic components, etc., and others are dictated by the specificities of the application.
Platinum RTD (PRT) standards help defining a general frame of reference within which
these issues can be addressed. The European standard DIN/IEC 60751, one of the most
commonly adopted worldwide, requires that the RTD’s electrical resistance has to be of
100.00 2 at 0°C with a temperature coefficient of resistance of 0.00385 €2/ /°C between 0°C
and 100°C. In DIN/IEC 60751, there are two classes of resistance tolerances: Class
A=100.00+£0.06 & @ 0°C and Class B=100.00+0.12 O @ 0°C. The combination of
resistance tolerance and temperature coefficient defines the resistance/temperature char-
acteristics of the sensor and, ultimately, an envelope around the nominal transduction
equation within which lies the actual calibration curve of each particular sensor. (This point
will be elaborated in the section dedicated to error analysis.) Consequently, the greater the
sensor’s resistance tolerance the more the calibration curve will deviate from the general-
ized curve and more variation there will be from sensor to sensor. Interchangeability is an
important issue in applications where the sensor is expected to be replaced from time to
time, particularly if the RTD’s information is used for billing purposes, such as in custody
transfer in the petroleum industry.

As mentioned above, some aspects to be considered when specifying an RTD are
intrinsic to the sensor, and others are application dependent. Among the intrinsic aspects,
probably the most important one is the necessary conditioning electronics and lead wiring.
An RTD is intrinsically a two-wire resistance that must be connected to its conditioning
electronics through lead wires, which introduce stray impedances to the circuit. Therefore,
most applications are developed based on three- or four-wire circuitry to compensate for
these stray effects producing a truer indication of the measured temperature. Figure 4.1
shows the corresponding diagrams. The three-wire circuit is based on the assumption that
the lead wires have the same impedance that can be cancelled out by adding a third
resistance to one of the adjoining arms. Due to its simplicity and the availability of high-
quality connection cables, this is a very common choice in industrial applications in which
the distance between the sensor and the conditioning electronics is less than 500 m. The
four-wire Kelvin connection uses separate pairs of current-carrying and voltage-sensing
cables, providing virtually full cancellation of stray impedances of up to 15 ) cables. Due
to its complexity, this configuration is commonly restricted to laboratory applications
where very high accuracies are required.
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FIGURE 4.1
Three-wire (a) and four-wire (b) circuits used to compensate for stray impedances of lead cables.

4.2 Transduction Equation and Conditioning Electronics

A thermal measurement system interacts with the process and generates a response
voltage, or other electrical variable, which is indicative of the stimulus temperature. This
is generally done through a physical phenomenon that responds electrically to a thermal
stimulus such as Seebeck’s effect used in thermocouples, photosensitivity used in photo-
detectors, and Joule’s effect used in RTDs. In addition to this, some electronic circuitry is
always necessary to transform the transduced electrical variable into a more convenient
one, usually by magnification, denoising, offset correction, etc. The overall relation between
the stimulus and the indicated variables is described by a mathematical model embedding
both physical transduction effects and the associated conditioning electronics. We will see
this in more details, starting by analyzing usual electronic configurations.

One of the simplest electronic conditioning configurations is the Wheatstone bridge
circuit shown in Figure 4.2. Generically speaking, a transduction operator is defined as
the operator (F) that transforms the stimulus variable (T) into the response variable (V) that
is in mathematical terms

V(T) = F[T] (4.1)

Noting that V,, defines the excitation voltage, Ry, Ry, and Rj are known resistances, R(T) is
the sensor’s resistance when exposed to the temperature T, and V(T) is the voltage
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FIGURE 4.2
Conditioning electronics used to generate a voltage V as response to the stimulus temperature T.

difference across the bridge, the transduction operator can be written in the form of the
following equation:

4.2)

D =Vo< R(T) R, )

R; +R(T) Ri+Ry

where the relation between the process temperature and the sensor’s resistance is usually
defined through a polynomial:

R(T) = Ryet[1 + a1 - T+ ap - T2 + a3 - (T — 100)*] (4.3)

By construction, Ry is commonly standardized at 100 or 1000  at 0°C, and the
coefficients a, (k=1, 2, and 3) depend on the sensor material. For a PRT, these
coefficients are

a; = +3.9083 x 107%°C!
ay = —5.7750 x 1077°C 2
{0 if T<O
as = —120~-3 . o
—4.1830 x 10712°C® if 0 < T < 630°C

(4.4)

Because the coefficients a, and as are small compared with a;, the resistance of a PRT
behaves almost linearly with temperature. Linearity is a very important characteristics,
which, to be preserved at the transduction equation, requires a careful design of the
conditioning electronics. Suppose, for example, that a R,s =100 ) PRT is supposed to
measure temperatures ranging from 0°C to 200°C. Defining Ry =R, =1 k), R;=100 £,
and V,=7.27 V, Equation 4.1 implies that the output voltage ranges from 0 to 1.00 V as
shown in the graph of Figure 4.3, together with a linear regression model. Linearity is so
important in many practical applications that the actual transduction equation is
often replaced by its regression line with associate intrinsic errors and characterization
parameters.
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FIGURE 4.3
Graph of the transduction equation (4.1) (solid) with Ref =100 €2, Ry =R, =1 k{), R3=100 (), and V,=7.27 V
and a least squares fitted line (dashed).

Some of these characterization parameters are as follows:

o Offset error—the output reading obtained when the input is set to T =0°C (in volts
for this example)

o Linearity error—the difference between the transduction curve and its linear
regression model (in volts for this example)

e Average sensitivity—the average inclination of the transduction curve defined
through the inclination of its linear regression model (in volts/°C for this example)

If one cannot live with these errors, additional electronic conditioning circuitry must be
designed, particularly to compensate offset and linearity errors. Dedicated microcontrol-
lers are ideal for this task because they include in one single chip the input analog-to-digital
converter, the floating point processor, and the output digital-to-analog converter, in
addition to being cheap. Disregarding the necessity to convert to and from digital repre-
sentation, the whole linearization and normalization procedure can be viewed mathemat-
ically as constructing the following transformation:

v(T) = a - L[V(T)] + b (4.5)

where
a and b are normalization parameters
L is a linearization operator

Let us start by the construction of L. It is quite intuitive that according to Equation 4.1, if this
operator is constructed such that L = F~!, the relation between v and T in (4.5) will be forcibly
linear. However, this is rarely possible in a strict mathematical sense because of the succes-
sive nonlinear transformations between input and output variables. For the particular
example above, although it is possible to explicitly obtain R in terms of V in Equation 4.1,
the polynomial relation between the process temperature and the sensor’s resistance in
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Equation 4.2 makes it impractical to explicitly obtain T in terms of R. Instead, it is possible to
identify an approximation of the transduction equation (4.1)

Vinodel (T) = Frodel[T] (4 . 6)

such that it is possible to explicitly obtain T from Vioge in (4.6). This can be done by
adjusting a suitable mathematical form to (4.1), for instance, Equations 4.2 and 4.3 com-
bined in the example above. For instance, if T relates to V according to an “‘s-shaped”
curve, it is usual to try to fit

o TP
Vmodel(T) = Vao(1 —¢€ T ) (47)
where V, a, and B are calculated to minimize an overall error such as

Tmax
e(Va, ) = J [V(T) - Vinoga(DIEAT (4.8)

Tiin
Then, the linearization operator can be defined by

L[-1 = Vioda () (4.9)

model

which takes the following form, after assuming that V ~ V,,,,4e and substituting (4.9), (4.7),
and (4.6) into (4.5):

1 V. a/e)
viT)=a- [a In <VOO—7V(T)>} +b (4.10)

Finally, a and b are calculated by associating the intervals*

Equation 4.5

[Tmin/ Tmax] - [Vmin/ Vmax] (411)
resulting in
Vmax — Vmin

a=0 4.12
Tmin - Tmax ( )

Tmaxvmin - Tmianax
b= 4.13
Tmir\ - Tmax ( )

Figure 4.4 illustrates how this process works and the role of Foq4e is clearly that of
allowing the inversion to restore linearity, otherwise not practical through F.

* Usually 0 to 10 V or 0 to 5 V because most of data acquisition boards work over this range.
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FIGURE 4.4
Schematic representation of the linearization procedure through an invertible model transduction equation.

The whole linearization procedure can thus be summarized in the following steps:

1. Fit an invertible analytic model to the transduction equation (4.1) by minimizing
an error functional of the type given in (4.8). This can be done by some numerical
optimization procedure such as Newton’s method if derivatives of first and second
order can be calculated, or a genetic algorithm if not.

2. Express the input variable (T) in function of the output variable (Vode1) in (4.6). The
resulting expression corresponds to the linearization operator as in Equation 4.9.

3. Substitute V 46 for V in (4.9) and calculate coefficients a and b in (4.5) according
to a previously defined mapping range as defined by (4.11), 0 to 10 V, for instance.

This three-step procedure applied to the example above gives very good results as shown
in Figure 4.5. The linearity error is less than 0.2 V over 0 to 10 V, that is, less than 2% of the
transducer’s span.
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linear fit (solid) voltage for the
Temperature (°C) example shown in Figure 4.3.
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4.3 Propagation of Uncertainties—Error Analysis

Once one gets a reading from a transducer, two important questions arise: (1) How close is
this reading from the true value (accuracy = degree of veracity)? (2) How repetitive is this
reading if the same stimulus is applied (precision =degree of reproducibility)? Several
sources of uncertainties and external influences contribute to create reading errors. For
instance, the values of the electronic components of the conditioning circuit may change
due to ambient temperature fluctuations. Or the circuit’s wiring may work as an antenna
adding electromagnetic noise to the output variable. Usually all these influences are neither
predictable nor controllable, and, consequently, the transduction equation may deviate
and fluctuate.

The deviations, which are closely related to a loss of accuracy, can be estimated by first
recognizing that the response variable V, in addition to depending on the stimulus
variable T through the transduction Equation 4.1, also depends on a number of intrinsic
parameters denoted by xy, that is

V(T) = F[T, X1,X2,... ,XN] (414)

Thus, it is possible to estimate a small deviation AV produced by errors AT, Ax;, Axy, ...,
Axy according to the following formula:

AV = AT +AX16F—|—Ax26F ---—i—AxNaF

— 4.1
oT 6 aXZ GXN ( 5)

To illustrate the application of this formula, consider the example given by Equation 4.2
with errors AR;, AR,, AR;, and AR associated respectively to the circuit’s and to the
sensor’s resistances, this last one due to random fluctuations between AT of the
stimulus temperature. The excitation voltage and the sensor represented by the param-
eters ay in (4.3) are supposed to be free of errors for simplicity. The corresponding
deviation is then

AV = AT2V+AR1 aav + AR, aav + ARs SV ARZ—V (4.16)

Equation 4.16 may be used to define an envelope containing all possible deviations of the
original transduction equation (4.2), generated by all possible combinations of errors
between the intervals £AR; max, AR, maxs £AR3 max, and £AR,,,, that is,

ov
max aT

ov
oR;

ov
0R;

ov
aX3

ov

AVmax = |AT —
v ’ ox

’ + ’ARl,maX ‘ + ‘ARZ,max ’ + ’AR3,max ’ + ’ARmaX ‘ (417)

This is shown in Figure 4.6 for 1% maximum variations on all parameters.
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FIGURE 4.6
Graph of the transduction equation (4.1) (solid line) and its deviation envelopes according to (4.17) (dashed line)
with 1% errors on R,.s=100 , R =R, =1 k), R3=100 {2, and constant V,=10.0 V.

Let us now investigate the aspects related to the reproducibility. A very precise trans-
ducer produces very close readings when the same stimulus is applied. Considering the
more general transduction equation given by (4.14), when the same input variable T is
applied, one gets very stable output readings V, which may or may not be close to
the true output value depending on x, having experienced some deviation or not. (The
parameters x, may vary due to ambient temperature changes, for example.) But why the
readings are not exactly the same, regardless of being accurate or not? As already men-
tioned, the transducer is submitted to a number of unpredictable external influences
making its readings fluctuate, even if the stimulus is kept rigorously constant. These
random fluctuations are related to the transducer’s precision and must be characterized
according to a statistical approach.

Suppose the same stimulus temperature T is applied repeatedly to the transducer,
producing response voltages V. that vary randomly according to a probability histogram
p(Vi|T). In other words, a particular reading V) is seen as a statistical variable or the
outcome of exposing the transducer to the temperature T. Within this idea, accuracy,
precision, and reproducibility can be quantified through parameters describing statistically
p(); respectively, its location, dispersion, and shape.

Let then V ,(T) be the mean value of Vy, for instance, the arithmetic mean given by

V(@) = p(Vi )V (4.18)
k

Although the arithmetic mean is the most commonly adopted one, other types of statistical
location parameter can also be used, such as geometric and harmonic means or median or
mode averages. The location of a strongly asymmetrical distribution p() may be better
characterized by its median value rather than the arithmetic mean, for example.
A convenient definition for the mean value being established, and denoting Vi,(T) the
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true response voltage to the stimulus temperature T, a natural definition for the accuracy
error is the following:

eaccuracy(T) = Vtrue(T) - th(T) (419)

One advantage of a statistical approach to these issues is the possibility of discriminating
and characterizing subtle aspects of reproducibility, which are related to how Vy spreads
around V. Let then o(T), ¥(T), and k(T) denote, respectively, the standard deviation,
skewness, and kurtosis of p(Vi|T) given by

o*(T) = > p(ViT)(Vic = Vo (T))’ (4.20)
k
YD) = 5 S PV - V(D (421)
k
1
<M = Gy 22 POHDV = Vi)' (422)

The standard deviation is a measure of the dispersion with which the voltage readings Vy
spread around V,, at a given temperature. A low standard deviation indicates that the
readings tend to be very close to the mean, whereas high standard deviation indicates that
they spread out over a large range of values. In a situation of perfect reproducibility, all the
readings are the same, p( ) becomes an infinitely concentrated Dirac distribution, and o(T)
tends to zero. Conversely, if all possible readings Vy have the same probability of being
observed, p( ) becomes uniform (equiprobable) and o(T) grows unbounded. This is coher-
ent with the idea that between Dirac and equiprobable probability histograms, one ranges
from a situation of perfect predictability to perfect unpredictability, or from full reprodu-
cibility to full lack of reproducibility.

The fact that the standard deviation has the same physical units that the readings allow
to define a precision error, or simply precision. This error corresponds to an interval
around Vy, which can be considered as the support of p(Vi|T), and whose upper and
lower bounds are defined by a previously defined interval of all possible reading. If the
probability histogram is not known a priori, the precision error eprecision must be deter-
mined by solving the equation

Vi +eprecision
p(Vk|T)dV = Eq, (4.23)

Vu —€precision

in which Eq, represents the desired confidence level. However, if p( ) is known, €precision Can
be related to the corresponding standard deviation. For instance, for the normal or Gaussian
distribution, V, & o contains 68.2%, V,, & 20 contains 95.4%, and V, &= 3¢ contains 99.7% of
the readings. Although Gaussian distributions are very common, other probability histo-
grams may also be found in practice, particularly when nonlinear and hysteretic effects
influence the transduction phenomenon. This is why the dispersion alone is not sufficient to
characterize precision, and other shape parameters such as the skewness -y and the kurtosis k
must be used. Actually it is possible to demonstrate that if p( ) is Gaussian, y and k and all
other higher order statistical moments are uniquely determined from V,, and o.
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FIGURE 4.7
Schematic representation of the accuracy and precision associated to the example given in Figure 4.6.

Skewness, as defined in (4.21), is a measure of the asymmetry of the probability histo-
gram, which is related to the reading bias. A negative skewness indicates that readings
lower than V,, tend to be more dispersed than readings greater than V,, which implies a
tendency to underestimate. On the contrary, a positive skewness indicates that readings
greater than V, tend to be more dispersed than readings lower than V,, which implies a
tendency to overestimate. This approach can fail in multimodal distributions or in distri-
butions where one tail is long but the other is heavy.

Kurtosis, as defined in (4.22), quantifies how peaked the probability histogram is and,
therefore, also measures dispersion but with a different emphasis. A high kurtosis implies
that p( ) has a sharper peak and longer, fatter tails, while a low kurtosis indicates that p()
has a more rounded peak and shorter thinner tails. To interpret this, suppose two distinct
probability histograms, but with the same standard deviation. The one with higher kur-
tosis will produce a greater amount of readings close to the mean V,, but a few will be
more dispersed. On the other hand, the one with lower kurtosis will produce readings
uniformly dispersed within the same precision. In other words, under equal precisions,
high kurtosis means very good reproducibility with some highly dispersed readings, while
low kurtosis implies that readings are uniformly reproducible.

These concepts are illustrated in Figure 4.7, corresponding to the example shown in
Figure 4.6, with 10% uniform random error added to the voltage readings.

4.4 Temperature Measurements under Time Varying Conditions

In the previous sections, time varying conditions were not considered, implying that a
response is obtained simultaneously with the application of the stimulus, independently of
the state of the transducer before that. This situation can be reproduced in practice
by applying the stimulus to the transducer and waiting a sufficient amount of time for
all the transients to vanish before reading the response. Thus, the general transduction
equation (4.14) actually expresses a static or steady state relation between stimulus and
response. But what happens if one must measure under time varying conditions?
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Before elaborating and elucidating this question, let us first better state the problem and
illustrate with a practical example.

Mathematically speaking, if the stimulus temperature varies in time so will the response
voltage and the general transduction equation should be rewritten as

V(t) = F[T(t); x1, %2, - - ., XN] (4.24)

where the intrinsic parameters x, may or may not vary in time. Consequently, the transduc-
tion operator F will probably involve derivatives and/or integrals of the T and V, most
likely of the form

dv(t
AOV(T)+A1%+~~+AP

dfv(v)
dt’

dT(t) d9T(t)
=Tt)+B——~+ ---+B
() 1 Q dtQ

m (4.25)

where the coefficients Ay and By depend on the intrinsic parameters x, and, also, Q <P for
stability. This obviously does not represent all possible dynamic transduction equations,
but most practical applications can be cast into it with minor restrictive hypothesis. Let us
see how this is so.

Consider the problem of monitoring fluidization patterns in a gas—solid fluidized bed
reactor by measuring internal instantaneous temperature, as indicated in Figure 4.8.
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Sheathed Reacting emulsion

temperature probe Reacting

Temperature /— Process
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Time 0
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.- =

FIGURE 4.8
Dynamic temperature measurement in a fluidized bed reactor—oscillations are due to alternate passage of cold air
bubbles through the probe. (From Oliveira, J. et al., Powder Technol., 170, 123, 2006.)
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Detecting gas bubbles with a thermal probe is based on the temperature difference between
the hotter reacting emulsion phase and the colder gas bubbles. Due to the extremely severe
measurement conditions (temperatures exceeding 600°C, material deterioration due to
friction with particulate, chemical corrosion, presence of electrostatic charges, etc.), it is
recommended to install the probe in a sheath or thermowell made of some resistant
material such as stainless steel whose stray effects can be compensated by additional
elaborate electronic conditioning.

The local instantaneous process temperature of the flow and the corresponding indicated
temperature form the pair stimulus/response and will be respectively denoted by Ty and
Tina by convenience. Thermal accumulation is characterized by the sheath’s mass m (kg)
and by its specific heat Cy, (J/kg/K), while convective and radiative heat transfers through
the area A (m?) are accounted respectively by the convection coefficient h (W/m?/K) and
by the emissivity €. Thus, neglecting the heat conduction through the sensor cable and
admitting that the radiative medium completely involves the sensor tip, the governing
equation relating Tinq and T can be written as follows:

ClTind
dt

mCp, — hA(Tproc — Tind) — €A (Th, — Thy) =0 (4.26)

m

where T, denotes the temperature at which radiative transfers occur and is given by the
combustion temperature of the particulate in the case of a fluidized bed reactor. Equation
4.26 can be written in more appropriate terms by dividing both sides by hA and rearran-
ging the powers of T., and Ting, which results in

dT;,
T (Tproc — Tind) — ¥(Too — Ting) = 0 (4.27)
where
mCy,

- 4.2

T A (4.28)
4g0 (Tog + Ting \

~ [ —— 4.2

v () 429

In these expressions, T represents the probe’s time constant, that is, the increase in tem-
perature caused by heat accumulation over heat transferred by convection, while the
radiation coefficient y quantifies the intensity of radiative heat transfer in comparison
with convective heat transfer. Equation 4.27, although embeds some restrictive hypotheses,
represents a good cast into the general dynamic transduction equation given by (4.25),
specially for practical applications.

Solving the inverse problem, that is, calculating Ty from the measured values of Ting, is
certainly a difficult task because of its intrinsic ill-conditioned nature. In mathematical
terms, the problem being inverse and intrinsically ill posed in the sense of Hadamard
(1923), the solution may not exist or, if it exists, it may not be unique or not continuous with
respect to the input data. In practice, this means that the solution process of Ty from Ting
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will be strongly affected by the presence of experimental errors and noise. This effect has
already been studied, and some techniques have been proposed such as Beck’s function
specification method (Beck et al., 1985) and Murio’s mollification method (Murio, 1993).
These techniques require relatively long computational codes and are not suited for online
implementation. An appropriate solution technique for the online reconstruction of Tproc
from Ti,g was proposed by Oliveira et al. (2006) based on a modified version of the
Savitzki-Golay filtering method (Savitzky and Golay, 1964).

The transduction equation can be discretized in time with the help of the finite difference
method. By defining an adequate time step At, and a backward discretization scheme with
indices n and (n — 1) indicating that the variable refers to times t = nAt and t = (n — 1)At
respectively, it is possible to obtain

T
A_r;: (Tind,n - Tind,nfl) - (Tproc,n - Tind,n) - ’Yn(Too - Tind,n) =0 (4.30)

Thus, the direct and inverse problems are expressed as

1 T
Tindn = m (Tproc,n +YnToo + Ede,nfl) (4.31)
n n
T,
Tproc,n = A_r; (Tind,n - Tind,n—l) + Tind,n - ’Yn(Too - Tind,n) (432)

A numerical experiment is effective to demonstrate the discrepancies introduced by
thermal inertia, convection, and radiation, as well as the extreme sensitivities to the
presence of noise when solving the inverse problem. Consider a reacting gas—solid
bubbly flow whose temperature varies between characteristic levels around 900 and
1000 K. These temperature levels are respectively associated with the colder gas within
the bubbles and with the hotter solid particles in the emulsion phase and, for simplicity,
are assumed to vary according to a square wave. Thus, T,,=1000 K and additional
parameters were adopted representing typical experimental values: m =4.712 x 10~ ° kg,
C =380 J/kg/K, h=550 W/m*/K, A=3.142 x 10"® m?, and £=0.9, which implies an
average time constant of 1.1 s adopted in Equations 4.31 and 4.32 for simplicity
(Tn =7 = 1.15). The synthetic measured signal was generated by solving Equation 4.31
with additive centered uniform noise with 0.01 K amplitude. The sampling period was
set to 0.001 s and the recurrence on Tj,4 due to v, was handled by the Newton-Raphson
method. The reconstruction of Ty from the noisy values of Ti,g was accomplished
through Equation 4.32, and all these signals are shown in Figure 4.9. It can be seen that
despite an extremely low and unrealistic noise level of 0.01 K over 950 K perturbing the
input data, the error between the correct process signal and the reconstructed process
signal has an average value of 0.091 K and a standard deviation of 8.503 K, which
corresponds to a magnification of nearly 2500 times.

The online regularization technique proposed by Oliveira et al. (2006) is based on the
smoothing procedure of Savitzki and Golay (1964) applied to problematical terms in
Equation 4.27, among which the temporal derivative is surely the most important one.
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FIGURE 4.9

Process temperature, indicated temperature, and reconstructed process temperature obtained from Equation 4.7
without prior regularization. (The error level of the indicated temperature is 0.01 K.)

The basic idea is to fit a low-order polynomial of order N to the last M+ 1 indicated
temperatures and to replace dTi,q/dt and Tj,q in Equation 4.27 by smoothed or regularized
values obtained from this polynomial. According to the proposed method, Equation 4.31
will be transformed to

Tproc,n = —Tn-a1n +a0n — Y - (Teo — a0n) (4.33)

where ap, and a;, are respectively the first and second coefficients of the smoothing
polynomial replacing

Tina(nAt) = agn (4.34)

dTi,

dtd (nAt) = —a; (4.35)
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in Equation 4.26. The index n was introduced to stress the fact that ag and a; refer to t = nAt
and must be recalculated at all time steps by solving the associated least squares problem,

that is,

M M
YK YK
k=0 k=0

M M
Sk S K
k=0 k=0

M M
Z kN-H Z kN+2
L k=0 k=0

The main advantage of this approach is that Gram’s matrix
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Temperature (K)

M
> kY
k=0

% kN+1
k=0

% kZN

k=0

ap Ato

ail - Atl

aN - AtN

M 0
>~ Ting, kK
k=0

M 1
>~ Ting, kk
k=0

M
> Ting, k™
k=0

(4.36)

in Equation 4.36 does not
depend on Ting and, consequently, can be previously inverted and stored. The correspond-
ing reconstructed temperature for numerical example above is also shown in Figure 4.9.

Temperature (K)

Temperature (K)

FIGURE 4.10

11 12 13 14

Flame temperature of a Bunsen burner measured with a sheathed PRT (Ting), actual process temperature
measured with a micro-thermocouple (Tp;oc), and reconstructed process temperature with regularization given

by Equation 4.33.
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Experimental tests were performed by Oliveira (2006) in which the flame temperature of
a Bunsen burner was measured with a sheathed PRT and also with an exposed micro-
thermocouple to determine the actual process temperature. The intrinsic parameters of the
reconstruction procedure given by Equation 4.33 were optimized to better reproduce the
actual process temperature probability density function. The corresponding signals are
shown in Figure 4.10.

4.5 General Dynamic Behavior of a Temperature Probe

We have seen in the previous section that thermal accumulation, radiation, convection, and
other thermal phenomena create dynamical effects that may significantly distort and delay
the response with respect to the stimulus. This stimulus-response relation may become
even more complex if elaborate conditioning electronics have to be designed to meet with
performance requirements. This is the case when capacitive and/or inductive components
are used, usually employed in analog filters, or the conditioning electronics contains
feedback loops, which are common in constant temperature-sensing techniques. One
important advantage of RTDs is that, being resistive in nature, their conditioning electron-
ics tends to remain simple. Anyway, the general transduction equation (4.25) is useful for
describing the majority of the transducers found in practice, including both sensor and its
conditioning electronics. Consequently, it is of interest to characterize its behavior to
generic dynamic stimuli.

This can be done very straightforwardly by using the Fourier transform which, defined
for a generic signal s(t), takes the following form

+00
Fourier

S(w) = Js(t)-e’i“’tdt (4.37)

—00

The Fourier transform s(w) is an alternative representation to s(t), meaning that the features
of the original signal are rearranged without loss of information. If one recognizes that
(4.37) can be seen as scalar products with the analyzing harmonic signal exp(+iwt),* which
is an orthogonal basis of the finite energy signal space (Hilbert space), S(w) can be inter-
preted as the frequency content or components with respect to the analyzing frequency .
Thus, the inversion formula corresponding to (4.37), that is,

Fourier ' ] i .
sy = — J §() - e do (4.38)
2w

has a very simple interpretation: s(t) is recreated from its frequency components by adding
up harmonic signals exp(+iwt) weighted by $(w). Let us see an example of this: suppose s(t)

* The scalar product can be defined as (x(t), y(t)) = ffio x(t) - y*(t) dt.
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Graphs of the original signal given by Equation 4.40 for w; =20 rad/s, », =50 rad/s, w3 =80 rad/s, and « = 0.5 s 2

is generated by adding three sinuses of different frequencies and multiplying the result by
a Gaussian window function

s(t) = [ sin (w1t) + sin (wyt) + sin (wat)] - exp (—at?) (4.39)

The graph of s(t) and of its Fourier transform is shown in Figure 4.11. It is clear that the
amplitudes of §(w) are peaked under w = w1, w = wy, and v = w3 and that these peaks are
sharper as the essential duration of the Gaussian window increases because more oscilla-
tions are included in the analysis.

One very interesting mathematical property of the Fourier transform is transforming
derivatives into polynomials in (iw). It can be demonstrated that

+o00 +00

J dz(tt—) et = o - J s(te *'dt = io - §() (4.40)
which implies that
T s
S —iwt — (i) . &
J G € dt= ()" $(w) (4.41)

—00
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This is very convenient for the analysis of differential equations, particularly of the general
transduction equation. Suppose, for simplicity, that Ay and By are constant in (4.25).
Calculating its Fourier transform and considering (4.41) result in

AgV(®) + A1 (i0) V(o) + - - - + Ap(in) V(w) = T(w) + Bi (iw)T(w) + - - + Bo(iw)?T(w)  (4.42)

or, alternatively

P
V(o) - [ZAk(im)k] = T(w) -
k=0

Q
1+ Bk(im)k] (4.43)
k=0

Equation 4.43 gives us a way of expressing the intrinsic concept in (4.24) that the trans-
duction process is a transformation of a stimulus signal into a response signal through a
physical phenomenon. In other words, transducing the stimulus temperature T(t) into the
response voltage V(t), which corresponds to solving (4.25), in the corresponding Fourier
representations becomes a simple algebraic multiplication of the form

V() = H(w) - T(w) (4.44)
where

1+ 32, Bilio)®
ZE:O Ak(iw)k

H(w) = (4.45)

The special function H characterizes the transduction equation, including both physics and
conditioning electronics, since it depends exclusively on the parameters Ay and By, inde-
pendently of the stimulus and the corresponding response. It is also called the “transfer
function” associated to the linear time-invariant transduction system given by (4.25) and
plays the role of a ““dynamic calibration curve” from which any response can be deter-
mined by algebraic multiplication with the corresponding stimulus. This is more evident if
Equation 4.44 is rewritten in terms of amplitude and phase

V(o) = py() - e = [py(0) - @] . [pr(w) - )] = H(w) - T(w) (4.46)
from where it follows that

py(®) = py(®) - pr(w) (4.47)
dy(w) = dy(w) + dr(w) (4.48)

Thus, in the Fourier representation, the response is determined by multiplying the ampli-
tudes of the transfer function and of the stimulus, and by adding the corresponding phases.

Let us test this with the example of the previous section, defined by Equation 4.27, with
v =0 for simplicity

H(0) = 70 = pu(@) - exp [ign(w)] (449)
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and the amplitude py(w) and phase ¢p(w) given by

1

) —— (4.50)
\/1+ (w1)?
bp(w) = —or (4.51)
Now, assuming that the stimulus temperature is a square pulse of the form
1 if 0 <t<At
T(t) = - = 4.52
© { 0 elsewhere (452)
whose Fourier transform is given by
- 1 . .
T(w) = a[sm (Atw) 41 - (cos (Atw) — 1)] (4.53)
Calculating the amplitude of T(w) in (4.53) results in
2 -[1 — cos (Atw)]
pr(w) = ) (@5
w
and the amplitude of the response can determined accordindg to (4.47), that is,
2-11- A
[1 — cos (Atw)] (4.55)

py(w) =
Y o 1/1+ (1)

shown in both time and frequency representation in Figure 4.12.

As already mentioned, H can be used as dynamic calibration curve from which the
response to any possible stimulus temperatures can be calculated according to (4.46). Thus,
it must be previously determined before using the associated transducer to measure the
temperature of a dynamic process. But how can this be done? At first glance, Equation 4.44
suggests that any pair of stimulus/response would be enough for determining the transfer
function by simply dividing the Fourier transform of the last by the Fourier transform of
the first. Indeed, this can only work if the stimulus is capable of exciting all modes of the
transfer function, which constitutes an important practical problem, and several techniques
have been developed to solve it.

A very interesting one is based on a very obvious but insightful observation:

if T(w) =1 = V(o) = H(w) (4.56)

According to the interpretation of the Fourier transform given above that it reveals the
frequency content of the analyzed signal, a unitary T(w) means that T(t) contains all
possible frequencies in equal amounts, and, consequently, all possible modes of the
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FIGURE 4.12
Stimulus temperature given by Equation 4.52 and the corresponding response voltage signals (top), together with
the amplitudes of their Fourier transforms (bottom).

transfer function are equally excited. The temporal representation of such unitary stimulus
is determined by calculating its inverse Fourier transform, as defined by Equation 4.39,
resulting in the well-known Dirac distribution

+00
T(t) = J [T(w) = 1] - exp (—iwt) do = 3(t) (4.57)

—00

In practice, a Dirac stimulus can only be approximated by trying to reproduce its limiting
function sequences, such as submitting the transducer to a very brief and intense tempera-
ture by plunging the thermal sensor into a hot bath for a short period of time. Other
possibilities are to apply a random or chirp-like temperature signal, a sinusoid with slowly
varying frequency, but generating these stimuli is a difficult task for temperature and heat
flow. Let us see an example of how this works.

Suppose that a PRT is to be used to measure temperature fluctuations in a reacting
turbulent flow and that, for some reason, only the components around a specific frequency
are of interest. As already mentioned, the possibility of dealing with a thermal resistive
sensor as a resistor element opens a wide range of solutions in terms of designing cheap
and robust electronic conditioning circuits. Consider using the transduction circuit shown
in Figure 4.1 to which a simple RLC filter and a follower amplifier are connected in order to
read the bridge voltage, as shown in Figure 4.13.
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FIGURE 4.13
RCL band-pass filter used to measure temperature oscillations around a specific frequency of interest.

Applying Kirchhoff’s mesh law, that is, the sum of the electric potential differences
around any closed loop must be zero, we get the following equation:

t

L dv 1
Vbridge(T) = Rdt +V+ RC J V(r)dr (4.58)

—00
where
Vbridge(T) is the normalized voltage generated across the bridge by the PRT
R, L, and C are respectively the resistance, inductance, and capacitance of the RLC filter

V is the response voltage

By applying the Fourier transform to (4.58) we get

- L. 1
Vbridge = |:1 + Elw + m] -V (459)
or, in terms of the transfer function as defined in (4.45)
N 1
H(w) = —T 1 (4.60)
PR T RCio
which can be rewritten more conveniently as
A 1
H(w) = (4.61)

1+iQf<2ﬂ>

wo w
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or, in polar representation

H(w) = ! - exp {iQf <w20 - %)} (4.62)
\/ 1+Q7 (w - wo)
w0 w

where Q; stands for the filter’s quality factor and wy is its central frequency given by

L
U =1\/rec (4.63)

1

The filter is designed by defining R, L, and C so that the central frequency matches the
frequency of interest and, also, to optimize the tradeoff between bandwidth and distortion
caused by nonuniform delay. Arbitrating the quality factor to Qs=5.0 rad/s and the central
frequency to wo=315.16 rad/s (50 Hz) and fixing R =100 (), by enforcing Equations 4.63
and 4.64 implies that L=1.59 H and C =6.37 pF. We will now see how this transduction
system, modeled by Equation 4.58 or 4.59, responds to two different temperature signals,
starting by a Dirac stimulus.

As pointed out above, in practice, a Dirac stimulus can be represented by the limit of a
sequence of unitary rectangular pulses, which is done by setting its amplitude equal to the
reciprocal of its duration. In mathematical terms, this can be put into the following form:

1
— if 0<t<
Voridge® = g = = = F (4.65)

0 elsewhere

A finite difference discretization of Equation 4.58, as previously done in Equation 4.30,
produces the following recurrence formula in which causality is already enforced:

L At =4 L At]™
Vn = Vbridge,n + —Vn—l - ﬁ ;Vk . |:1 +=—+ —] (466)

RAt

As it can be seen in Figure 4.14, as the duration € in (4.66) tends to zero, the Fourier
transform of the stimulus Vbridge(m) — 1, indicating that all frequencies become equally
present in the signal and, consequently, the Fourier transform of the response
V(0) — H(w).

The band-pass filter’s work can be illustrated by applying a stimulus temperature of the
type defined in Equation 4.39 with w; =100 rad/s, w, =315.16 rad/s, w3 =750 rad/s, and
a=>5, with 5% additive uniform noise to better mimic an actual experimental measure-
ment condition, shown in Figure 4.14. It is clear that although there are three equal
amplitude frequencies in the stimulus signal, the response signal is predominantly com-
posed of the central frequency w,=2315.16 rad/s (50 Hz), »; and w; being attenuated by a
factor of 0.01 approximately. Finally, another interesting effect is the improvement of
the signal-to-noise ratio in the response signal. This is so because the frequency content
of the added noise is uniform (white noise) and, consequently, the most part of it was
attenuated by the filter (Figure 4.15).
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FIGURE 4.14
Identification of the transfer function of the RLC band-pass filter given by Equation 4.62 through application of
rectangular pulses progressively approximating a Dirac stimulus (e =0.02, 0.005, and 0.0001 s).
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FIGURE 4.15
Response of the measurement system sketched in Figure 4.12 (wy =50 Hz) to a stimulus temperature containing
three frequencies, one of which matches the filters resonance frequency.

4.6 Conclusions

RTDs, or simply resistance thermometers, are accurate, robust, and cheap, which make
them very attractive for problems involving severe experimental conditions involving
temperature ranges between 0°C and 600°C, particularly in industrial applications.
Another important advantage is their excellent interchangeability, a direct consequence
of inherent long-term stability, and available well-accepted standards. Out of that range,
thermocouples are preferable in applications involving very high (>1000°C) or very low
temperatures (<—20°C), despite the necessity of more complicated conditioning electron-
ics, particularly for cold temperature junction compensation and amplification. In general,
designing an electronic circuit for an RTD is simpler because it can be treated as a resistor
to which many robust electronic measurement techniques have been developed and tested
in a great number of successful applications.

As any other transducer, an RTD can be used to measure under static or steady state
conditions or to measure dynamic temperatures. Either way it is necessary to use the
transduction equation to determine the stimulus variable from the measured variable. In
static measurements, this procedure can be generally reduced to solving an algebraic
equation through a calibration curve, and several characterization parameters can be
defined, in particular those dealing with errors. For instance, accuracy, precision, and
reproducibility are defined as statistical parameters, characterizing different aspects of
the error histogram. Measuring under time varying conditions involves solving a more
complex transduction equation, usually an integro-differential equation with related issues
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of existence, uniqueness, stability, etc. Under some circumstances (constant intrinsic
parameters), the Fourier transform can be used to transform derivatives and integrals of
the transduction equation into polynomials on a conjugate variable (frequency), which also
reduces the solution process to solving an algebraic equation in the transformed domain.
The quotient of the associated characteristic polynomials, also known as transfer function,
works as a dynamic calibration curve: the response is obtained simply by multiplying the
stimulus by the transfer function in the transformed representation.

Wrapping things up, the most important concept that we tried to tackle here is that all
measurement problem is intrinsically an inverse problem, in the mathematical sense of the
term. In other words, measurements being actually the response to stimuli imposed by the
process, recovering the process variable from the indicated variable implies solving an ill-
posed problem that, among other intrinsic difficulties, is extremely sensitive to perturba-
tions in the input data such as experimental errors, electromagnetic noise, etc. This was
clearly illustrated by the example in Figure 4.9, where uniform additive noise is 2500 times
magnified by the non-regularized reconstruction algorithm. This justifies the importance of
developing and applying adequate solution procedures, in addition to a good understand-
ing of the physics involved in transduction together with the use of elaborate electronic
conditioning circuitry.

I

Nomenclature

a,b normalization parameters

a polynomial coefficients

A n coefficients of the smoothing polynomial
A area

Ay, By ordinary differential equation model coefficients
Ch specific heat

e() error functional

€accuracy ~ ACCUracy error

Eo, confidence level

F[ ] transduction operator

h convection coefficient

H transfer function

L[] linearization operator

m mass of thermocouple sheath

M number of indicated temperatures

n integer time counter

N order of smoothing polynomial

p() probability histogram

P, Q order of differential operators

Qs filter quality factor

R,L,C  resistance, inductance, and capacitance, respectively
Ry circuit resistance

Rief reference resistance

R(T) sensor resistance

s(t) generic temporal signal
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t time

T stimulus temperature

Ting indicated temperature

Tproc local instantaneous process temperature
Too reference radiative temperature

\Y normalized voltage

v response voltage

Vi random response voltages to T

Vo excitation voltage

Viue true response voltage to the stimulus temperature T
Vi mean value of Vi

Vo, o, B model parameters
Xi intrinsic parameters in FJ ]

Greek Variables

3(t) Dirac delta generalized function
A deviation, error, difference

At time step

€ emissivity

o relative radiation coefficient

® frequency

on filter central frequency

b phase

p amplitude

o, v, K standard deviation, skewness, and kurtosis, respectively
T time constant

|
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5.1 Introduction

Despite advances in electronics and microelectronics (and even nanotechnology), thermo-
couples are still widely used in industry and in scientific applications. The reason for this is
the flexibility of this type of sensor. It can be in the form of wire or film of any thickness,
resistant to high temperatures, acid, or alkaline media; it adapts to the shape of the
measurement and can still be easily repaired. The inconvenient aspect is the low intensity
signal, requiring high-quality measurement systems. The analysis of one-dimensional
problems involving heat transfer needs two linearly independent boundary conditions.
The heat flux boundary condition is present, but normally not used in experimental studies
due to measurement difficulties. This chapter presents different types of heat fluxmeters,
especially the “tangential gradient” type, and discusses methods of calibration and the
error involved.
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5.2 Thermocouples

In metals and semiconductors, the transport processes of charge (electric current) and
energy are closely related and are due to the displacement of free electrons (conduction
electrons). When the electrons of the electrosphere are weakly linked to their core and
absorb sufficient energy from external sources, they can become free from their core (Kinzie
1973). At constant temperature, energy densities of free electrons in different materials are
not necessarily the same. So when two different materials in thermal equilibrium are in
contact, there is a tendency to occur diffusion of electrons through the interface. If the two
materials are forming a closed circuit and the two junctions are at the same temperature,
the resulting electric fields are opposite and there will be no flow of electrons. However, if
the junctions are at different temperatures, there will be an electric current, as shown in
Figure 5.1. If the circuit is broken at any point, a potential difference (V) can be measured,
function of temperature difference of the two junctions and the type of material of the
wires:

V = aap(Th — T2) (6.1)

This voltage is called “Seebeck voltage or emf,” a tribute to Thomas Seebeck who dis-
covered this phenomenon in 1821 (Rowe 1995). The measurement of the Seebeck emf is
made at zero current. Thus, the voltmeter must have low impedance (high internal
resistance) to ensure this condition.

The law of intermediate metals says that the sum of the thermoelectric forces in a circuit
composed of any number of different materials is zero if the entire circuit is at a uniform
temperature. Thus, a homogeneous material can be added in a circuit and will not affect
the emf as long as their ends are the same temperature (Figure 5.2). The thermocouple
formed by materials A and B will not be affected by materials C or D, where T3 =T,
and T5 = Tﬁ.

FIGURE 5.1
Diffusion of electrons in the material A—B where Ty > T».

FIGURE 5.2
Circuit with intermediate metals. 15 D
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Connection wires

Thermocouple wires = (copper)

Thermistor or

platinum sensor

Isothermal block FIGURE 5.3

Thermocouple in open circuit config-
uration.

The thermocouple does not measure temperature directly, but a temperature difference
between two bodies. It is necessary to know one of the temperatures, called the reference
junction (or cold-junction). One of the reference junctions most commonly used is the ice-
melting bath. It is preferable to use distilled water and a bath with finely crushed ice. For
more precise work, the reference junction must be the triple point of water. It is recom-
mended to immerse the connections in an oil or mercury bath. A simpler solution is to coat
the wires with a layer of synthetic varnish or place them inside a synthetic glove. The law
of intermediate metals allows the connection of a thermocouple in a configuration shown
in Figure 5.3, called junction open reference. This situation is widely used because it
preserves the thermocouple. Another widely used configuration, especially when there
are several thermocouples, is to keep the reference junction at the same temperature as the
environment, measuring the temperature reference with a bulb thermometer or a resist-
ance thermometer. The connections can be at a liquid bath, or a metal block with large
thermal inertia, and the thermocouples placed in holes filled with conductive material
(mercury, mineral oil, or “thermal grease”). In electronic dataloggers, the reference junc-
tion is the connection terminals. However, these terminals are usually made from plastic
(low thermal conductivity), and there is a risk of temperature gradient occurring, causing
measurement error. Manufacturers usually recommend that the equipment be switched on
in advance (around 1 h) to establish a uniform internal temperature, thus reducing meas-
urement error. The reference temperature is measured by a thermistor, or a specific
integrated circuit, named “electronic cold-junction.”

The thermocouples are in fact nonlinear temperature transducers: the thermoelectric
power varies with the temperature of the junctions. The thermocouple formed by copper/
constantan has a thermoelectric power (a) of around 40 wV K at temperatures near the
environment, and a =53 pV K™ ' at 200°C. Table 5.1 presents simplified equations for
thermocouple type T (copper/constantan) and type K (chromel/alumel) with reference
junction at 0°C. If a reference temperature different from 0°C is used, the emf of the
reference junction temperature must first be added.

TABLE 5.1
Equations for Thermocouples Type T and Type K with Reference Junction at 0°C
Temperature
Type Range emf (uV) Temperature (°C)
T (copper/const) —10°C to 100°C V =39.011T + 0.0374T> T=-0.0259V —7.11663 x 107 V>

+2.85872 x 1071 V@
K (chromel/alumel) —10°C to 200°C V =40.938T — 0.0008T> T=0.0244V +1.123 x 1078 V?
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Temperature
measurement point
Junction /
—
FIGURE 5.4
Measurement error by short circuit in / T,of
thermocouple. Last contact point

The extension cables are wires with lower purity than those defined by standards for the
manufacturing of thermocouples. They are inserted between the measuring point and the
reference junction, with the goal of reducing the cost. The presence of these wires can
introduce uncertainties up to 2°C, but this can be greatly reduced if the system is calibrated
with them, and the same temperature calibration is retained during use.

A simple electrical contact between the two wires is enough to build a thermocouple,
because the flowing electrical current is very small. However, the oxidation may impede
the passage of electrons. At low temperature, brazing with tin is sufficient. At higher
temperatures, it becomes necessary to use acetylene or arc welding. However, the method
of manufacturing a thermocouple differs depending on the need of use. When the meas-
urement of fast transient phenomena is required, the thermocouple must be fine, and the
junction should be as small as possible. Even when it is desired to measure an average
temperature, this integration can be accomplished using a junction of large size, bearing in
mind a possible influence of exchange by radiation. The measuring point of temperature of
a thermocouple is the last region of contact between the two materials (Figure 5.4). A short
circuit before the junction is a source of error.

5.2.1 Plated Thermocouple

The need to simplify the fabrication of thermoelectric circuits (eliminating the welding) led
to the use of bimetallic circuits, made by electrolytic (or chemical) deposition of a high-
conductivity metal layer (material 2, Figure 5.5) on a metal support with lower conduct-
ivity and different thermoelectric power (material 1, Figure 5.5). The thermoelectric power
was defined by Hannay in 1959 as follows: ““the power of a thermoelectric material is a
measure of the tendency of free electrons to move from warm to cold regions. This shift
results is a Seebeck difference of potential with an amplitude sufficient to offset the
electrical current created by the displacement of loads in the circuit.” To calculate the
thermoelectric power at any point of a nonhomogeneous circuit, it is necessary to establish
the relationship between the electric current at this point and the gradients of potential and
temperature, and deduct the relationship to cancel the electric current.

5.2.1.1 Metal Homogeneous Region

In the section of the non-coated circuit in the presence of a thermal gradient, local Ohm’s
law is generalized in the form:

j=0E —ocaT (5.2)

Material 2

e

Material 1

FIGURE 5.5
Bimetallic circuit.
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To cancel the local current density, the gradient of electric potential must be proportional to
the temperature gradient. The electrical current will be canceled if

E

62

which corresponds to the usual definition of the thermoelectric power.

5.2.1.2 Regions Coated by Metallic Deposit

The same method can be used to determine the thermoelectric power in the regions
covered by the metallic deposit. If the temperature is constant in the transverse direction
of the circuit, the electrical current flowing in the axial direction must be zero (Figure 5.6).
The expressions of the currents I; and I, through the horizontal surfaces are as follows:

L = ﬂ 71dS1, I = ” j2dS, (G.4)

Sl SZ

When the thickness of the deposit and substrate are constant and the streamlines are fully
developed, the equations above reduce to

L =S51j1, L =S (5.5)

By definition, the current across the cross section of the bimetallic layer along the direction
O-x must be nil, that is,

I = (0151 + 025)E; — (010151 + 020252)AT, =0 (5.6)

This relation can be identified as generalized Ohm's law applied to conductors showing an
equivalent electrical conductivity (o).

I = 044(S1+ S2)Ex — 0qteq(S1 + S2)AT, =0 (5.7)

Comparing Equations 5.6 and 5.7, the linear conductivity can be expressed by

0eg(S1+ S2) = 0151 + 0252 (5.8)
0151 + 025,

oy =——= 5.9

Teq 51+ S5, (5-9)

A
Y /| J2 /|
7 FIGURE 5.6

]1/ Definition of area integration areas of current
ld g
0 x  densities.

y»
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which leads to an equivalent thermoelectric power (a,) given by

10151 + 0025,
o — 222 5.10
“ 0151 + 025, ( )
The thermoelectric equivalent power (,,) depends not only on the thermoelectric power of
the materials involved but also on the electrical conductivities and cross section areas.

5.2.1.3 Seebeck Effect in Bimetallic Circuits

A thermocouple made by partial metallization of a wire or film generates an emf caused by
the Seebeck effect, proportional to the temperature difference between the ends of the
deposited electrodes (thermoelectric junctions). The potential difference between points A
and B of the circuit (Figure 5.7) is obtained by integration of the gradient of electrical
potential between these two points:

ov orT
E = aAT or a = aa (511)
Integration from A to B leads to
B
Vg —Va= JaldT (5.12)
A

Following the same method, the potential difference measured by the Seebeck effect (V) is
obtained by integrating the potential gradient on the path AD:

B C D
V= Joda + Jaeda + Joda (5.13)
A B C

and assuming that the temperatures at the ends of the circuit are the same (T4 =Tp), then

V=(u— aeq) (Tg — Tc) (5.14)

Material 2

FIGURE 5.7
Plated thermocouple: equivalent circuit.
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FIGURE 5.8
Equivalent thermoelectric power (a,,) as a function of cross section area ratio (S»/S1).

Thus, the Seebeck emf is proportional to the difference in thermoelectric power between
the substrate and the region with the metallic deposit. Figure 5.8 shows the difference in
thermoelectric power of some pairs of materials as a function of cross section area ratio
(52/51). It is possible to see that Bismuth deposited on a base of Antimony gives a high
thermoelectric power difference, but it requires a thick deposit. The cause is a small
difference in electrical conductivity of both materials. The fabrication of small thermopiles
can be harmful because the high thermal conductivity leads to a “thermal short circuit”
between the joints, decreasing the sensitivity of the device. The same phenomenon occurs
in the iron/constantan pair. The copper/constantan pairs and gold/constantan pairs
(constantan being the substrate), despite showing a regular difference of thermoelectric
power, do not require a very thick deposit. The reason for this is the high contrast in
electrical conductivity of materials. The use of the chromel/alumel pair is not practical
because the deposit of this alloy is difficult (Delatorre et al. 2003).

5.3 Heat Fluxmeters

There are basically two types of heat fluxmeters: transient and stationary type. The
transient type, also called calorimetric, correlates the increase in temperature of a body
with mass (m) and specific heat (c) to the heat flux absorbed (Q):

Q= mcaa—f (5.15)

The second type, which is more widely used, is based on Fourier law, relating the heat flux
(9) that crosses a body (called auxiliary wall) with the temperature difference (AT) between
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Heat flux

I EEEEZEARERR

FIGURE 5.9

Measurement principle of stationary heat fluxmeter. Auxiliary wall

the faces, as shown in Figure 5.9. It is possible to distinguish two types of transducers by
considering the way they measure the difference in temperature:

1. Transverse gradient fluxmeters
2. Tangential gradient fluxmeters

5.3.1 Transverse Gradient Fluxmeters

The temperature difference is measured in a direction transverse to the surface where the heat
transfer rate is evaluated. The most common forms of measurement are presented below.

5.3.1.1 Welded Thermopile Sensor

In this configuration, the temperature difference is measured by a welded thermopile, and
the resin is the auxiliary wall, as shown in Figure 5.10. The difficulty in this configuration
consists in welding the thermocouples, requiring a large wall thickness (around 5 mm)
(Philip 1961). The device has a high thermal resistance and significantly disturbs the
measurement.

5.3.1.2 Plated Thermopile Sensor

The construction of the thermoelectric circuit can be simplified by using the electrolytic
deposition of copper on a constantan wire (principle described in Section 5.3.3) to eliminate
the production of a large number of thermoelectric welded joints (Figure 5.11). But the

Heat flux
N A A A Insulation

AT

Weld

FIGURE 5.10
Welded thermopile sensor. \%
Heat flux
Constantan wire

FIGURE 5.11 Copper plated over Auxiliary wall

Plated thermopile sensor. constantan wire
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Copper Substrate
_ PP

Constantan
FIGURE 5.12

|4 Hole-plated sensor.

transducer thickness is large (about 3 mm) which is a source of measurement error (Beasley
and Figliola 1988).

5.3.1.3 Hole-Plated Sensor

In this configuration, the thermocouples are constructed by a photoetching technique and
deposited in vacuum on a thin substrate (100 pm) (Figure 5.12). However, the high cost
and difficulty of building sensors with large areas of measurement limit their use.

5.3.2 Tangential Gradient Fluxmeter

Here, the key is to modify the lines of heat flux to generate a temperature difference in a
plane tangential to the plane of measurement (Gtiths 1994). The deviation of the flux
lines is caused by a copper pin shown in Figure 5.13. The temperature differences are
measured by the deposited thermocouples connected in series. Each thermocouple

Heat flux

Copper \l/ \l/ \l/ \l/

Kapton

Constantan pum

Copper
deposited

(b)

FIGURE 5.13
Tangential gradient heat fluxmeter: (a) cross section view and (b) open view.
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converts a temperature difference in Seebeck emf. The emf produced is directly
proportional to the number of thermoelements distributed on the surface of the sensor.
This technique allows the manufacturing of thermocouples without welds, which facili-
tates the fabrication of transducers with large area of measurement, high sensitivity,
and reduced thickness.

5.3.3 Calibration Methods

The accuracy of the calibration process defines the performance of transducers. The most
common way to calibrate remains the use of a heater, which is considered as a standard
procedure. This section shows two configurations for calibration: (a) the simultaneous
method and (b) the “auxiliary transducer” method.

5.3.3.1 Simultaneous Method

One of the most standard and direct methods to calibrate using a heater is a simultaneous
calibration of two transducers. Initially, the transducers are placed according to the config-
uration shown in Figure 5.14a. The same heat flux flows through the two transducers:

dAa = qB (5.16)

The insulation has the function of minimizing heat losses from the top surface of the heater.
It does not play any active role in the process. The plate must be maintained at constant
temperature. Afterwards, the heater is placed between the two transducers as shown in

___| —Insulation

__— Skin heater

Heat fluxmeter A

Heat fluxmeter B

Isothermal plate

Isothermal plate

=
,__—— Heat fluxmeter A

—— Heater

Heat fluxmeter B

Isothermal plate

FIGURE 5.14
Simultaneous calibration: (a) first configuration and (b) second configuration.
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Figure 5.14b. Assuming that the entire heat flux dissipated by the heater (P) crosses the
surfaces (A) of the two transducers,

P * *
R .17
2= 9a+ a8 (5.17)
assuming a linear relationship between heat flux and the emf (V):
g=cV (5.18)

Equations 5.16 and 5.17 are then written as

p " %
E =caVa+cgVp (519)
CAVA = CBVB (5.20)
arriving at the following relations:
P/A P/A
CA = % / * CB= % / * (521)
Va+ (Va/Ve)V V4 (VB/Va)Va

5.3.3.2 “Auxiliary Transducer” Method

The heat flux lost through insulation is measured by a transducer previously calibrated
and subtracted from the value dissipated by the heater (Figure 5.15). This method is
particularly interesting for ““in situ” calibration.

The accuracy of calibration is directly dependent on the accuracy of the heat flux
dissipated by the heater. It should be as thin as possible to minimize heat losses from the
sides and have the same size, that is, the same area, as the fluxmeter. The heater-dissipated
power should not also depend on its own temperature level. This can be obtained by the
use of heaters in constantan, which have an electrical resistance that does not vary with
temperature. To minimize uncertainties arising from the wires, it is recommended to
measure the electrical resistance in the four-wire configuration and use the current meas-
urement to calculate the power dissipation (De Ponte and Maccato 1980).

__| —Insulation
. A , Auxiliary heat
P 1 fluxmeter
—> [Fa e e weaTe e L Heater

Heat fluxmeter

o to calibrate
= sothermal plate " Auxiliary transducer”” calibration method.
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5.4 Conclusion

Plated thermocouples facilitate the construction of thermopiles, eliminating the need of
soldering. The thermopiles are the basic element of most heat fluxmeters, and the use of the
technique of plating permits the development of new types of sensors, especially of ““the
tangential gradient” type, which combines small thickness and high sensitivity. The
accuracy of the calibration process defines the performance of transducers, and the method
of the ““auxiliary transducer’” has been shown to be more simple and with low uncertainty.

Nomenclature

thermal diffusivity (m* s™")

surface area (m?)

calibration constant of heat fluxmeters (W V1)
electric potential gradient vector (V m™ ")
electrical current (A)

current density vector (A m ')

thermal conductivity (W m K™

mass (kg)

electrical power (W)

heat transfer rate (W m™?)

heat flow rate (W)

cross section area (m?)

temperature (K)

emf (V)

temperature gradient vector (K m™)
thermoelectric power (V K™

electrical conductivity (S m™)

AR AT H LD I =M x N
-

Superscripts

* related to second configuration of calibration

Subscripts

A sensor A

B sensor B

AB  differential properties of two elements
eq  equivalent circuit

1 deposit material

2 substrate material
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6.1 Introduction
6.1.1 Basic Relations for Sensed Radiance in Radiative Temperature Measurement

Matter spontaneously emits electromagnetic radiation in a very broad spectrum enclosing
ultraviolet (UV), visible light, infrared (IR), and microwaves. The emitted radiance from a
surface in a given direction depends on wavelength, temperature, and the considered

185
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matter and direction. For a solid material, it also depends on the surface state: presence of
corrosion and roughness. The maximum emitted radiance is given by Planck’s law. It only
depends on wavelength and temperature (Siegel and Howell 1972):

] 1

B T) = N° exp (Co/AT) — 1

6.1)

B(\,T) is expressed in W/m’/sr, wavelength \ in m, and temperature T in K, with
C;=1.191 x 107"* W m® and C,=1.439 x 10 > m K (see Figure 6.1).

B(\, T) is also called the blackbody radiance. A blackbody surface absorbs all incoming
radiation, and no other surface, at the same temperature, emits more thermal radiation
than it does. The blackbody is essentially a thermodynamic concept and it is difficult to
find a material presenting such properties over the entire electromagnetic spectrum.

The blackbody radiance is described in Figure 6.1 for different temperature levels. The
maximum emission is observed at a wavelength Ap,.x such that Ay T=2898 pm K, which
is Wien's displacement law. The peak emissive intensity shifts to a shorter wavelength at a
higher temperature in inverse proportion to T.

A common approximation to Plank’s law is Wien’s law, which is also plotted in
Figure 6.1:

C C
Bw(\,T) = )\—; exp (- é) (6.2)

The approximation error increases with the wavelength. One can, however, consider that
Wien's approximation is valid in the rising part of the radiance curve. As a matter of fact,
the error is less than 1% provided NT < 3124 pm K.

It is obvious that by measuring the thermal radiation emitted by the blackbody surface at
a given wavelength and with reference to Planck’s law, one can infer its temperature. This
idea is at the origin of pyrometry, thermography, microwave radiometry, and more
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generally all electromagnetic-based approaches that rely on the thermal radiation intensity
measurement for temperature characterization.

The sensitivity of blackbody radiance to temperature, according to Planck’s law, is
plotted in Figures 6.2 and 6.3. Figure 6.2 refers to absolute sensitivity 0B/0T whereas
Figure 6.3 refers to relative sensitivity B~'0B/0T. The absolute sensitivity presents a
maximum at a wavelength such that A\T =2410 wm K. For a blackbody at 300 K, maximum
radiance is observed at A =9.65 um; however, the maximum sensitivity to temperature
variations is observed at a shorter wavelength, namely, A = 8.03 wm. On the other hand, the
relative sensitivity is continuously decreasing (see Figure 6.3). The trend is like 1/\ at short
wavelengths. The decreasing nature of relative sensitivity would favor short wavelengths
for temperature measurement. Actually, one should consider all three aspects: radiance
level, absolute sensitivity, and relative sensitivity, together with the spectral detectivity
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and thus the signal-to-noise ratio of the potential sensors, when selecting a wavelength or a
spectral band for temperature measurement.

The ratio between L(\,T,6,¢), the radiance effectively emitted by a surface in the
direction (6, ¢), and the blackbody radiance at same wavelength and same temperature is
called the emissivity:

LN T, 6,0)
=—< .
e\ T, 9, ¢) BT S 1 (6.3)
The emissivity generally depends on the surface temperature but, just for convenience, we
will drop the T dependency.
Second Kirchhoff’s law states that the emissivity in a given direction is equal to the
absorptance in the same direction:

e\, 0,0) =a(\,0,0) (6.4)

The energy conservation law for an opaque material (i.e., the energy that is not absorbed by
the surface is reflected in all directions) leads to the following relation between absorptance
and directional hemispherical reflectance:

a(\,8,¢)+p"'(\,0,¢) =1 (6.5)

The radiation that leaves the surface L(\, T, 0, ¢) is the sum of the radiation emitted by the
surface and the reflection by the surface of the radiation coming from the environment in
all directions (8;, ¢;) of the upper hemisphere:

L()\/ T/ 6/ (P) = 8(}\/ 6/ <'P)B()\/ T) + J p”()\/ e/ ¢, ei/ ('pl)Ll ()\/ ei/ ‘Pl) Ccos eiin (66)

2w

where p”(\, 0, ¢, 0;, ;) is the bidirectional reflectance.

Let us now consider temperature measurement with an optical sensor. Depending on the
application, the sensor is at a distance ranging from a fraction of a meter, in common
industrial processes, to several kilometers in the case of airborne remote sensing and up to
hundreds or even thousands of kilometers in the case of satellite remote sensing. Apart
from the cases based on vacuum operation, the sensed thermal radiation is thus transmit-
ted through an air layer ranging from a few centimeters to the whole atmosphere thickness
(air layer thickness can be higher in the case of near-horizontal line of sight). Along this
optical path, only a fraction of the radiation is transmitted (the corresponding fraction is
defined by the transmission coefficient 7(\, 8, ¢)). The self-emitted radiation of the air layer
between the surface and the sensor, LT()\, 0, ¢), finally adds to the transmitted fraction to
give the at-sensor radiance Ly(\, T, 6, ¢):

L\, T,6,¢) = 7(\, 0, 0)L(\, T, 6, 9) + LI (\, 6, ¢) (6.7)

A common approximation is to consider that the surface is Lambertian, i.e., its optical
properties are direction independent. Equation 6.6 is then simplified as follows:

LNT) = e)BO, T) + (1 — (V) E'(\T)

6.8)
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where the surface irradiance is given by

E'O0T) = J Lenv(\, 03, 07) c0s 0, 6.9)

2w

By introducing L'(\,T)=E'(\,T)/m, the equivalent isotropic environment radiance,
one gets

LI\, T) = eN)B(, T) + (1 — e(\))LE(\) (6.10)

The influence of the air layer between the surface and the sensor was expressed through its
transmission and its self-emission. The same approach can be applied to model the
influence of the collecting optics of the sensor. Combining all together, a global transmis-
sion and a global self-emission can be defined therefrom.

This development has shown that, even for Lambertian surfaces, the sensed radiation
depends on a series of additional variables: the surface emissivity, the irradiance from the
environment, the path transmission, and the path self-emission. Therefore, in order to get
the target temperature from the measured radiance, one also has to estimate these vari-
ables. Depending on the application, the difficulties they introduce are very different:

1. Pyrometry of High-Temperature Surfaces

Generally the sensor is at a close range (the air path is on the order of 0.1-10 m).
Therefore, by carefully selecting the wavelength(s), the air transmission can be
very high. At the same time, the air self-emission can be negligible. In any case, a
calibration can be performed for correcting the optical path transmission and its
self-emission by aiming a blackbody which is put at the same distance from the
sensor. This calibration is satisfactory as long as both air path contributions do not
change. Regarding the reflection of the environment irradiance, the surrounding
surfaces are usually much colder than the sensed surface; in that case, the reflection
contribution is also negligible. For all these reasons, after a proper calibration of the
optic instrument at each wavelength, one thus has access to the emitted radiance
itself:

L\, T) = (\)B(, T) (6.11)

2. Airborne/Satellite Remote Sensing

Transmission and air layer self-emission cannot be discarded anymore. Further-
more, the aimed surface is most often in the same temperature range as the
environment whose emitted radiation is reflected on the surface (the “environ-
ment’’ consists of the atmosphere layer itself and nearby solid surfaces in the case
of “rough” scenes like urban scenes). The complete equation involving Equations
6.7 and 6.6 has thus to be considered. Generally, however, the terrestrial surfaces
are considered as Lambertian surfaces. After proper calibration, one has access to
the spectral at-sensor radiance:

L\, T,8,¢) = T(\, 8, @)[eMN)BN, T) + (1 — e A)L'N)] + LT\, 6, ¢) (6.12)
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In both cases, we face the so-called emissivity—temperature separation (ETS) problem. In the
second one, the atmosphere contributions are so important that a supplementary task of
atmospheric compensation needs to be accomplished.

6.1.2 Relations and Databases for Spectral Emissivity

One could think that emissivity is a material-only related property and that it would be
sufficient to refer to an emissivity database to solve the ETS problem. Some laws were
indeed found for spectral emissivity but only for “ideal” materials. As an example, for
pure metals, the Hagen—Rubens emissivity relation leads to

(6.13)

0.5
&(T,\) ~ 0.0221 <r273T>

where
t273 is the resistivity at 273 Kin ) -m
T is the temperature in K
\ is the wavelength in m (the constant 0.0221 is in ({2 - K)~1/?)

It was experimentally shown that this law is satisfactory only for A > 2 wm. Furthermore, it
is not valid for corroded or rough surfaces. As stated by Siegel and Howell (1972), ““these
types of rules can be misleading because of the large property variations that can occur as a
result of surface roughness, contamination, oxide coating, grain structure, and so forth. The
presently available analytical procedures cannot account for all these factors so that it is not
possible to directly predict radiative property values except for surfaces that approach
ideal conditions of composition and finish.”

For this reason, the emissivity of the considered material has to be evaluated in virtue of
its surface specific state. An indirect approach consists in measuring the directional hemi-
spherical reflectance using Equations 6.4 and 6.5 to infer directional emissivity. This
requires the use of an additional radiation source and bringing close to the characterized
surface an integrating hemisphere to collect all the reflected radiation. This approach was
used to build several databases (see for example Touloukian and DeWitt 1970, Salisbury
and d’Aria 1992, Baldridge et al. 2009), which give some hints on the emissivity range and
spectral variations for a specific material (in Figures 6.4 and 6.5 some examples of emis-
sivity spectra are reported in the 3-14 um range).

6.1.3 Needs for Emissivity-Temperature Separation Methods

The indirect reflectance approach will not be dealt with in this chapter. We will rather
review the approaches consisting in evaluating simultaneously temperature and emissivity,
or which manage to get rid of emissivity in the temperature measurement procedure.

In the field of pyrometry, different methods were devised depending on the number of
wavelengths or wavebands used for the measurement: monochromatic, bispectral to multi-
wavelength pyrometry (MWP). They will be described in Sections 6.2 and 6.3.

In the field of remote sensing, the temperature range of common scenes (sea surface,
rural and urban landscapes) is a few tens of degrees around 300 K. The atmospheric
window corresponding to maximum radiance is the [8-14 pm] window. Fortunately in
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spectra in ASTER spectral library, http: /speclib.jpl.nasa.gov/. Copyright: Jet Propulsion Laboratory, California
Institute of Technology, Pasadena, CA; see also Balridge, A.M. et al., Remote Sens. Environ., 113, 711, 2009.)

this spectral range, natural surfaces have a high emissivity (see Figure 6.5). This property,
together with the fact that several pixels in the IR image share the same atmospheric
parameters (transmission, self-emission) allowed developing a series of efficient methods
for ETS in the presence of participating atmosphere. A presentation of a few of these

methods will be given in Section 6.4.
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6.2 Single-Color and Two-Color Pyrometry
6.2.1 Single-Color Pyrometry

In single-color pyrometry one measures, in a given direction (8, ¢), the following radiance:
LN 6,¢,T)=¢(\6,¢)BN,T) (6.14a)

However, from now on, we will not recall the angular dependency. Thus
LN, T) =e(N)B(\,T) (6.14b)

The raw signal also includes a multiplicative coefficient and an additive coefficient (assum-
ing linearity between radiance and recorded signal). Nevertheless, by calibrating the sensor
with a blackbody at two different temperatures, one can get rid of both coefficients. Such
calibration is from now on assumed to have been applied.

Obviously, at this stage, it is necessary to know the spectral emissivity of the sensed
surface €(\) to infer the blackbody radiance and then the surface temperature. One has to
refer to previous knowledge of the material optical properties, which, referring to the
difficulties presented in Section 6.1.2 for establishing reliable emissivity databases, is
prone to lead to substantial errors.

By differentiating Equation 6.14, one can evaluate the sensitivity of temperature to an
eITor on emissivity:

ar (T dB)l de

- T dB\™ . .. 1dB.
The amplification factor Baqr) @0 be deduced from the relative sensitivity BaT O

Figure 6.3.
Also, with Wien’s approximation, Equation 6.15 reduces to
ar AT de
—_—=—-=— 6.16
T CZ € ( )

The amplification factor is about 0.08 at 1 pm for a temperature of 1100 K. It reaches about
0.2 at 10 pm for a temperature of 300 K. A 10% underestimation of emissivity will lead to a
0.8% overestimation of temperature in the first case (i.e., 8 K) and 2% in the second case
(i.e., 6 K). The advantage of working at short wavelength is evident from this perspective;
as a matter of fact, the error amplification is proportional to \. For this reason some authors
promoted the use of visible pyrometry and even UV pyrometry (see for example Corwin
and Rodenburgh 1994, Hervé and Sadou 2008, Pierre et al. 2008). However, although a
given emissivity relative error has a lower impact on temperature evaluation at short
wavelength, it should not occult the fact that a reasonable estimation of emissivity has
nevertheless to be made. The retrieved temperature is unavoidably affected by this emis-
sivity estimation (Duvaut et al. 1996). Apart from this, at short wavelength, both the signal
and its absolute sensitivity to temperature decrease. The choice of the spectral range for
pyrometry is thus always a compromise.
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6.2.2 Two-Color Pyrometry

By performing a measurement at another wavelength, one adds new information, but
unfortunately one also adds a new unknown, namely, the spectral emissivity at this
supplementary wavelength:

L(\, T) = &(\)B(Ay, T)
6.17
Lt s ©17
The most popular method consists in calculating the ratio of the spectral radiances:
_ L0, T) _e(v) B, T) _ (M) (E)f’ exp (C2/NaT) — 1 6.18)
PTL0w T en) B, T) e \M/ exp(Co/MT) — 1 '
which gives, with Wien’s approximation,
eM) (MY =G\ ) (A2, Y1
~ — — | = —Ni2 | =Bw(\2, T 1
27 e <)\1> P (MzT) sh2) \M " 2) G wikz, T) (6.19)
where the equivalent wavelength of the two-color sensor is defined by
N2
M2 = 2
2= (6.20)

Ratio-two-color pyrometry thus requires knowing the emissivity ratio (\1)/&(\>) in order
to infer temperature from the radiance ratio R, according to Equation 6.18 or to its
approximation, Equation 6.19. One common assumption is that &(A\;) =¢€(\,) (for this
purpose, the gray body assumption is often invoked; however, stating that e(\;) =&(\,) is
less restrictive than the gray body assumption that concerns the entire spectrum).

As for one-color pyrometry, it is easy to relate the temperature estimation error to the
emissivity estimation error:

dr _ )\12T dsl dSz
T N Cz ( €1 &2 ) (621)

Considering the examples (A\; =1pum, A, =1.5um) and T=1100K for the first one and
(M =10 pm, A\, =12 pm) and T =300 K for the second one, the amplification factor reaches,
respectively, 0.22 and 1.2; these values are respectively three and six times higher than with
single-color pyrometry as illustrated in Section 6.2.1.

The error on temperature can be lowered by reducing the equivalent wavelength, i.e., by
increasing the higher wavelength X, or decreasing the shorter one \;. The amplification
factor will anyway be larger than with single-color pyrometry performed at the shortest
wavelength. Reducing the equivalent wavelength also gives the opportunity to increase
R sensitivity to temperature variations when approaching the A>T =2410 pm K optimum
product.

Anyway, a prior knowledge about the emissivity spectrum, more precisely the ratio
e(\1)/e(\2), is required to expect some success with ratio pyrometry. The advantage,
however, as compared to one-color pyrometry is that, thanks to the ratioing, the method
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is insensitive to problems like a partial occultation of the line of sight, or an optical path
transmission variation (provided that this transmission variation is the same in both
spectral channels).

Bicolor pyrometry has been a matter of research for a long time and integrated instru-
ments are now on the market. Some modifications to the basic approach were suggested in
order to improve its performances. As an example the photothermal approach solves the
problem of reflected fluxes (Loarer et al. 1990). Indeed when the sensed surface is not much
hotter than the surrounding, the reflected radiance happens to be disturbing. The photo-
thermal approach is an active method which, with the use of a modulated laser beam,
allows the emitted flux to be rigorously separated from the reflected fluxes. The slight
temperature modulation induced by the laser absorption gives rise to a modulated com-
ponent in the signal whereas the reflected flux only contributes to the DC signal. A lock-in
detection allows to separate them. Finally, by performing the measurement at two wave-
€(\1)0B/0T(\, T)
€(\2)0B/0T(\2, T)
then used to infer the surface temperature (compare with Equation 6.18). A pulse laser can
also be used, where the transient signal at both wavelengths leads to the same ratio as
before (Loarer and Greffet 1992).

In some circumstances, it is possible to bring close to the characterized object a highly
reflecting surface. By properly choosing its shape, one gets two benefits: the reflection
fluxes from the environment are diminished and the apparent emissivity of the sensed
surface is increased thanks to the multiple reflections of the emitted radiation between the
surface and the mirror (Krapez et al. 1990). As a consequence, the temperature estimation
error due to estimation errors on €(\1)/€(\2) is diminished, where € is the apparent,
actually amplified, emissivity.

which is

lengths, the ratio of the modulated signals is proportional to

6.3 Multiwavelength Pyrometry

With single-color pyrometry, we have at hand one radiance measurement and two
unknowns: the monochromatic emissivity and the temperature. By performing a measure-
ment at another wavelength we get an additional radiance value but at the same time we
introduce an additional unknown: the emissivity at this new wavelength. The process can be
repeated up to N wavelengths. Basically the problem of MWP is thus underdetermined:
there are N values for the observable and N + 1 unknown parameters. Furthermore, if the
surface irradiance is significant and if the background radiation can be approximated by a
blackbody radiation at temperature T}, the number of unknowns reaches N + 2 (the alter-
native is to evaluate independently this unknown background equivalent temperature).
MWP has been a subject of controversy for several decades (Gardner 1980, Coates, 1981,
Hunter et al. 1985, 1986, Hiernault et al. 1986, Nordine 1986, DeWitt and Rondeau 1989,
Tank and Dietl 1990, Gathers 1991, Khan et al. 1991a,b, Lindermeir et al. 1992, Duvaut et al.
1995, 1996, Chrzanowski and Szulim 1998ab, 1999, Scharf et al. 2001, Cassady and
Choueiri 2003, Mazikowski and Chrzanowski 2003, Sade and Katzir 2004, Wen and
Mudawar 2004a,b, Uman and Katzir 2006, Duvaut 2008): some authors presented experi-
mental results with various successes, sometimes with small temperature errors and at
other times with unacceptably high errors, depending on the material, on its surface
state, and on the chosen function for approximating the emissivity spectrum. Even the
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theoretical works do not agree on the advantage of using a large number of wavelengths
(Gardner 1980, Coates 1981, Nordine 1986, Tank and Dietl 1990, Gathers 1991, Khan et al.
1991b, Lindermeir et al. 1992, Wen and Mudawar 2004a,b, Duvaut 2008).

6.3.1 Interpolation-Based Methods

In order to solve the underdetermined problem, a potential solution is to reduce by 1 the
degree of freedom of the emissivity spectrum. A first approach consists in approximating
€(\) or In[e(\)] by a polynomial of degree N — 2. However, it was shown by Coates (1981),
based on Wien’s approximation and a polynomial approximation of In[e(\)], that this
method can rapidly lead to unrealistic temperature values as N increases.

As a matter of fact, by taking the logarithm of Equation 6.14 with Wien’s approximation
for blackbody radiance, one gets

TN
ln |:L()\l/ T))\z

NT' i=1N (6.22)
With a polynomial approximation of degree N — 2 for In[e(\)], a temperature T" is retrieved
(it is actually extracted from the constant parameter of the polynomial of degree N —1
which interpolates the N values \; In[L(\;, T)\?/C4]):

z

L\, TN ; .
In [;] = a]-)\l. — W, i=1,N (623)

C1

Il
o

j

It is then easy to see, by multiplying both equations by \; and subtracting them, that the
temperature error expressed through Cy(1/T —1/T") (it is also called ““temperature correc-
tion”) corresponds to the constant parameter of the polynomial of degree N —1 passing
through the N values \;In[e(\;)]. Temperature corrections for N=1, 2, 3 are (Coates 1981,
Khan et al. 1991a):

1 1
N=1 CZ(T_F) = )\111’1(81)
1 1 AMA
N=2 c2<———,)= 142 ln(8—2>
T T )\1 —)\2 €1 (6 24)
N=3 C (11) - Mhohs |
BVERNY (A2 = M)Az — M)Az — \2)

x (M In (_) T 1n(‘°’—3) s m(i))
€3 €1 1%

With equidistant wavelengths, the temperature correction involves the ratio &&;/€3
for three wavelengths and the ratio €3 /¢34 for four wavelengths (Khan et al. 1991a).
Of course, one should estimate this ratio beforehand. Assigning arbitrarily a value of 1 to
this ratio for different metals had the consequence that the temperature estimation error
increased very rapidly with the number of wavelengths (Khan et al. 1991a).

It can be shown that the temperature correction limit for wavelength intervals decreasing
to 0 is equal to (1) AN/(N — 1)IdN""In[e(\)]/dA\N"! (Nordine 1986). One can also
recognize in the temperature correction the extrapolation error at A =0 of the \; In[e(\;)]
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polynomial interpolation. This finding can now be developed a little more. If, by chance,
a polynomial of degree N — 2 could be found passing exactly through the N values In[e(\;)],
the polynomial of degree N —1 passing through the N values \; In[e(\;)] would have a 0
constant parameter—i.e., no extrapolation error—and the retrieved temperature would be
the real one. Such an event is highly improbable and the result is tightly dependent on
polynomial extrapolation properties. Unfortunately it is well known that an extrapolation
based on polynomial interpolation leads to increasingly high errors as the polynomial
degree rises. Furthermore, things get progressively worse as the extrapolation is performed
far from the interpolation domain. This last point would actually advocate expanding the
spectral range to the shortest possible wavelength, but it is a desperate remedy.

The potentially catastrophic errors described just before are systematic errors, i.e., method
errors. They are obtained even when assuming errorless signal. To analyze the measurement
error’s influence, one can state, for simplicity, that the measurement error in channel 7 is
described by a corresponding uncertainty of the apparent emissivity in the same channel,
de(\;). The interpolation of the \; In[e(\;) +de(\;)] values leads afterwards to the same
extrapolation problem as described before and adds to it. The calculated temperature is
thus increasingly sensitive to measurement errors as the number of channels increases.

The interpolation-based method error originates from overfitting of the experimental
data. It was finally recognized that the interpolation-based method could be retained
only for the simpler pyrometers, i.e., with two to three wavelengths at most (Coates 1981).

6.3.2 Regularization by Using a Low-Order Emissivity Model
6.3.2.1 Description of Emissivity Models

The overfitting shortcomings previously described can be alleviated by reducing the
number of unknowns that are used for describing the emissivity spectrum. Different
models were tested:

e(\) = Z”}Mr i=1,...,N, m <N —2(generally m =1 or 2) (6.25)
=0
In[e(\;)] = Zaj)\]l:, i=1,...,N, m <N —2(generally m =1 or 2) (6.26)
=0
S(K')—é i=1 N (6.27)
; _(1+a0)\?)' =1,..., )

Polynomials of \'/2 or \™!/? for In[e(\)] and functions involving the brightness temperature
were also considered by Wen and Mudawar (2004a,b), a sinusoidal function of \ by
Gardner (1980), and other more “physical” models like Maxwell, Hagen—Rubens, and
Edwards models by Duvaut et al. (1995, 1996) and Duvaut (2008).

The gray-band model consists in separating the spectrum in a small number N, of
regions and assigning the same emissivity value to all channels of a given region (Tank
and Dietl 1990). The bands can be narrowed down to three or even two channels as
suggested by Lindermeir et al. (1992). In this way, the number of unknowns is reduced
from N+1 to N/3+1 or N/2+1. One can even go further by squeezing some bands
to one channel. The extreme limit consists in N—1 single-channel bands plus one
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dual-channel band. In that case, we face a problem with N measurements and N unknowns
which is thus, in principle, invertible. We will see that it is actually very badly conditioned.

The concept of gray bands can be generalized by allowing that the channels chosen to
share a common emissivity value are not necessarily close together: an iterative process
was described by Barducci and Pippi (1996) where these wavelengths are each time
reshuffled according to the pseudo-continuous emissivity spectrum, i.e., the one defined
over the N wavelengths according to

LT
s = L&D N (6.28)
B\, T)

where
T is the last estimation of temperature
&(\;, T) is sorted from lower to higher value
the N, groups of equal emissivity wavelengths are defined by cutting this vector into
N, parts

The unknown parameters of the emissivity function, together with temperature, are finally
evaluated through least-squares minimization. By introducing Wien’s approximation for
radiance, a polynomial approximation for In[¢(\)], and by considering the observable
In[L(\;, T))\? /C1], Equation 6.22 shows that the problem reduces to a linear least-squares
problem (Gardner 1980, Hiernault et al. 1986, Cassady and Choueiri 2003, Mazikowski and
Chrzanowski 2003). Otherwise, when considering the observable L(\;, T) one faces a non-
linear least-squares problem (Gardner et al. 1981, Hunter et al. 1985, 1986, DeWitt and
Rondeau 1989, Tank and Dietl 1990, Gathers 1991, Khan et al. 1991b, Lindermeir et al.
1992, Duvaut et al. 1995, Chrzanowski and Szulim 1998a,b, Scharf et al. 2001, Cassady and
Choueiri 2003, Sade and Katzir 2004, Wen and Mudawar 2004a,b, Uman and Katzir 2006,
Duvaut 2008). Let us add that by rearranging the i equations as described in Equation 6.22
one could get rid of one parameter, either a constant parameter or the temperature
(Gardner 1980, Hiernault et al. 1986, Cassady and Choueiri 2003). However, it is believed
that no advantage in accuracy is obtained by manipulating the data to present the same
information in a different form (Gardner 1980). As a matter of fact, in the case of linear
fitting such a manipulation even increases the uncertainty of the identified parameters.

6.3.2.2 Least-Squares Solution of the Linearized ETS Problem

Let us take the logarithm of the measured radiance and adopt Wien’s approximation. The
chosen observable is

LN .
Y= ln(—’) +e, i=1N (6.29)
G

where ¢; is the measurement error (noise) in channel i. We will assume that the e;, i=1,N
are uncorrelated random variables following a Gaussian distribution of uniform variance.
Actually a noise of uniform variance is usually assumed for L; but, for ease, we will
consider that this applies to its logarithm. This approximation is valid if the spectral
range is not too wide with respect to the variations of B(\, T) and if the emissivity does
not change too much.
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According to Equation 6.22 where In[e(N)] is approximated by a polynomial of degree m,
the least-squares solution is

. T N m . CZ 2
P=[a - a, T] =arg”vr%1in§ Yi— | a]-x{.—ﬁ (6.30)
” i=1 j=0 !

For numerical purposes, it is preferable to replace the wavelength in the polynomial
expression by its reduced and centered value so that X; € [—1,1]:

)\i - )\min

)\max - )\min

Ni=2 -1 (6.31)

For the same reason, one can normalize T by Tyef s0 that Co/NTyes is on the order of 1. The
associated unknown parameter is then P7= T,.¢/T. The parameter vector is

* T
P :[a; a4 P (6.32)

m

where the parameters 4 are the coefficients of the polynomial in \;. The corresponding
sensitivity matrix is

* *2 _CZ
)\1 Tref
-G,
)\NTref N, m+2

(6.33)

1 Ay A

where the columns correspond to the sensitivity to successive parameters in vector P* (i.e.,
the first derivative of the model functions relatively to each parameter).

The sensitivity to the parameters 4 and Pr is plotted vs. the reduced wavelength
N = Ni/Amin in Figure 6.6 up to j=2 for the particular case of Npax/Amin=1.75. The
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sensitivity to the temperature inverse is very smooth and close to linear. We thus expect a
strong correlation between the parameters (near collinear sensitivity vectors).

An estimation of the parameter vector P* in the least-squares sense is obtained by solving
the linear system:

xX™x)pr = XY (6.34)

The near-dependent sensitivities lead to an X"X matrix that is near singular. Indeed by
computing the condition number of the matrix X"X one gets very high values, even for a
low degree polynomial approximation (see Figure 6.7).

The condition number describes the rate at which the identified parameters will change
with respect to a change in the observable. Thus, if the condition number is large, even a
small error in the observable may cause a large error in the parameters (the condition
number, however, only provides an upper bound). The condition number also reflects how
a small change in the matrix X" X itself will affect the identified parameters. Such a change
may be due to the measurement error of the equivalent wavelength corresponding to each
spectral channel. From Figure 6.7, a first statement is that the regularization with a
polynomial model of degree 2 and higher will not be efficient (the case of a polynomial
of degree 1 would not be very stable either).

In the field of polymer regression, using orthogonal polynomials like Legendre polyno-
mials instead of the monomial basis functions greatly helps for reducing the condition
number. However, in present case, due to the smooth sensitivity of the temperature
parameter, this does not help much.

A means of reducing the condition number would be to extend the spectral range. From
the radiance curves in Figure 6.1 we notice that radiance is higher than 10% of its
maximum over nearly one decade bandwidth. Assuming that the measurement is per-
formed in different channels of such a large bandwidth, the condition number would
decrease as shown in Figure 6.8. Unfortunately, due to technical reasons such as availabil-
ity of sensors, spurious reflections from external sources (sun, ambient light, etc.), and

108 — . . .

100

10* @

Condition number

10° FIGURE 6.7
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0 1 2 3 N=100). Considered spectrum is such
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presence of atmospheric absorption bands such a broadband temperature measurement
remains hypothetical.

Instead of modeling In[e(\)] by a polynomial function, one could use a staircase function
(gray-band model). The sensitivity related to the emissivity assigned to a given band is a
top-hat function. The condition number of the matrix X"X is represented in Figure 6.9. It
slightly depends on the number of channels, but it rapidly rises with the number of bands
Ny: the trend is roughly like Ng. This indicates that the ill-conditioned character of the
identification problem becomes very critical if one looks at describing the emissivity profile
with a high-resolution staircase function. It is expected that only rough approximations of
the profile (surely with less than five to six bands) are likely to provide a safe character-
ization, i.e., with reasonably low parameter uncertainties.

The condition number is not all. It also depends on the choice of the reference tempera-
ture T,.r. Sometimes it could even be misleading because it only gives an upper bound of
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the error propagation. It is better to analyze the diagonal values of the covariance matrix
(X"™X)"". They actually provide the variance amplification factor for each identified par-
ameter P*:

|02 = diag (X)) o? (6.35)

where o is the variance of the observable, i.e., (or/ Li)z, which is here assumed independ-
ent of the spectral channel i (if one assumed instead that the radiance variance ((rLl)2 is

uniform, the result would be {01234 = diag((X"W'X)"") where W is the inferred covar-

iance matrix of the observable).

One should be aware that o?)* merely describes the error around the mean estimator
value due to radiance error propagation to the parameters. If the mean estimator is biased,
as is the case when the true emissivity profile is not well represented by the chosen model,
one should add the square systematic error to get the root mean square (RMS) error which
better represents the misfit to the true parameter value, either temperature or local emis-
sivity (this will be described later through a Monte Carlo analysis of the inversion).

With the polynomial model, the mean standard relative error for emissivity, which is
defined by

(6.36)
is related to the standard error of the retrieved polynomial coefficients through
o 1< N
T \N & RANC I (6.37)

As such, it can be related to the uncertainty of the observable, which will be written as
o1/L, through an error amplification factor K.:

O¢ oL
— = KE —_— .
4 L (6.38)

With the gray-band model, the mean standard error and the amplification factor are
defined according to

(6.39)

From Wien’s expression for radiance, it is clear that the standard relative error for tem-
perature is proportional to temperature, to o;/L, and to a wavelength scale representative

of the spectral window X\ (one can choose the geometric mean of the window limits:

AminAmax). The error amplification factor for temperature, Ky, is thus defined
according to

or o = 2
7 = KrkT— (6.40)
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The error amplification factors Kr and K. are plotted in Figures 6.10 and 6.11 for the
polynomial model and in Figures 6.12 and 6.13 for the gray-band model, assuming for
both cases a relative bandwidth Ayax/Amin 0f 1.75 (this could correspond to the [8-14 pm]
spectral interval, for example).

A first comment for the polynomial model is that the standard errors increase exponen-
tially with the polynomial degree m, roughly like exp(2m). This increase can be slowed
down by widening the spectral window. With the gray-band model, the standard errors
increase nearly in proportion to the number of bands. In both cases, they decrease with the
total number of channels, roughly like N~'/2. Empirical relations can be found for the
factors Kr and K. They lead to the following error predictions for the particular case Apmax/
Amin = 1.75:
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TABLE 6.1

Root-Mean-Square Error for the Estimated
Temperature and Emissivity Depending
on the Degree of the Polynomial Model
for Emissivity

Polynomial Degree or (K) O

0 15 0.02
1 9.4 0.13
2 64 0.83

Target temperature is 320 K and radiance noise
is 1%.

Regarding the bandwidth influence, we notice that the relative error of temperature
depends both on Ay, and Ay Whereas the mean relative error of emissivity only depends
on the ratio Npax/Amin-

Assuming a target at 320 K, and 1% radiance noise, a pyrometer with seven wavelengths
between 8 and 14 pm will provide temperature and emissivity values with standard errors
as reported in Table 6.1, depending on the polynomial degree chosen for In[e(\)].

The errors are rather high with a linear model for In[e(\)] and they reach unacceptably
high values when using a degree 2 polynomial. These results seem to preclude using the
least squares linear regression approach together with a polynomial of degree 2 and more.
They were obtained with Wien’s approximation. However, Planck’s law is close to Wien’s
approximation over a large spectrum; therefore, we expect that the general least squares
nonlinear regression will also face serious problems when using a polynomial model for
regularization.

Applying the gray-band model to the previous example leads to the standard errors
shown in Table 6.2 (the number of bands can be increased up to N—1=6 for avoiding
underdetermination).

The errors increase with the number of bands, starting from the values corresponding to
a degree 0 polynomial and ending at values that are lower than those obtained with a

TABLE 6.2

Root-Mean-Square Error for the

Estimated Temperature and Emissivity
Depending on the Number of Bands When
Assuming a Gray-Band Model for Emissivity
and Seven Spectral Measurements

Number of Bands or (K) O,

1 1.5 0.020
2 2.6 0.035
3 3.7 0.049
4 5.7 0.076
5 6.7 0.090
6 7.2 0.094

Target temperature is 320 K and radiance noise
is 1%.
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degree 1 polynomial. This is interesting in the sense that even with six bands, i.e., six
degrees of freedom for emissivity, the errors do not “explode” as it was observed earlier by
increasing the polynomial degree. The gray-band model, although not being smooth, could
thus capture more easily rapid variations in the emissivity profile like peaks.

However, as previously stated, the standard errors that are here presented only reflect
what happens when noise corrupts the radiance emitted by a surface which otherwise
perfectly follows the staircase model. As an example, with the six-bands case, the emissivity
should be equal in the two channels that were chosen to form the largest band.

6.3.2.3 A Look at the Solutions of the ETS Problem

Another way of presenting the ill posedness of the ETS problem and the difficulties in
finding an appropriate regularization consists, like in Coates (1981), in exposing the
multiple solutions to this underdetermined problem. For this purpose, we took two
examples for the ““true” emissivity profile: a linear profile and a polynomial of degree 6.
These profiles are represented with bold lines in Figures 6.14 and 6.15 (let us mention that
with reference to the measured spectra in Figures 6.4 and 6.5, the degree 6 polynomial
spectrum in Figure 6.15 cannot be considered unreasonable in any way).

The emitted radiance was then calculated according to Planck’s law assuming a 320 K
temperature in both cases (for simplicity we discarded at this stage the eventual reflections;
experimental noise was also discarded, but it will be added later). Then, from different
temperature estimated values T, one can infer the emissivity profile £\, T), which exactly
leads to the observed radiance. It is given by

CLLT)
- BAT)

BO\, T)

&, 1) e(\) ) (6.43)
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FIGURE 6.14
Emissivity profiles inferred by assuming a temperature T higher or lower than the “real” T temperature which is
here 320 K. T values are indicated on the right. The ““true” profile is in bold line (here assumed linear).
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FIGURE 6.15
Same as in Figure 6.14 when the “true”” profile is a degree 6 polynomial function (bold line).

Some profiles &(\, T) are reported in Figures 6.14 and 6.15 together with the corresponding
estimated temperature T. We must stress the point that these emissivity profiles are all
perfect solutions to the problem, at least from the mathematical perspective. Of course one
has to discard those presenting higher values than 1. With this constraint in mind, the
admissible temperatures are from about 304 K up. Similarly, profiles that reach values less
than, say, 0.02-0.03 can also be discarded if one has some prior information that the surface
is not a very clean polished metal surface (refer to the examples in Figures 6.4 and 6.5).

The traditional way consists in looking for a solution of &(\) in the form of a polynomial.
Let us consider the case of a polynomial of degree 1. The problem can then be reformulated
as follows: which profile in Figure 6.14, respectively in Figure 6.15, does fit a straight line at
best, taking into account the weighting with the blackbody radiance? Of course, in Figure
6.14, the profile corresponding to T =320 K is the only one to be linear (the curvature of the
profile changes on each side of T =320 K). Nevertheless, one has 'to admit that the profiles
corresponding to an estimated temperature in the range 304 K < T < 350 K are not far from
a straight line. If one added some experimental noise, it is clear that the squared residuals
after the linear fit would be in the same range for all profiles &(\, T) corresponding to this
temperature range.

The case in Figure 6.15 is even worse: it is evident that, among all possible solutions, the

“true”’ profile is not the straightest line. Evidently, in this example, the answer for optimal
T will be a temperature much higher than the “true” value (lower profiles in the figure are
indeed smoother than higher profiles). The final solution will thus present a bias. A bias
would also be obtained for the case drawn in Figure 6.15 if the chosen emissivity model
was a degree 0 polynomial instead of a degree 1 polynomial.

As often stated, when using LSMWP, it is necessary to choose an emissivity model that
exactly corresponds to the true profile. The difficulty is that most often the profile shape is
unknown. A misleading thought is that LSMWP performs a fit of the true profile with the
chosen model (polynomial, exponential, etc.). Actually, as seen above, performing LSMWP

comes to choosing among the different possible profile solutions &(\, T), the one that fits at
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best the model, in the least squares sense by weighting with the blackbody radiance (the fit
deals with g(\) if the observable is radiance and with In(e(\)) if it is its logarithm). This can
lead to an emissivity profile of much higher or much lower mean value than the real one,
together with an important temperature error. Actually, the problem with the present
LSMWP is that it sticks to the emissivity shape rather than to its magnitude.

6.3.2.4 Least-Squares Solution of the Nonlinearized ETS Problem

When using Planck’s law instead of Wien’s approximation, LSMWP cannot be linearized
anymore. The nonlinear least-squares problem can be tackled with the Levenberg—
Marquardt method as provided, for example, by the Isqnonlin function from MATLAB"™
library. When choosing a linear model for emissivity and when the “true” emissivity
profile is indeed linear this naturally leads to the right temperature and right emissivity
profile (there is no systematic error when the simulated emissivity spectrum corresponds
to the chosen model). On the contrary, when the “true” emissivity profile is not linear, the
identification presents a bias. For a “true”” emissivity profile corresponding to the bold line
curve in Figure 6.15, the result is reported in Figures 6.16 and 6.17. For this example we
assumed seven equidistant spectral measurements between 8 and 14 pm. The dots in
Figure 6.16 correspond to the simulated measured radiance (no noise at this stage) and
the line corresponds to the radiance calculated from L\, T) = &5(NB(N, T) where £54(N) is
the degree 1 polynomial solution of the LSMWP inversion. A perfect match for radiance is
of course impossible: the low-order model chosen for emissivity (degree 1 polynomial)
cannot explain the observed radiance variations. The least-squares procedure reveals that
the &(\, T) profile in Figure 6.15 that fits at best a straight line, by taking into account the
weighting with the blackbody radiance, is the one corresponding to 335.3 K. The seven
dots in Figure 6.17 correspond to &(\, 335.3) and the dashed line is the best linear estimate
for emissivity £;1(\). The systematic error is thus +15 K for temperature and between —0.06
and —0.2 for emissivity.
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Inversion result for the degree 6 polynomial emissivity profile from Figure 6.15 (T =320 K) when using a linear
model. The “true” emissivity profile is labeled 320 K. The linear solution &g (\) that is associated with a
temperature of 335.3 K is in dashed line. The profile &(\, 335.3) is represented with dots.

If the fitting happens to be too far from the &(\, T) profile, one should change the model.
For this particular example, however, changing to a quadratic model leads to a complete
failure: the profile in Figure 6.15 that is closest to a degree 2 polynomial is the one
corresponding to 230 K and the retrieved (hypothetical) emissivity spectrum ranges
between 2 and 6! Obviously, by imposing the constraint &\, T) < 1, the acceptable solution
would be the profile associated to T =304 K, which means a 16 K underestimation.

Let us now analyze the influence of the measurement noise on the ETS performance. This
can be easily performed by simulating experiments where the theoretical radiance is
corrupted with artificial noise. The radiance is altered by adding values that are randomly
generated with a predetermined probability density function. We assumed a Gaussian
distribution with a spectrally uniform standard deviation. We fixed it to a value ranging
from 0.2% to 6% of the maximum radiance (additive noise). The least-squares minimization
was performed without constraint (i.e., without imposing ¢; < 1) in order to highlight the
mathematical (poor) stability of the inversion procedure. A series of 200 radiance spectra
were treated for each noise level and for both nominal emissivity profiles described in
Figures 6.14 and 6.15 (polynomial functions of degree 1 or 6). As before, we assumed that
the spectral measurements are performed at seven equidistant wavelengths between 8 and
14 pm. We chose a linear emissivity model for LSMWP inversion. The results for the
maximum in the seven channels of the RMS emissivity error are plotted in Figure 6.18.
Those for the RMS error of temperature are plotted in Figure 6.19. One can notice the
following:

1. When the “true” profile is linear, the RMS error increase for temperature and for
emissivity is roughly proportional to the radiance noise level (the temperature
RMS error becomes somewhat erratic when noise is higher than about 3%). In
particular, the RMS errors are 0.1 for emissivity and 8 K for temperature in the case
of a 1% measurement noise.
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2. When the “true” profile is a degree 6 polynomial, the RMS errors are first dom-
inated by a systematic error, which corresponds to the model implementation
error (the chosen model—degree 1 polynomial—is too crude for representing the
“true” profile); statistic errors due to the measurement noise dominate only when
noise is higher than 2%—-3%.

Let us also add that the inversion leads to a systematic error as soon as the ““true’” profile
departs from a straight line. The previous analysis allows us to evaluate the magnitude of
this error when the deviation is small. Statistically, by considering several ““true’” profiles
close to the nominal straight line in Figure 6.14, the RMS of the systematic errors would be
equal to the RMS of the statistic errors obtained by adding the same amount of measure-
ment noise. For this reason, a “true”” profile departing by as little as 1% from a straight line
leads to an emissivity bias whose RMS value is about 0.1. The temperature quadratic mean
error is in this case about 8 K, which is far from negligible. This result highlights the
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considerable importance of choosing the right emissivity model. This impact can be
reduced by increasing the number of spectral channels (the trend is like N~'/? as seen
later), on the condition that the departure from the profile model is randomly distributed.

The same analysis was performed by assuming that both the ““true” profile and the
model are quadratic. The RMS errors (not presented here) are roughly proportional to the
radiance noise level as when both profiles are linear, however, at a much higher level: in
the case of a 1% measurement noise, the RMS errors reach 0.33 for emissivity and 49 K for
temperature.

It is well known that statistic errors can be reduced by increasing the number of
measurements, here by increasing the number of channels. This is confirmed in Figures
6.20 and 6.21 where this number was increased from 7 to 120, keeping the channels
uniformly distributed between 8 and 14 pum. For this illustration the radiance measurement
noise was fixed at 1%. One can notice that the RMS errors indeed decrease in the case of the

linear “true”’ profile with a power-law trend, close to the N~/ classical reduction. In the
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case of the more complicated degree 6 polynomial “true’” profile, there is no such reduc-
tion. As a matter of fact, systematic errors always dominate. There is even a progressive
increase of the RMS errors with the number of wavelengths. The RMS errors of 0.2 for
emissivity and 17 K for temperature that are observed with seven channels cannot be
reduced by adding more channels.

As a conclusion we can state the following:

1. Even by reducing the number of unknowns, as was done here by modeling
spectral emissivity with a polynomial of low degree, the problem remains badly
conditioned; with a polynomial model (either for g(\) or for In &(\)), reasonable
inversion results are expected only up to degree 1.

2. Important systematic errors appear as soon as the real emissivity departs from the
considered model: 1% departure from a straight line already leads to 8 K RMS
error. More complicated spectral shapes lead to unpredictably high systematic
errors (15 K for the considered example of a degree 6 polynomial).

3. Even if the real emissivity values at the sampled wavelengths ¢; i=1, N perfectly
fitted to a straight line, the demand on radiance measurement precision is very
high: as a matter of fact, no more than 0.12% noise is allowed to get a 1 K RMS
error near room temperature for a seven-band pyrometer between 8 and 14 um.

The same analysis was performed by considering the gray-band model. From the degree
6 polynomial emissivity spectrum in Figure 6.15 (it will be called the “raw’” profile), two
“true”” emissivity spectra were drawn. The first one was simply obtained by sampling the
raw profile at the N wavelengths of the pyrometer. The second one was deduced from the
latter one to be compliant with the gray-band model: the N emissivity values were
averaged separately in each of the N}, gray bands. The second ““true” profile thus perfectly
fits to the gray-band model whereas the first one is more realistic.

A Monte Carlo approach was applied by adding Gaussian noise to the theoretical
spectral radiance and performing the inversion on 300 such synthetic data. The results
for emissivity and temperature RMS errors due to 1% RMS radiance noise are presented in
Figures 6.22 and 6.23 when assuming that the measurement is made in N=7 channels
between 8 and 14 pm and in Figures 6.24 and 6.25 when assuming N = 30 channels. In each
case, the number of bands was varied between 1 and N — 1. The curves obtained with the
model-compliant emissivity profile (crosses) are rising with the number of bands and are in
agreement with those obtained with the covariance matrix (see Figure 6.12 for emissivity
and Figure 6.13 for temperature). More interesting are the curves obtained with the model-
not-compliant emissivity profile (circles): they are noticeably erratic and the RMS errors are
more important, actually higher than 0.07 for emissivity and higher than 8 K for tempera-
ture. They are particularly important when the number of bands is either low or high with
respect to the number of channels. In the first case, the number of bands is insufficient to
describe correctly the true emissivity profile. In the second case, we again face a problem of
overfitting. It thus appears to be better to choose intermediate values for the number of
bands. One can notice that for some particular number of bands, the results are signifi-
cantly better than with the linear emissivity model (compare with Figure 6.20 for the
emissivity error and with Figure 6.21 for the temperature error). However, the results
may vary by a factor of 2 by just changing the number of bands by one. This unpredictable
behavior seems to preclude the gray-band model from leading to a safer and more efficient
inversion than the linear emissivity model allows.
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Finally, LSMWP does not perform well for simultaneous evaluation of temperature and
emissivity when using the emitted spectral radiance only. Reasonable RMS values can be
obtained only when the emissivity spectrum perfectly matches with the implemented
emissivity model (gray band or linear). Otherwise, important systematic errors are encoun-
tered. The problem is that, apart from a few exceptions, one does not know beforehand
whether the emissivity of a tested material complies with such or another model.

As a conclusion, there is no valuable reason for implementing MWP instead of the
simpler one-color or bispectral pyrometry. All methods need a priori information about
emissivity. However, the requirements with one-color pyrometry (the knowledge of an
emissivity level) or with bispectral pyrometry (the knowledge of the ratio of emissivity at
two wavelengths) are less difficult to satisfy than the requirement with MWP, which is
a requirement of a strict shape conformity of the emissivity profile with a given parametric
function which, practically, is impossible to satisfy.
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